1
|
He JH, Wang CY, Abdugheni R, Ni X, Liu C, Bi MX, Liu SJ. Acutalibacter caecimuris sp. nov., Acutalibacter intestini sp. nov. and Neglectibacter caecimuris sp. nov. , three novel species of the family Oscillospiraceae isolated from caecal contents of C57BL/6J mice. Int J Syst Evol Microbiol 2024; 74:006449. [PMID: 38995185 PMCID: PMC11316587 DOI: 10.1099/ijsem.0.006449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 06/27/2024] [Indexed: 07/13/2024] Open
Abstract
The intestines of mice are colonized by diverse, as-yet-uncultivated bacteria. In this report, we describe the isolation, culture, genotypic and phenotypic characterization, as well as taxonomic classification of three novel anaerobic bacterial strains derived from the caecal contents of C57BL/6J male mice. According to the phenotypic and genotype-based polyphasic taxonomy, we propose three novel species within the family Oscillospiraceae. They are Acutalibacter caecimuris sp. nov. (type strain M00118T=CGMCC 1.18042T=KCTC 25739T), Acutalibacter intestini sp. nov. (type strain M00204T=CGMCC 1.18044T=KCTC 25741T) and Neglectibacter caecimuris sp. nov. (type strain M00184T=CGMCC 1.18043T=KCTC 25740T).
Collapse
Affiliation(s)
- Jia-Hui He
- College of Veterinary Medicine, Shanxi Agricultural University (Shanxi Academy of Agricultural Sciences), Jinzhong 030801, PR China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Chang-Yu Wang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, PR China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Xue Ni
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Chang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Ming-Xia Bi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
2
|
Liu FL, Abdugheni R, Ran CG, Zhou N, Liu SJ. Eubacterium album sp. nov., a butyrate-producing bacterium isolated from faeces of a healthy human. Int J Syst Evol Microbiol 2024; 74. [PMID: 38739685 DOI: 10.1099/ijsem.0.006380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024] Open
Abstract
An oval to rod-shaped, Gram-stain-positive, strictly anaerobic bacterium, designated LFL-14T, was isolated from the faeces of a healthy Chinese woman. Cells of the strain were non-spore-forming, grew optimally at 37 °C (growth range 30-45 °C) and pH 7.0 (growth range 6.0-9.0) under anaerobic conditions in the liquid modified Gifu anaerobic medium (mGAM). The result of 16S rRNA gene-based analysis indicated that LFL-14T shared an identity of 94.7 0% with Eubacterium ventriosum ATCC 27560T, indicating LFL-14T represented a novel taxon. The results of genome-based analysis revealed that the average nucleotide identity (ANI), the digital DNA-DNA hybridisation (dDDH) and average amino acid identity (AAI) between LFL-14T and its phylogenetically closest neighbour, Eubacterium ventriosum ATCC 27560T, were 77.0 %, 24.6 and 70.9 %, respectively, indicating that LFL-14T represents a novel species of the genus Eubacterium. The genome size of LFL-14T was 2.92 Mbp and the DNA G+C content was 33.14 mol%. We analysed the distribution of the genome of LFL-14T in cohorts of healthy individuals, type 2 diabetes patients (T2D) and patients with non-alcoholic fatty liver disease (NAFLD). We found that its abundance was higher in the T2D cohort, but it had a low average abundance of less than 0.2 % in all three cohorts. The percentages of frequency of occurrence in the T2D, healthy and NAFLD cohorts were 48.87 %, 16.72 % and 13.10 % respectively. The major cellular fatty acids of LFL-14T were C16 : 0 (34.4 %), C17 : 0 2-OH (21.4 %) and C14 : 0 (11.7 %). Additionally, the strain contained diphosphatidylglycerol (DPG) and phosphatidylethanolamine (PE), as well as unidentified phospholipids and unidentified glycolipids. The glucose fermentation products of LFL-14T were acetate and butyrate. In summary, On the basis of its chemotaxonomic, phenotypic, phylogenetic and phylogenomic properties, strain LFL-14T (= CGMCC 1.18005T = KCTC 25580T) is identified as representing a novel species of the genus Eubacterium, for which the name Eubacterium album sp. nov. is proposed.
Collapse
Affiliation(s)
- Feng-Lan Liu
- College of Life Sciences, Hebei University, Baoding, 071000, PR China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, PR China
| | - Cong-Guo Ran
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center at Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, PR China
- University of the Chinese Academy of Sciences, Beijing, 100049, PR China
| |
Collapse
|
3
|
Huang HJ, Zhang X, Sun XW, Chen B, Li XT, Zhou N, Abdugheni R, Cheng QY, Zhang TJ, Liu Y, Jiang Y, Deng Y, Liu SJ, Jiang CY. Xiashengella succiniciproducens gen. nov., sp. nov., a succinate-producing bacterium isolated from an anaerobic digestion tank in the family Marinilabiliaceae of the order Bacteroidales. Arch Microbiol 2024; 206:141. [PMID: 38441685 DOI: 10.1007/s00203-024-03909-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/26/2024] [Accepted: 02/24/2024] [Indexed: 03/07/2024]
Abstract
A strictly anaerobic, motile bacterium, designated as strain Ai-910T, was isolated from the sludge of an anaerobic digestion tank in China. Cells were Gram-stain-negative rods. Optimal growth was observed at 38 °C (growth range 25-42 °C), pH 8.5 (growth range 5.5-10.5), and under a NaCl concentration of 0.06% (w/v) (range 0-2.0%). Major cellular fatty acids were iso-C15 : 0 and anteiso-C15 : 0. The respiratory quinone was MK-7. Using xylose as the growth substrate, succinate was produced as the fermentation product. Phylogenetic analysis based on the 16 S rRNA gene sequences indicated that strain Ai-910T formed a distinct phylogenetic lineage that reflects a new genus in the family Marinilabiliaceae, sharing high similarities to Alkaliflexus imshenetskii Z-7010T (92.78%), Alkalitalea saponilacus SC/BZ-SP2T (92.51%), and Geofilum rubicundum JAM-BA0501T (92.36%). Genomic similarity (average nucleotide identity and digital DNA-DNA hybridization) values between strain Ai-910T and its phylogenetic neighbors were below 65.27 and 16.90%, respectively, indicating that strain Ai-910T represented a novel species. The average amino acid identity between strain Ai-910T and other related members of the family Marinilabiliaceae were below 69.41%, supporting that strain Ai-910T was a member of a new genus within the family Marinilabiliaceae. Phylogenetic, genomic, and phenotypic analysis revealed that strain Ai-910T was distinguished from other phylogenetic relatives within the family Marinilabiliaceae. The genome size was 3.10 Mbp, and the DNA G + C content of the isolate was 42.8 mol%. Collectively, differences of the phenotypic and phylogenetic features of strain Ai-910T from its close relatives suggest that strain Ai-910T represented a novel species in a new genus of the family Marinilabiliaceae, for which the name Xiashengella succiniciproducens gen. nov., sp. nov. was proposed. The type strain of Xiashengella succiniciproducens is Ai-910T (= CGMCC 1.17893T = KCTC 25,304T).
Collapse
Affiliation(s)
- Hao-Jie Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China
| | - Xi Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin-Wei Sun
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China
| | - Biao Chen
- Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiu-Tong Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rashidin Abdugheni
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiu-Yin Cheng
- Beijing Drainage Group Co., Ltd, Beijing, 100044, China
| | - Tie-Jun Zhang
- Beijing Drainage Group Co., Ltd, Beijing, 100044, China
| | - Yao Liu
- Beijing Drainage Group Co., Ltd, Beijing, 100044, China
| | - Yong Jiang
- Beijing Drainage Group Co., Ltd, Beijing, 100044, China
| | - Ye Deng
- IMCAS-RCEES Joint Lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266000, China.
- IMCAS-RCEES Joint Lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
- IMCAS-RCEES Joint Lab at CAS Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
4
|
Huang Y, Abdugheni R, Ma J, Wang R, Gao L, Liu Y, Li W, Cai M, Li L. Halomonas flagellata sp. nov., a halophilic bacterium isolated from saline soil in Xinjiang. Arch Microbiol 2023; 205:340. [PMID: 37750964 DOI: 10.1007/s00203-023-03670-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023]
Abstract
A Gram-stain-negative, strictly aerobic, motile, slightly curved rod-shaped bacterium with multiple flagella, designated strain EGI 63088T, was isolated from a bulk soil of Kalidium foliatum, collected from Wujiaqu in Xinjiang Uighur Autonomous Region, PR China. The optimal growth temperature, salinity, and pH for strain EGI 63088T growth were 30 °C, 3% (w/v) NaCl and 8, respectively. Phylogenetic analysis using 16S rRNA gene sequences indicated that strain EGI 63088T showed the highest sequence similarities to Halomonas heilongjiangensis 9-2T (97.94%), H. lysinitropha 3(2)T (97.51%), and H. daqiaonensis CGMCC 1.9150T (97.08%). The average nucleotide identity and digital DNA-DNA hybridization values between the strain EGI 63088T and H. heilongjiangensis 9-2T were 89.03 and 41.10%, respectively. The DNA G + C content of the genome for strain EGI 63088T was 66.3 mol%. The most prevalent antibiotic resistance and virulence-related genes in Halomonas genomes were Streptomyces cinnamoneu EF-Tu mutant, pilT, and cheY, respectively. The predominant fatty acids of strain EGI 63088T were summed feature 8 (C18: 1 ω6c and/or C18: 1 ω7c), summed feature 3 (C16: 1 ω6c and/or C16: 1 ω7c), and C16: 0; its major respiratory quinone was ubiquinone-9 (Q-9), and the major polar lipids were diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylethanolamine. According to the above results, strain EGI 63088T is considered a novel species of the genus Halomonas, for which the name Halomonas flagellata sp. nov. is proposed. The type strain is EGI 63088T (= KCTC 92047T = CGMCC 1.19133T).
Collapse
Affiliation(s)
- Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Jinbiao Ma
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Rui Wang
- School of Biotechnology and Food Science, Tianjin University of Commerce, Tianjin, People's Republic of China
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yonghong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
| | - Wenjun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Man Cai
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China.
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, People's Republic of China.
| |
Collapse
|
5
|
Abdugheni R, Liu C, Liu FL, Zhou N, Jiang CY, Liu Y, Li L, Li WJ, Liu SJ. Comparative genomics reveals extensive intra-species genetic divergence of the prevalent gut commensal Ruminococcus gnavus. Microb Genom 2023; 9:mgen001071. [PMID: 37486746 PMCID: PMC10438805 DOI: 10.1099/mgen.0.001071] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023] Open
Abstract
Ruminococcus gnavus is prevalent in the intestines of humans and animals, and ambiguities have been reported regarding its relations with the development of diseases and host well-being. We postulate the ambiguities of its function in different cases may be attributed to strain-level variability of genomic features of R. gnavus. We performed comparative genomic and pathogenicity prediction analysis on 152 filtered high-quality genomes, including 4 genomes of strains isolated from healthy adults in this study. The mean G+C content of genomes of R. gnavus was 42.73±0.33 mol%, and the mean genome size was 3.46±0.34 Mbp. Genome-wide evolutionary analysis revealed R. gnavus genomes were divided into three major phylogenetic clusters. Pan-core genome analysis revealed that there was a total of 28 072 predicted genes, and the core genes, soft-core genes, shell genes and cloud genes accounted for 3.74 % (1051/28 072), 1.75 % (491/28 072), 9.88 % (2774/28 072) and 84.63 % (23 756/28 072) of the total genes, respectively. The small proportion of core genes reflected the wide divergence among R. gnavus strains. We found certain coding sequences with determined health benefits (such as vitamin production and arsenic detoxification), whilst some had an implication of health adversity (such as sulfide dehydrogenase subunits). The functions of the majority of core genes were unknown. The most widespread genes functioning in antibiotic resistance and virulence are tetO (tetracycline-resistance gene, present in 75 strains) and cps4J (capsular polysaccharide biosynthesis protein Cps4J encoding gene, detected in 3 genomes), respectively. Our results revealed genomic divergence and the existence of certain safety-relevant factors of R. gnavus. This study provides new insights for understanding the genomic features and health relevance of R. gnavus, and raises concerns regarding predicted prevalent pathogenicity and antibiotic resistance among most of the strains.
Collapse
Affiliation(s)
- Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Chang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, PR China
| | - Feng-Lan Liu
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- College of Life Sciences, Hebei University, Baoding 071000, PR China
| | - Nan Zhou
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
| | - Cheng-Ying Jiang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, PR China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yonghong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China
| | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266000, PR China
- State Key Laboratory of Microbial Resources and Environmental Microbiology Research Center (EMRC), Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, PR China
- University of the Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
6
|
Abdugheni R, Wang W, Wang Y, Du M, Liu F, Zhou N, Jiang C, Wang C, Wu L, Ma J, Liu C, Liu S. Metabolite profiling of human-originated Lachnospiraceae at the strain level. IMETA 2022; 1:e58. [PMID: 38867908 PMCID: PMC10989990 DOI: 10.1002/imt2.58] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/08/2022] [Accepted: 09/14/2022] [Indexed: 06/14/2024]
Abstract
The human gastrointestinal (GI) tract harbors diverse microbes, and the family Lachnospiraceae is one of the most abundant and widely occurring bacterial groups in the human GI tract. Beneficial and adverse effects of the Lachnospiraceae on host health were reported, but the diversities at species/strain levels as well as their metabolites of Lachnospiraceae have been, so far, not well documented. In the present study, we report on the collection of 77 human-originated Lachnospiraceae species (please refer hLchsp, https://hgmb.nmdc.cn/subject/lachnospiraceae) and the in vitro metabolite profiles of 110 Lachnospiraceae strains (https://hgmb.nmdc.cn/subject/lachnospiraceae/metabolites). The Lachnospiraceae strains in hLchsp produced 242 metabolites of 17 categories. The larger categories were alcohols (89), ketones (35), pyrazines (29), short (C2-C5), and long (C > 5) chain acids (31), phenols (14), aldehydes (14), and other 30 compounds. Among them, 22 metabolites were aromatic compounds. The well-known beneficial gut microbial metabolite, butyric acid, was generally produced by many Lachnospiraceae strains, and Agathobacter rectalis strain Lach-101 and Coprococcus comes strain NSJ-173 were the top 2 butyric acid producers, as 331.5 and 310.9 mg/L of butyric acids were produced in vitro, respectively. Further analysis of the publicly available cohort-based volatile-metabolomic data sets of human feces revealed that over 30% of the prevailing volatile metabolites were covered by Lachnospiraceae metabolites identified in this study. This study provides Lachnospiraceae strain resources together with their metabolic profiles for future studies on host-microbe interactions and developments of novel probiotics or biotherapies.
Collapse
Affiliation(s)
- Rashidin Abdugheni
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Desert and Oasis EcologyXinjiang Institute of Ecology and Geography, Chinese Academy of SciencesUrumqiChina
| | - Wen‐Zhao Wang
- State Key Laboratory of MycologyInstitute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Yu‐Jing Wang
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Meng‐Xuan Du
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Feng‐Lan Liu
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- College of Life SciencesHebei UniversityBaodingChina
| | - Nan Zhou
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Cheng‐Ying Jiang
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Chang‐Yu Wang
- Colleg of Life SciencesUniversity of Science and Technology of ChinaHefeiChina
| | - Linhuan Wu
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Juncai Ma
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
| | - Chang Liu
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| | - Shuang‐Jiang Liu
- State Key Laboratory of Microbial Resources, Environmental Microbiology Research Center (EMRC)Institute of Microbiology, Chinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
- State Key Laboratory of Microbial TechnologyShandong UniversityQingdaoChina
| |
Collapse
|