1
|
Hu D, Li W, Wang J, Peng Y, Yun Y, Peng Y. Interaction of High Temperature Stress and Wolbachia Infection on the Biological Characteristic of Drosophila melanogaster. INSECTS 2023; 14:558. [PMID: 37367374 DOI: 10.3390/insects14060558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/28/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
It was reported that temperature affects the distribution of Wolbachia in the host, but only a few papers reported the effect of the interaction between high temperature and Wolbachia on the biological characteristic of the host. Here, we set four treatment Drosophila melanogaster groups: Wolbachia-infected flies in 25 °C (W+M), Wolbachia-infected flies in 31 °C (W+H), Wolbachia-uninfected flies in 25 °C (W-M), Wolbachia-uninfected flies in 31 °C (W-H), and detected the interaction effect of temperature and Wolbachia infection on the biological characteristic of D. melanogaster in F1, F2 and F3 generations. We found that both temperature and Wolbachia infection had significant effects on the development and survival rate of D. melanogaster. High temperature and Wolbachia infection had interaction effect on hatching rate, developmental durations, emergence rate, body weight and body length of F1, F2 and F3 flies, and the interaction effect also existed on oviposition amount of F3 flies, and on pupation rate of F2 and F3 flies. High temperature stress reduced the Wolbachia vertical transmission efficiency between generations. These results indicated that high temperature stress and Wolbachia infection had negative effects on the morphological development of D. melanogaster.
Collapse
Affiliation(s)
- Die Hu
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Wanning Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Ju Wang
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yaqi Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yueli Yun
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yu Peng
- Hubei Key Laboratory of Regional Development and Environmental Response, Faculty of Resources and Environmental Science, Hubei University, Wuhan 430062, China
| |
Collapse
|
2
|
Horn CJ, Wasylenko JA, Luong LT. Scared of the dark? Phototaxis as behavioural immunity in a host-parasite system. Biol Lett 2022; 18:20210531. [PMID: 35078333 PMCID: PMC8790348 DOI: 10.1098/rsbl.2021.0531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/07/2021] [Indexed: 01/28/2023] Open
Abstract
Behavioural immunity describes suites of behaviours hosts use to minimize the risks of infection by parasites/pathogens. Research has focused primarily on the evasion and physical removal of infectious stages, as well as behavioural fever. However, other behaviours affect infection risk while carrying ecologically significant trade-offs. Phototaxis, in particular, has host fitness implications (e.g. altering feeding and thermoregulation) that also impact infection outcomes. In this study, we hypothesized that a fly host, Drosophila nigrospiracula, employs phototaxis as a form of behavioural immunity to reduce the risk of infection. First, we determined that the risk of infection is lower for flies exposed in the light relative to the dark using micro-arena experiments. Because Drosophila vary in ectoparasite resistance based on mating status we examined parasite-mediated phototaxis in mated and unmated females. We found that female flies spent more time in the light side of phototaxis chambers when mites were present than in the absence of mites. Mating marginally decreased female photophobia independently of mite exposure. Female flies moved to lighter, i.e. less infectious, environments when threatened with mites, suggesting phototaxis is a mechanism of behavioural immunity. We discuss how parasite-mediated phototaxis potentially trades-off with host nutrition and thermoregulation.
Collapse
Affiliation(s)
- Collin J. Horn
- Department of Biological Sciences, University of Alberta, Biological Sciences Building, Edmonton, AB T6G 2E9, USA
| | - Jacob A. Wasylenko
- Department of Biological Sciences, University of Alberta, Biological Sciences Building, Edmonton, AB T6G 2E9, USA
| | - Lien T. Luong
- Department of Biological Sciences, University of Alberta, Biological Sciences Building, Edmonton, AB T6G 2E9, USA
| |
Collapse
|
3
|
The effect of captive breeding upon adult thermal preference in the Queensland fruit fly (Bactrocera tryoni). J Therm Biol 2018; 78:290-297. [PMID: 30509650 DOI: 10.1016/j.jtherbio.2018.10.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 09/25/2018] [Accepted: 10/12/2018] [Indexed: 11/22/2022]
Abstract
The Queensland fruit fly (Bactrocera tryoni) is a generalist pest that poses a significant threat to the Australian horticultural industry. This species has become broadly established across latitudes that encompass tropical to temperate climates, and hence populations occupy diverse thermal niches. Successful expansion across this range may have been brokered by evolutionarily labile features of breeding phenology, physiology and/or behaviour. We explored the potential role of behavioural flexibility by characterizing variation in adult thermal preference using a novel gradient apparatus. Flies oriented within this apparatus essentially at random in the absence of thermal variation, but sought and maintained precise positions when presented with an established gradient. Male and female flies from an 'old' colony (>300 generations) and a 'young' (F7) colony were compared. Whereas we found no difference between the sexes, flies from the young colony preferred higher temperatures (30.93 ± 7.30 °C) and had greater individual variation than their counterparts from the old colony (28.16 ± 5.63 °C). Given that B. tryoni are routinely maintained at 25 °C in the laboratory, a lower mean preference of the old colony is consistent with thermal adaptation. This is further supported by their reduced phenotypic variance, which follows as a logical consequence of stabilising selection given long-term environmental constancy. These results demonstrate that B. tryoni seek to thermoregulate via adult behaviour, and that individual temperature preference can be precisely measured using a gradient apparatus. The evidence for adaptive tuning of this behaviour has importance for both the design of captive rearing protocols as well as the prediction of invasive potential and species biogeography under future climatic variation.
Collapse
|
4
|
Fedorka KM, Kutch IC, Collins L, Musto E. Cold temperature preference in bacterially infected Drosophila melanogaster improves survival but is remarkably suboptimal. JOURNAL OF INSECT PHYSIOLOGY 2016; 93-94:36-41. [PMID: 27530304 DOI: 10.1016/j.jinsphys.2016.08.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 08/11/2016] [Accepted: 08/12/2016] [Indexed: 06/06/2023]
Abstract
Altering one's temperature preference (e.g. behavioral fever or behavioral chill) is a common immune defense among ectotherms that is likely to be evolutionarily conserved. However, the temperature chosen by an infected host may not be optimal for pathogen defense, causing preference to be inefficient. Here we examined the efficiency of temperature preference in Drosophila melanogaster infected with an LD50 of the gram negative bacteria Pseudomonas aeruginosa. To this end, we estimated the host's uninfected and infected temperature preferences as well as their optimal survival temperature. We found that flies decreased their preference from 26.3°C to 25.2°C when infected, and this preference was stable over 48h. Furthermore, the decrease in temperature preference was associated with an increased chance of surviving the infection. Nevertheless, the infected temperature preference did not coincide with the optimum temperature for infection survival, which lies at or below 21.4°C. These data suggest that the behavioral response to P. aeruginosa infection is considerably inefficient, and the mechanisms that may account for this pattern are discussed. Future studies of infected temperature preferences should document its efficiency, as this understudied aspect of behavioral immunity can provide important insight into preference evolution.
Collapse
Affiliation(s)
- Kenneth M Fedorka
- University of Central Florida, Department of Biology, 4000 Central Florida Blvd., Orlando, FL 32816, United States.
| | - Ian C Kutch
- University of Central Florida, Department of Biology, 4000 Central Florida Blvd., Orlando, FL 32816, United States.
| | - Louisa Collins
- University of Central Florida, Department of Biology, 4000 Central Florida Blvd., Orlando, FL 32816, United States.
| | - Edward Musto
- University of Central Florida, Department of Biology, 4000 Central Florida Blvd., Orlando, FL 32816, United States.
| |
Collapse
|