1
|
Tang Y, Chen X, Hou L, He J, Sha A, Zou L, Peng L, Li Q. Effects of uranium mining on the rhizospheric bacterial communities of three local plants on the Qinghai-Tibet Plateau. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34335-1. [PMID: 39044055 DOI: 10.1007/s11356-024-34335-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 07/05/2024] [Indexed: 07/25/2024]
Abstract
In this study, we used 16S high-throughput sequencing to investigate the effects of uranium mining on the rhizospheric bacterial communities and functions of three local plant species, namely, Artemisia frigida, Acorus tatarionwii Schott., and Salix oritrepha Schneid. The results showed that uranium mining significantly reduced the diversity of rhizospheric bacteria in the three local plant species, including the Shannon index and Simpson index (P < 0.05). Interestingly, we found that Sphingomonas and Pseudotrichobacter were enriched in the rhizosphere soil of the three local plants from uranium mining areas, indicating their important ecological role. The three plants were enriched in various dominant rhizospheric bacterial populations in the uranium mining area, including Vicinamidobacteriaceae, Nocardioides, and Gaiella, which may be related to the unique microecological environment of the plant rhizosphere. The rhizospheric bacterial community of A. tatarionwii plants from tailings and open-pit mines also showed a certain degree of differentiation, indicating that uranium mining is the main factor driving the differentiation of plant rhizosphere soil communities on the plateau. Functional prediction revealed that rhizospheric bacteria from different plants have developed different functions to cope with stress caused by uranium mining activities, including enhancing the translational antagonist Rof, the translation initiation factor 2B subunit, etc. This study explores for the first time the impact of plateau uranium mining activities on the rhizosphere microecology of local plants, promoting the establishment of effective soil microecological health monitoring indicators, and providing a reference for further soil pollution remediation in plateau uranium mining areas.
Collapse
Affiliation(s)
- Yuanmou Tang
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Xiaodie Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liming Hou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Jing He
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, China.
- School of Food and Biological Engineering, Chengdu University, Chengdu, 610106, Sichuan, China.
| |
Collapse
|
2
|
Zhou H, Cao L, Yang C, Zhang S, Pu J, Yang J, Ning S, Liu X, Liu C, Liu L, Xu J. Nocardioides bizhenqiangii sp. nov. and Nocardioides renjunii sp. nov., isolated from soil and faeces of Tibetan antelope ( Pantholops hodgsonii) on the Qinghai-Tibet Plateau. Int J Syst Evol Microbiol 2024; 74. [PMID: 38953888 DOI: 10.1099/ijsem.0.006437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Two novel strain pairs (HM61T/HM23 and S-34T/S-58) were isolated from soil and the faeces of Tibetan antelope (Pantholops hodgsonii) collected at the Qinghai-Tibet Plateau of PR China. All four new isolates were aerobic, non-motile, Gram-stain-positive, catalase-positive, oxidase-negative, and short rod-shaped bacteria. The results of phylogenetic analysis based on the full-length 16S rRNA genes and 283 core genomic genes indicated that the four strains were separated into two independent branches belonging to the genus Nocardioides. Strains HM61T and HM23 were most closely related to Nocardioides pelophilus THG T63T (98.58 and 98.65 % 16S rRNA gene sequence similarity). Strains S-34T and S-58 were most closely related to Nocardioides okcheonensis MMS20-HV4-12T (98.89 and 98.89 % 16S rRNA gene sequence similarity). The G+C contents of the genomic DNA of strains HM61T and S-34T were 70.6 and 72.5 mol%, respectively. Strains HM61T, S-34T and the type strains of closely related species in the analysis had average nucleotide identity values of 75.4-90.5 % as well as digital DNA-DNA hybridization values between 20.1 and 40.8 %, which clearly indicated that the four isolates represent two novel species within the genus Nocardioides. The chemotaxonomic characteristics of strains HM61T and S-34T were consistent with the genus Nocardioides. The major fatty acids of all four strains were iso-C16 : 0, C17 : 1 ω8c or C18 : 1 ω9c. For strains HM61T and S-34T, MK-8(H4) was the predominant respiratory quinone, ll-2,6-diaminopimelic acid was the diagnostic diamino acid in the cell-wall peptidoglycan, and the polar lipids profiles were composed of diphosphatidylglycerol and phosphatidylglycerol. Based on phylogenetic, phenotypic, and chemotaxonomic data, we propose that strains HM61T and S-34T represent two novel species of the genus Nocardioides, respectively, with the names Nocardioides bizhenqiangii sp. nov. and Nocardioides renjunii sp. nov. The type strains are HM61T (=GDMCC 4.343T=JCM 36399T) and S-34T (=CGMCC 4.7664T=JCM 33792T).
Collapse
Affiliation(s)
- Huimin Zhou
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Linglin Cao
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Caixin Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Sihui Zhang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, PR China
| | - Ji Pu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Jing Yang
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Shuo Ning
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Xiaorui Liu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Chunmei Liu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
| | - Liyun Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| | - Jianguo Xu
- Department of Epidemiology, School of Public Health, Shanxi Medical University, Taiyuan 030001, PR China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, PR China
- Research Units of Discovery of Unknown Bacteria and Function, Chinese Academy of Medical Sciences, Beijing 102206, PR China
| |
Collapse
|
3
|
Description and genomic characterization of Nocardioides bruguierae sp. nov., isolated from Bruguiera gymnorhiza. Syst Appl Microbiol 2023; 46:126391. [PMID: 36621108 DOI: 10.1016/j.syapm.2022.126391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/21/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Strains BSK12Z-3T and BSK12Z-4, two Gram-stain-positive, aerobic, non-spore-forming strains, were isolated from Shankou Mangrove Nature Reserve, Guangxi Zhuang Autonomous Region, China. The diagnostic diamino acid in the cell-wall peptidoglycan of strain BSK12Z-3T was LL-diaminopimelic acid and MK-8(H4) was the predominant menaquinone. The polar lipids comprised diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phospholipid (PL). The major fatty acids was iso-C16:0. Phylogenetic analysis based on 16S rRNA gene sequences suggested that the two strains fell within the genus Nocardioides, appearing most closely related to Nocardioides ginkgobilobae KCTC 39594T (97.5-97.6 % sequence similarity) and Nocardioides marinus DSM 18248T (97.4-97.6 %). Genome-based phylogenetic analysis confirmed that strains BSK12Z-3T and BSK12Z-4 formed a distinct phylogenetic cluster within the genus Nocardioides. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values of strains BSK12Z-3T, BSK12Z-4 with their most related species N. marinus DSM18248T were within the ranges of 77.2-77.3 % and 21.3-21.4 %, respectively, clearly indicated that strains BSK12Z-3T, BSK12Z-4 represented novel species. Strains BSK12Z-3T and BSK12Z-4 exhibited 99.9 % 16S rRNA gene sequence similarity. The ANI and dDDH values between the two strains were 97.8 % and 81.1 %, respectively, suggesting that they belong to the same species. However, DNA fingerprinting discriminated that they were not from one clonal origin. Based on phylogenomic and phylogenetic analyses coupled with phenotypic and chemotaxonomic characterizatons, strains BSK12Z-3T and BSK12Z-4 could be classified as a novel species of the genus Nocardioides, for which the name Nocardioides bruguierae sp. nov., is proposed. The type strain is BSK12Z-3T (=CGMCC 4.7709T = JCM 34554T).
Collapse
|