1
|
Turnbull JD, Dicks J, Adkin R, Dickinson A, Kaushal D, Semowo M, McGregor H, Alexander S. Notification of bacterial strains made available by the United Kingdom National Collection of Type Cultures in 2022. Access Microbiol 2024; 6:000756.v3. [PMID: 39130739 PMCID: PMC11316570 DOI: 10.1099/acmi.0.000756.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/03/2024] [Indexed: 08/13/2024] Open
Abstract
Here, we report on the one hundred and twenty-five bacterial strains made available by the National Collection of Type Cultures in 2022 alongside a commentary on the strains, their provenance and significance.
Collapse
Affiliation(s)
- Jake David Turnbull
- The National Collection of Type Cultures, UK Health Security Agency, 61 Colindale Avenue, Colindale, London, NW9 5EQ, UK
| | - Jo Dicks
- The National Collection of Type Cultures, UK Health Security Agency, 61 Colindale Avenue, Colindale, London, NW9 5EQ, UK
| | - Rachael Adkin
- The National Collection of Type Cultures, UK Health Security Agency, 61 Colindale Avenue, Colindale, London, NW9 5EQ, UK
| | - Alexander Dickinson
- The National Collection of Type Cultures, UK Health Security Agency, 61 Colindale Avenue, Colindale, London, NW9 5EQ, UK
| | - Dorota Kaushal
- The National Collection of Type Cultures, UK Health Security Agency, 61 Colindale Avenue, Colindale, London, NW9 5EQ, UK
| | - Mojisola Semowo
- The National Collection of Type Cultures, UK Health Security Agency, 61 Colindale Avenue, Colindale, London, NW9 5EQ, UK
| | - The NCTC 2022 Depositors Cohort
- The NCTC 2022 Depositors Cohort consists of individuals who deposited strains into the NCTC and those instrumental in preparing the strains for submission to the NCTC. The NCTC 2022 Depositors Cohort are: Kathy Bernard (ex. National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada), Marie Chattaway (Gastrointestinal Bacteria Reference Unit, UK Health Security Agency, Colindale, London, UK), Ka Lip Chew (Department of Laboratory Medicine, National University Hospital, Singapore, Singapore), Rachel Gilroy (ex. Microbes in the Food Chain Group, Quadram Institute, Norwich Research Park, Norwich, UK), Harriet Gooch (John Innes Centre, Norwich, UK), Thi Thu Hao Van (Royal Melbourne Institute of Technology, Bundoora Campus, Bundoora, Victoria, Australia), Jane Hawkey (Monash Central Clinical School, The Burnet Institute, Melbourne, Australia), Jay Hinton (Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK), Katie Hopkins (Antimicrobial Resistance & Mechanisms Service, Antimicrobial Resistance and Healthcare Associated Infections Unit, UK Health Security Agency, Colindale, London, UK), Claire Jenkins (Gastrointestinal Bacteria Reference Unit, Public Health England, Colindale, London, UK), Rob Mariman (Rijksinstituut voor Volksgezondheid en Milieu (RIVM), the National Institute for Public Health and the Environment, Bilthoven, The Netherlands), Despoina Mavridou (Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA), Mark Pallen (Quadram Institute, Norwich Research Park, Norwich, UK), Gavin Paterson (Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, Scotland, UK), Blanca Perez Sepulveda (Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, UK), Zeli Shen (Massachusetts Institute of Technology, Cambridge, Massachusetts, USA), Sho Shimada (Toho University, Faculty of Medicine, Omorinishi, Ota-ku, Tokyo), Sooyeon Song (Department of Animal Science, Jeonbuk National University, Backje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, Republic of Korea), Dmitriy Volokhov (US Food and Drug Administration, Center for Biologics Evaluation and Research, Silver Spring, Maryland, USA), Thomas Wood (Pennsylvania State University, University Park, Pennsylvania, USA)
| | - Hannah McGregor
- The National Collection of Type Cultures, UK Health Security Agency, 61 Colindale Avenue, Colindale, London, NW9 5EQ, UK
| | - Sarah Alexander
- The National Collection of Type Cultures, UK Health Security Agency, 61 Colindale Avenue, Colindale, London, NW9 5EQ, UK
| |
Collapse
|
2
|
de Oliveira Sant'Anna L, Dos Santos LS, Olivella JGB, da Cruz Mota M, Ramos JN, Baio PVP, da Rocha DJPG, Vieira VV, Almuzara M, Vay C, Barberis C, Castro TLDP, Seyffert N, Pacheco LGC, Mattos-Guaraldi AL. Description of Corynebacterium hiratae sp. nov. isolated from a human tissue bone a novel member of Corynebacterium Genus. Braz J Microbiol 2024; 55:1405-1414. [PMID: 38598149 PMCID: PMC11153448 DOI: 10.1007/s42770-024-01331-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/02/2024] [Indexed: 04/11/2024] Open
Abstract
BACKGROUND Corynebacterium spp. are widely disseminated in the environment, and they are part of the skin and mucosal microbiota of animals and humans. Reports of human infections by Corynebacterium spp. have increased considerably in recent years and the appearance of multidrug resistant isolates around the world has drawn attention. OBJECTIVES To describe a new species of Corynebacterium from human tissue bone is described after being misidentified using available methods. METHODS For taxonomic analyses, phylogenetic analysis of 16S rRNA and rpoB genes, in silico DNA-DNA hybridization, average nucleotide and amino acid identity, multilocus sequence analysis, and phylogenetic analysis based on the complete genome were used. FINDINGS Genomic taxonomic analyzes revealed values of in silico DNA-DNA hybridization, average nucleotide and amino acids identity below the values necessary for species characterization between the analyzed isolates and the closest phylogenetic relative Corynebacterium aurimucosum DSM 44532T. MAIN CONCLUSIONS Genomic taxonomic analyzes indicate that the isolates analyzed comprise a new species of the Corynebacterium genus, which we propose to name Corynebacterium hiratae sp. nov. with isolate 332T (= CBAS 826T = CCBH 35,014T) as the type strain.
Collapse
Affiliation(s)
- Lincoln de Oliveira Sant'Anna
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Vinte e Oito de Setembro 87, Fundos, 3º andar. Vila Isabel, Rio de Janeiro, RJ, CEP:20551-030, Brazil.
| | - Louisy Sanches Dos Santos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Vinte e Oito de Setembro 87, Fundos, 3º andar. Vila Isabel, Rio de Janeiro, RJ, CEP:20551-030, Brazil
| | - Julianna Giordano Botelho Olivella
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Vinte e Oito de Setembro 87, Fundos, 3º andar. Vila Isabel, Rio de Janeiro, RJ, CEP:20551-030, Brazil
| | - Mariana da Cruz Mota
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Vinte e Oito de Setembro 87, Fundos, 3º andar. Vila Isabel, Rio de Janeiro, RJ, CEP:20551-030, Brazil
| | - Juliana Nunes Ramos
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Vinte e Oito de Setembro 87, Fundos, 3º andar. Vila Isabel, Rio de Janeiro, RJ, CEP:20551-030, Brazil
| | | | | | - Verônica Viana Vieira
- Faculty of Pharmacy and Biochemistry and Bacteriology, Department of Clinical Biochemistry, University of Buenos Aires, Autonomous City of Buenos Aires, Argentina
| | - Marisa Almuzara
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Carlos Vay
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Claudia Barberis
- Interdisciplinary Laboratory of Medical Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Núbia Seyffert
- Institute of Health Sciences, Department of Biotechnology, Federal University of Bahia, Salvador, Brazil
| | | | - Ana Luíza Mattos-Guaraldi
- Laboratory of Diphtheria and Corynebacteria of Clinical Relevance, Department of Microbiology, Immunology and Parasitology, State University of Rio de Janeiro, Vinte e Oito de Setembro 87, Fundos, 3º andar. Vila Isabel, Rio de Janeiro, RJ, CEP:20551-030, Brazil
| |
Collapse
|
3
|
Burkovski A. Proteomics of Toxigenic Corynebacteria. Proteomes 2023; 12:2. [PMID: 38250813 PMCID: PMC10801583 DOI: 10.3390/proteomes12010002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/20/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Within the genus Corynebacterium, six species are potential carriers of the tox gene, which encodes the highly potent diphtheria exotoxin: Corynebacterium diphtheriae, Corynebacterium belfantii, Corynebacterium rouxii, Corynebacterium ulcerans, Corynebacterium pseudotuberculosis and Corynebacterium silvaticum. Based on their potential to infect different host species and cause either human infections, zoonotic diseases or infections of economically important animals, these bacteria are of high scientific and economic interest and different research groups have carried out proteome analyses. These showed that especially the combination of MS-based proteomics with bioinformatic tools helped significantly to elucidate the functional aspects of corynebacterial genomes and to handle the genome and proteome complexity. The combination of proteomic and bioinformatic approaches was also used to discover new vaccine and drug targets. In addition, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry has been established as a fast and precise tool for the identification of these bacteria.
Collapse
Affiliation(s)
- Andreas Burkovski
- Microbiology Division, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
5
|
Munson E, Carroll KC. Update on Accepted Novel Bacterial Isolates Derived from Human Clinical Specimens and Taxonomic Revisions Published in 2020 and 2021. J Clin Microbiol 2023; 61:e0028222. [PMID: 36533910 PMCID: PMC9879126 DOI: 10.1128/jcm.00282-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A number of factors, including microbiome analyses and the increased utilization of whole-genome sequencing in the clinical microbiology laboratory, has contributed to the explosion of novel prokaryotic species discovery, as well as bacterial taxonomy revision. This review attempts to summarize such changes relative to human clinical specimens that occurred in 2020 and 2021, per primary publication in the International Journal of Systematic and Evolutionary Microbiology or acceptance on Validation Lists published by the International Journal of Systematic and Evolutionary Microbiology. Of particular significance among valid and effectively published taxa within the past 2 years were novel Corynebacterium spp., coagulase-positive staphylococci, Pandoraea spp., and members of family Yersiniaceae. Noteworthy taxonomic revisions include those within the Bacillus and Lactobacillus genera, family Staphylococcaceae (including unifications of subspecies designations to species level taxa), Elizabethkingia spp., and former members of Clostridium spp. and Bacteroides spp. Revisions within the Brucella genus have the potential to cause deleterious effects unless the relevance of such changes is properly communicated by microbiologists to stakeholders in clinical practice, infection prevention, and public health.
Collapse
Affiliation(s)
- Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C. Carroll
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Re-identification and Characterization of Multidrug-Resistant Corynebacterium haemomassiliense-Like Organisms from Humans. Curr Microbiol 2023; 80:82. [PMID: 36680615 DOI: 10.1007/s00284-023-03183-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/04/2023] [Indexed: 01/22/2023]
Abstract
Recently, non-diphtheriae Corynebacterium spp. have been increasingly reported in patients. In addition, several novel species of Corynebacterium isolated from humans. Here, we report two cases of human infections caused by Corynebacterium haemomassiliense-like organisms, which had not been identified at the species level by MALDI-TOF MS analysis. They were revealed to be closely related to C. haemomassiliense, a recently described species by three housekeeping genes (16S rRNA, rpoB, and gyrA) and phenotypic features. Both strains were multidrug-resistant but susceptible to vancomycin, meropenem, and linezolid. Our report suggests that human infections by the recently described Corynebacterium species may not be limited to a specific region, in addition to difficulty of classifying the genus Corynebacterium.
Collapse
|