1
|
Burbick CR, Lawhon SD, Bukouras B, Lazzerini G, Munson E. An update on novel taxa and revised taxonomic status of bacteria isolated from aquatic host species described in 2022-2023. J Clin Microbiol 2024:e0104324. [PMID: 39445811 DOI: 10.1128/jcm.01043-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024] Open
Abstract
The description of new taxa and nomenclature updates to currently known taxa from aquatic animal species continues. After a review of the literature from 2022 and 2023, multiple lists of bacteria, including members of Phylum Planctomycetota, were compiled. As with the previous review, most bacteria are oxidase-positive Gram-negative bacilli with familiar families including new taxa in Aeromonadaceae, Flavobacteriaceae, and Vibrionaceae. A number of Gram-positive bacilli are described including new taxa in the Nocardioides, Paenibacillus, and Streptomyces genera. Two anaerobic species are listed, and one new member of Family Planctomycetaceae is noted. Revised taxa are briefly mentioned. The majority of new and revised taxa are isolated from healthy aquatic animals, and therefore, the role of these new bacteria in health and disease is unknown. Bacteria with pathogenic association and potential production of bioactive substances are highlighted.
Collapse
Affiliation(s)
- Claire R Burbick
- Department of Veterinary Microbiology and Pathology, Washington State University, Pullman, Washington, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, College Station, Texas, USA
| | - Brittany Bukouras
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Giovanna Lazzerini
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| | - Erik Munson
- Department of Medical Laboratory Science, Marquette University, Milwaukee, Wisconsin, USA
| |
Collapse
|
2
|
Takahashi M, Hoshino K, Hamada M, Tamura T, Moriuchi R, Dohra H, Nakagawa Y, Kokubo S, Yamazaki M, Nakagawa H, Hayakawa M, Kodani S, Yamamura H. Streptomyces yaizuensis sp. nov., a berninamycin C-producing actinomycete isolated from sponge. J Antibiot (Tokyo) 2024:10.1038/s41429-024-00782-8. [PMID: 39443749 DOI: 10.1038/s41429-024-00782-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
While screening for antibiotics in a marine sample, we discovered a berninamycin C-producing actinomycete, designated YSPA8T, isolated from a sponge. A polyphasic approach was used to determine the taxonomic position of the strain. Strain YSPA8T formed sympodially branched aerial mycelia that ultimately segment into chains of spores. Comparative and phylogenetic analyses of the 16S rRNA gene sequence showed that strain YSPA8T were closely related to Streptomyces clavuligerus ATCC 27064T (99.66%), Streptomyces amakusaensis NRRL B-3351T (98.69%), Streptomyces inusitatus NBRC 13601T (98.48%), and 'Streptomyces jumonjinensis' JCM 4947 (98.41%). The phylogenetic tree using the 16S rRNA gene sequences, and both phylogenomic trees suggested that the closest relative of strain YSPA8T was S. clavuligerus ATCC 27064T. The average nucleotide identity, digital DNA-DNA hybridization, and average amino acid identity values between strain YSPA8T and S. clavuligerus ATCC 27064T were 84.1%, 28.9%, and 82.5%, respectively, which were below the thresholds of 95%, 70%, and 95% for a prokaryotic conspecific assignment. The G + C of the strain YSPA8T was 72.6%. Whole-cell hydrolysates of strain YSPA8T contained LL-diaminopimelic acid. The predominant menaquinones were MK-9(H6) (49%) and MK-9(H8) (48%), and the major fatty acids were C16:0 (26.8%), C16:1 ω7c/ω6c (17.2%), iso-C16:0 (16.0%), and iso-C15:0 (12.5%). The major phospholipids were diphosphatidylglycerol, phosphatidylethanolamine, and other unidentified phospholipids. Based on the phenotypic, phylogenetic, genomic, and chemotaxonomic data, strain YSPA8T represents a novel species of the genus Streptomyces, and the proposed name for this species is Streptomyces yaizuensis sp. nov. The type strain is YSPA8T (=NBRC 115866T = TBRC 17196T).
Collapse
Affiliation(s)
- Miku Takahashi
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Kanata Hoshino
- Department of Chemistry, Princeton University, Princeton, NJ, USA
- Faculty of Agriculture, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Moriyuki Hamada
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Kisarazu, Chiba, Japan
| | - Tomohiko Tamura
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), Kisarazu, Chiba, Japan
| | - Ryota Moriuchi
- Shizuoka Instrumental Analysis Center, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Hideo Dohra
- Shizuoka Instrumental Analysis Center, Shizuoka University, Suruga-ku, Shizuoka, Japan
- Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Suruga-ku, Shizuoka, Japan
- Academic Institute, Shizuoka University, Suruga-ku, Shizuoka, Japan
- Research Institute of Green Sceience and Technology, Shizuoka University, Suruga-ku, Shizuoka, Japan
| | - Youji Nakagawa
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Susumu Kokubo
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
| | - Motoyuki Yamazaki
- Shizuoka Prefectural Research Institute of Fishery and Ocean, Yaizu, Shizuoka, Japan
| | - Hiroyuki Nakagawa
- Research Center for Advanced Analysis, Core Technology Research Headquarters, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Masayuki Hayakawa
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan
- Yamanashi Prefectural University, Kofu, Japan
| | - Shinya Kodani
- Faculty of Agriculture, Shizuoka University, Suruga-ku, Shizuoka, Japan.
- Shizuoka Institute for the Study of Marine Biology and Chemistry, Shizuoka University, Suruga-ku, Shizuoka, Japan.
- Academic Institute, Shizuoka University, Suruga-ku, Shizuoka, Japan.
| | - Hideki Yamamura
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Kofu, Japan.
| |
Collapse
|
3
|
Kanchanasin P, Salahong T, Sripreechasak P, Suriyachadkun C, Harunari E, Igarashi Y, Tanasupawat S, Tawinwung S, Vimolmangkang S, Chaotham C, Phongsopitanun W. Discovery of two new actinobacteria, Micromonospora palythoicola sp. nov. and Streptomyces poriticola sp. nov., isolated from marine invertebrates. Sci Rep 2024; 14:22140. [PMID: 39333582 PMCID: PMC11436869 DOI: 10.1038/s41598-024-73040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Marine invertebrates represent an underexplored reservoir for actinobacteria, which are known to synthesize novel bioactive compounds. This study isolated 37 actinobacterial strains from five distinct marine invertebrate hosts, namely Chondrilla australiensis, Palythoa sp., Favia sp., Porites lutea, and Acropora cervicornis, while no strains were obtained from Lissoclinum sp. and Lithophyllon sp. These isolates were taxonomically classified into six genera: Gordonia, Microbacterium, Micromonospora, Nocardia, Rhodococcus, and Streptomyces, with Streptomyces and Micromonospora being notably predominant. Comparative genomic analysis facilitated the identification of two novel species: Micromonospora palythoicola sp. nov. (strain S2-005T = TBRC 18343T and NBRC 116545T) and Streptomyces poriticola sp. nov. (strain C6-003T, =TBRC 17807T and NBRC 116425T). Both species exhibited substantial genetic differences from their nearest known species as demonstrated by digital DNA-DNA hybridization and average nucleotide identity scores, which fell below the thresholds of 70% and 95%, respectively. Streptomyces poriticola C6-003T displayed significant antimicrobial activity and selective cytotoxicity against human breast cancer MCF-7 cells, with reduced toxicity towards human dermal papilla cells. Micromonospora palythoicola S2-005T manifested antimicrobial properties against Streptococcus mutans and Kocuria rhizophila. These findings highlight the considerable diversity of actinobacteria within marine invertebrates and underscore their potential as a source of new species with promising biological properties for therapeutic applications.
Collapse
Affiliation(s)
- Pawina Kanchanasin
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanarat Salahong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Paranee Sripreechasak
- Office of Educational Affairs, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Chanwit Suriyachadkun
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, Pathumthani, 12120, Thailand
| | - Enjuro Harunari
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Supannikar Tawinwung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Phamaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Natural Products and Nanoparticles (RP2), Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
4
|
Becerril-Espinosa A, Mateos-Salmón C, Burgos A, Rodríguez-Zaragoza FA, Meza-Canales ID, Juarez-Carrillo E, Rios-Jara E, Ocampo-Alvarez H. Dry Stamping Coral Powder: An Effective Method for Isolating Coral Symbiotic Actinobacteria. Microorganisms 2023; 11:2951. [PMID: 38138095 PMCID: PMC10745815 DOI: 10.3390/microorganisms11122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Actinobacteria are important sources of antibiotics and have been found repeatedly in coral core microbiomes, suggesting this bacterial group plays important functional roles tied to coral survival. However, to unravel coral-actinobacteria ecological interactions and discover new antibiotics, the complex challenges that arise when isolating symbiotic actinobacteria must be overcome. Moreover, by isolating unknown actinobacteria from corals, novel biotechnological applications may be discovered. In this study, we compared actinobacteria recovery from coral samples between two widely known methods for isolating actinobacteria: dry stamping and heat shock. We found that dry stamping was at least three times better than heat shock. The assembly of isolated strains by dry stamping was unique for each species and consistent across same-species samples, highlighting that dry stamping can be reliably used to characterize coral actinobacteria communities. By analyzing the genomes of the closest related type strains, we were able to identify several functions commonly found among symbiotic organisms, such as transport and quorum sensing. This study provides a detailed methodology for isolating coral actinobacteria for ecological and biotechnological purposes.
Collapse
Affiliation(s)
- Amayaly Becerril-Espinosa
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City 03940, Mexico; (A.B.-E.); (A.B.)
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico (F.A.R.-Z.); (E.J.-C.); (E.R.-J.)
| | - Carolina Mateos-Salmón
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico (F.A.R.-Z.); (E.J.-C.); (E.R.-J.)
| | - Asdrubal Burgos
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Mexico City 03940, Mexico; (A.B.-E.); (A.B.)
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico;
| | - Fabián A. Rodríguez-Zaragoza
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico (F.A.R.-Z.); (E.J.-C.); (E.R.-J.)
| | - Iván D. Meza-Canales
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico;
| | - Eduardo Juarez-Carrillo
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico (F.A.R.-Z.); (E.J.-C.); (E.R.-J.)
| | - Eduardo Rios-Jara
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico (F.A.R.-Z.); (E.J.-C.); (E.R.-J.)
| | - Héctor Ocampo-Alvarez
- Departamento de Ecología, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Zapopan 45200, Mexico (F.A.R.-Z.); (E.J.-C.); (E.R.-J.)
| |
Collapse
|
5
|
Weeraphan T, Supong K, Sripreechasak P, Jutakanoke R, Kowinthanaphat S, Tanasupawat S, Pittayakhajonwut P, Phongsopitanun W. Streptomyces rugosispiralis sp. nov., a Novel Actinobacterium Isolated from Peat Swamp Forest Soil That Produces Ansamycin Derivatives and Nocardamines. Antibiotics (Basel) 2023; 12:1467. [PMID: 37760763 PMCID: PMC10525797 DOI: 10.3390/antibiotics12091467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/05/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Actinomycetes, especially the genus Streptomyces, are one of the most promising sources of bioactive natural products. In this study, a novel Streptomyces strain, RCU-064T, was isolated from a soil sample collected from a peat swamp forest in Thailand. Strain RCU-064T showed the highest 16S rRNA gene sequence similarity (99.06%) with Streptomyces malaysiensis NBRC 16446T. Based on a polyphasic approach, strain RCU-064T represents a novel species of the genus Streptomyces, for which the name Streptomyces rugosispiralis sp. nov. is proposed. The chemical isolation of the crude ethyl acetate extracts of the strain led to the isolation of six compounds: (1) geldanamycin, (2) 17-O-demethylgeldanamycin, (3) reblastatin, (4) 17-demethoxyreblastatin, (5) nocardamine, and (6) dehydroxynocardamine. These compounds were evaluated for their biological activities. All compounds showed no antimicrobial activity against tested microorganisms used in this study. Compounds (1)-(4) displayed cytotoxic activity against the NCI-H187 cell line, with IC50 values ranging from 0.045-4.250 µg/mL. Cytotoxicity against the MCF-7 cell line was found in compounds (1) and (3) with IC50 values of 3.51 and 1.27 µg/mL, respectively. Compounds (5) and (6) exhibited cytotoxicity only against Vero cells (IC50 of 16.57 µg/mL) and NCI-H187 cells (IC50 of 13.96 µg/mL), respectively. These results indicate that peat swamp forest soil remains a promising reservoir of novel actinomycetes capable of producing bioactive natural products.
Collapse
Affiliation(s)
- Trinset Weeraphan
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (T.W.); (S.K.); (S.T.)
| | - Khomsan Supong
- Department of Applied Science and Biotechnology, Faculty of Agro-Industrial Technology, Rajamangala University of Technology Tawan-ok, Chantaburi 22210, Thailand
| | - Paranee Sripreechasak
- Office of Educational Affairs, Faculty of Science, Burapha University, Chonburi 20131, Thailand;
| | - Rumpa Jutakanoke
- Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand;
| | - Supalerk Kowinthanaphat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (T.W.); (S.K.); (S.T.)
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (T.W.); (S.K.); (S.T.)
| | - Pattama Pittayakhajonwut
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand;
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (T.W.); (S.K.); (S.T.)
- Natural Products and Nanoparticles Research Units (NP2), Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Harunari E, Doyo H, Phongsopitanun W, Tanasupawat S, Sutthacheep M, Yeemin T, Igarashi Y. 1-(6-Methylsalicyloyl)glycerol from stony coral-derived Micromonospora sp. J Antibiot (Tokyo) 2023; 76:83-87. [PMID: 36446953 DOI: 10.1038/s41429-022-00578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/28/2022] [Accepted: 10/14/2022] [Indexed: 12/05/2022]
Abstract
A new natural product, 1-(6-methylsalicyloyl)glycerol (1) was isolated from the culture extract of the stony coral-derived Micromonospora sp. C029. The structure of 1 was determined by extensive analysis of 1D and 2D NMR spectroscopic data. The absolute configuration was determined to be S by comparison of specific rotation with synthetic (R)- and (S)-1. Compound 1 showed weak antimicrobial activity against Kocuria rizhophila. Structurally related benzoyl glycerol is not reported from actinomycetes, suggesting that isolation of actinomycetes from little studied environments should be important for the discovery of novel natural products.
Collapse
Affiliation(s)
- Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Haruka Doyo
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Makamas Sutthacheep
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Thamasak Yeemin
- Department of Biology, Faculty of Science, Ramkhamhaeng University, Bangkok, 10240, Thailand
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
7
|
Harunari E, Yago N, Igarashi Y. Induced production of a new antioxidant phenylpropanoid from Streptomyces sp. by protoplast formation/regeneration. J Antibiot (Tokyo) 2022; 75:698-701. [PMID: 36171489 DOI: 10.1038/s41429-022-00570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/11/2022] [Accepted: 09/13/2022] [Indexed: 11/09/2022]
Abstract
Streptomyces sp. RD007556 regenerated from protoplast was found to produce p-coumaric acid 3,4-dihydroxybenzoate, propla acid (1) which is not observed in the wild-type strain. The structure of 1 was determined by NMR and MS analyses. Compound 1 showed antioxidant activities in DPPH and superoxide dismutase-like assays.
Collapse
Affiliation(s)
- Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Nodoka Yago
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan.
| |
Collapse
|
8
|
Siro G, Pipite A, Christi K, Srinivasan S, Subramani R. Marine Actinomycetes Associated with Stony Corals: A Potential Hotspot for Specialized Metabolites. Microorganisms 2022; 10:1349. [PMID: 35889068 PMCID: PMC9319285 DOI: 10.3390/microorganisms10071349] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023] Open
Abstract
Microbial secondary metabolites are an important source of antibiotics currently available for combating drug-resistant pathogens. These important secondary metabolites are produced by various microorganisms, including Actinobacteria. Actinobacteria have a colossal genome with a wide array of genes that code for several bioactive metabolites and enzymes. Numerous studies have reported the isolation and screening of millions of strains of actinomycetes from various habitats for specialized metabolites worldwide. Looking at the extent of the importance of actinomycetes in various fields, corals are highlighted as a potential hotspot for untapped secondary metabolites and new bioactive metabolites. Unfortunately, knowledge about the diversity, distribution and biochemistry of marine actinomycetes compared to hard corals is limited. In this review, we aim to summarize the recent knowledge on the isolation, diversity, distribution and discovery of natural compounds from marine actinomycetes associated with hard corals. A total of 11 new species of actinomycetes, representing nine different families of actinomycetes, were recovered from hard corals during the period from 2007 to 2022. In addition, this study examined a total of 13 new compounds produced by five genera of actinomycetes reported from 2017 to 2022 with antibacterial, antifungal and cytotoxic activities. Coral-derived actinomycetes have different mechanisms of action against their competitors.
Collapse
Affiliation(s)
- Galana Siro
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| | - Atanas Pipite
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| | - Ketan Christi
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, Division of Environmental & Life Science, College of Natural Science, Seoul Women’s University, 623 Hwarangno, Nowon-gu, Seoul 01797, Korea
| | - Ramesh Subramani
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| |
Collapse
|