1
|
Tian J, Xu Z, Moitra R, Palmer DJ, Ng P, Byrnes AP. Binding of adenovirus species C hexon to prothrombin and the influence of hexon on vector properties in vitro and in vivo. PLoS Pathog 2022; 18:e1010859. [PMID: 36156097 PMCID: PMC9536601 DOI: 10.1371/journal.ppat.1010859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/06/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
The majority of adenovirus (Ad) vectors are based on human Ad type 5, which is a member of Ad species C. Species C also includes the closely-related types 1, 2, 6, 57 and 89. It is known that coagulation factors bind to Ad5 hexon and play a key role in the liver tropism of Ad5 vectors, but it is unclear how coagulation factors affect vectors derived from other species C Ads. We evaluated species C Ad vectors both in vitro and following intravenous injection in mice. To assess the impact of hexon differences, we constructed chimeric Ad5 vectors that contain the hexon hypervariable regions from other species C types, including vectors with hexon mutations that decreased coagulation factor binding. After intravenous injection into mice, vectors with Ad5 or Ad6 hexon had strong liver tropism, while vectors with chimeric hexon from other Ad types had weaker liver tropism due to inhibition by natural antibodies and complement. In addition, we discovered a novel ability of hexon to bind prothrombin, which is the most abundant coagulation factor in blood, and we found striking differences in the affinity of Ads for human, mouse and bovine coagulation factors. When compared to Ad5, vectors with non-Ad5 species C hexons had considerably higher affinity for both human and mouse prothrombin. Most of the vectors tested were strongly dependent on coagulation factors for liver transduction, but vectors with chimeric Ad6 hexon showed much less dependence on coagulation factors than other vectors. We found that in vitro neutralization experiments with mouse serum predicted in vivo behavior of Ad5 vectors, but in vitro experiments did not predict the in vivo behavior of vectors based on other Ad types. In sum, hexons from different human Ad species C viruses confer diverse properties on vectors, including differing abilities to target the liver.
Collapse
Affiliation(s)
- Jie Tian
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - Zhili Xu
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - Rituparna Moitra
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
| | - Donna J. Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Andrew P. Byrnes
- Division of Cellular and Gene Therapies, FDA Center for Biologics Evaluation and Research, Silver Spring, Maryland, United States of America
- * E-mail:
| |
Collapse
|
2
|
Identification of Two Novel Linear Neutralizing Epitopes within the Hexon Protein of Canine Adenovirus Using Monoclonal Antibodies. Vaccines (Basel) 2021; 9:vaccines9020135. [PMID: 33567652 PMCID: PMC7914820 DOI: 10.3390/vaccines9020135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/02/2021] [Accepted: 02/04/2021] [Indexed: 11/30/2022] Open
Abstract
Canine adenovirus (CAdV) has a high prevalence in canine populations. High affinity neutralizing antibodies against conserved epitopes can provide protective immunity against CAdV and protect against future outbreaks. In this study, we identified two CAdV-2-specific neutralizing monoclonal antibodies (mAbs), 2C1 and 7D7, which recognized two linear-dependent epitopes. MAb 2C1 potently neutralized CAdV-2 with a 50% neutralization titer (NT50) of 4096, and mAb 7D7 partially neutralized CAdV-2 with a 50% NT50 of 64. Immunoprecipitation, Western blot and protein spectral analysis indicated that both neutralizing mAbs recognized the hexon protein (Hex) of CAdV-2. Through a 12-mer random peptide phage display and synthetic peptides analysis, we finely mapped the neutralizing epitopes to two 10-amino acid (aa) peptides within the CAdV Hex: 634RIKQRETPAL643 located on the surface region; and 736PESYKDRMYS745 located in the inner region of the expected 3D structure of trimeric Hex. Importantly, the two epitopes are highly conserved among all CAdV isolates by sequence alignment analysis. Thus, these results provide insights into the interaction between virus and mAbs at the aa level and may have potential applications in the development of novel therapeutic or epitope-based vaccines, antibody therapeutics and a diagnostic method suitable for the rapid detection of all CAdVs.
Collapse
|
3
|
Liu J, Boehme P, Zhang W, Fu J, Yumul R, Mese K, Tsoukas R, Solanki M, Kaufmann M, Lu R, Schmidtko A, Stewart AF, Lieber A, Ehrhardt A. Human adenovirus type 17 from species D transduces endothelial cells and human CD46 is involved in cell entry. Sci Rep 2018; 8:13442. [PMID: 30194327 PMCID: PMC6128842 DOI: 10.1038/s41598-018-31713-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/03/2018] [Indexed: 11/09/2022] Open
Abstract
More than 70 human adenoviruses with type-dependent pathogenicity have been identified but biological information about the majority of these virus types is scarce. Here we employed multiple sequence alignments and structural information to predict receptor usage for the development of an adenoviral vector with novel biological features. We report the generation of a cloned adenovirus based on human adenovirus type 17 (HAdV17) with high sequence homology to the well characterized human adenovirus type 37 (HAdV37) that causes epidemic keratoconjunctivitis (EKC). Our study revealed that human CD46 (CD46) is involved in cell entry of HAdV17. Moreover, we found that HAdV17 infects endothelial cells (EC) in vitro including primary cells at higher efficiencies compared to the commonly used human adenovirus type 5 (HAdV5). Using a human CD46 transgenic mouse model, we observed that HAdV17 displays a broad tropism in vivo after systemic injection and that it transduces ECs in this mouse model. We conclude that the HAdV17-based vector may provide a novel platform for gene therapy.
Collapse
Affiliation(s)
- Jing Liu
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.,Department of Oncology and cancer immunotherapy, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Philip Boehme
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.,Medical Student, Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Wenli Zhang
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Jun Fu
- Shandong University-Helmholtz Institute of Biotechnoloy, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, People's Republic of China.,Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovations Zentrum, Dresden, Germany
| | - Roma Yumul
- Division for Medical Biochemistry, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Kemal Mese
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Raphael Tsoukas
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Manish Solanki
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.,Institute for Experimental Gene Therapy and Cancer Research (IEGT), Medical University Rostock, Rostock, Germany
| | - Michael Kaufmann
- University of Washington, Department of Medicine, Division of Medical Genetics, Seattle, USA
| | - Ruirui Lu
- Institute for Pharmakology and Toxicology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.,Institute of Pharmacology, College of Pharmacy, Goethe University, Frankfurt am Main, Germany
| | - Achim Schmidtko
- Institute for Pharmakology and Toxicology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.,Institute of Pharmacology, College of Pharmacy, Goethe University, Frankfurt am Main, Germany
| | - A Francis Stewart
- Genomics, Biotechnology Center, Technische Universität Dresden, BioInnovations Zentrum, Dresden, Germany
| | - André Lieber
- Division for Medical Biochemistry, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany
| | - Anja Ehrhardt
- Institute for Virology and Microbiology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
4
|
Schiwon M, Ehrke-Schulz E, Oswald A, Bergmann T, Michler T, Protzer U, Ehrhardt A. One-Vector System for Multiplexed CRISPR/Cas9 against Hepatitis B Virus cccDNA Utilizing High-Capacity Adenoviral Vectors. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:242-253. [PMID: 30195763 PMCID: PMC6023846 DOI: 10.1016/j.omtn.2018.05.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 02/08/2023]
Abstract
High-capacity adenoviral vectors (HCAdVs) devoid of all coding genes are powerful tools to deliver large DNA cargos into cells. Here HCAdVs were designed to deliver a multiplexed complete CRISPR/Cas9 nuclease system or a complete pair of transcription activator-like effector nucleases (TALENs) directed against the hepatitis B virus (HBV) genome. HBV, which remains a serious global health burden, forms covalently closed circular DNA (cccDNA) as a persistent DNA species in infected cells. This cccDNA promotes the chronic carrier status, and it represents a major hurdle in the treatment of chronic HBV infection. To date, only one study demonstrated viral delivery of a CRISPR/Cas9 system and a single guide RNA (gRNA) directed against HBV by adeno-associated viral (AAV) vectors. The advancement of this study is the co-delivery of multiple gRNA expression cassettes along with the Cas9 expression cassette in one HCAdV. Treatment of HBV infection models resulted in a significant reduction of HBV antigen production and the introduction of mutations into the HBV genome. In the transduction experiments, the HBV genome, including the HBV cccDNA, was degraded by the CRISPR/Cas9 system. In contrast, the combination of two parts of a TALEN pair in one vector could not be proven to yield an active system. In conclusion, we successfully delivered the CRISPR/Cas9 system containing three gRNAs using HCAdV, and we demonstrated its antiviral effect.
Collapse
Affiliation(s)
- Maren Schiwon
- Center of Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Eric Ehrke-Schulz
- Center of Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Andreas Oswald
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany
| | - Thorsten Bergmann
- Center of Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany
| | - Thomas Michler
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, Technical University of Munich/Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research (DZIF), partner site Munich, Munich, Germany
| | - Anja Ehrhardt
- Center of Biomedical Education and Research (ZBAF), Department of Human Medicine, Faculty of Health, Witten/Herdecke University, Witten, Germany.
| |
Collapse
|
5
|
Wang X, Qi X, Yang B, Chen S, Wang J. Autophagy Benefits the Replication of Egg Drop Syndrome Virus in Duck Embryo Fibroblasts. Front Microbiol 2018; 9:1091. [PMID: 29896171 PMCID: PMC5986908 DOI: 10.3389/fmicb.2018.01091] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 05/07/2018] [Indexed: 12/19/2022] Open
Abstract
Egg drop syndrome virus (EDSV) is an economically important pathogen with a broad host range, and it causes disease that leads to markedly decreased egg production. Although EDSV is known to induce apoptosis in duck embryo fibroblasts (DEFs), the interaction between EDSV and its host needs to be further researched. Here, we provide the first evidence that EDSV infection triggers autophagy in DEFs through increases in autophagosome-like double-membrane vesicles, the conversion of LC3-I to LC3-II, and LC3 colocalization with viral hexon proteins. Conversely, P62/SQSTM1 degradation, LC3-II turnover, and colocalization of LAMP and LC3 confirmed that EDSV infection triggers complete autophagy. Furthermore, we demonstrated that inhibition of autophagy by chloroquine (CQ) and 3-methyladenine (3MA) or RNA interference targeting ATG-7 decreased the yield of EDSV progeny. In contrast, induction of autophagy by rapamycin increased the EDSV progeny yield. In addition, we preliminarily demonstrated that the class I phosphoinositide 3-kinase (PI3K)/Akt/mTOR pathway contributes to autophagic induction following EDSV infection. Altogether, these finding lead us to conclude that EDSV infection induces autophagy, which benefits its own replication in host cells. These findings provide novel insights into EDSV-host interactions.
Collapse
Affiliation(s)
- Xueping Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xuefeng Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Bo Yang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Shuying Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jingyu Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|