1
|
Kaake RM, Echeverria I, Kim SJ, Von Dollen J, Chesarino NM, Feng Y, Yu C, Ta H, Chelico L, Huang L, Gross J, Sali A, Krogan NJ. Characterization of an A3G-Vif HIV-1-CRL5-CBFβ Structure Using a Cross-linking Mass Spectrometry Pipeline for Integrative Modeling of Host-Pathogen Complexes. Mol Cell Proteomics 2021; 20:100132. [PMID: 34389466 PMCID: PMC8459920 DOI: 10.1016/j.mcpro.2021.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 10/24/2022] Open
Abstract
Structural analysis of host-pathogen protein complexes remains challenging, largely due to their structural heterogeneity. Here, we describe a pipeline for the structural characterization of these complexes using integrative structure modeling based on chemical cross-links and residue-protein contacts inferred from mutagenesis studies. We used this approach on the HIV-1 Vif protein bound to restriction factor APOBEC3G (A3G), the Cullin-5 E3 ring ligase (CRL5), and the cellular transcription factor Core Binding Factor Beta (CBFβ) to determine the structure of the (A3G-Vif-CRL5-CBFβ) complex. Using the MS-cleavable DSSO cross-linker to obtain a set of 132 cross-links within this reconstituted complex along with the atomic structures of the subunits and mutagenesis data, we computed an integrative structure model of the heptameric A3G-Vif-CRL5-CBFβ complex. The structure, which was validated using a series of tests, reveals that A3G is bound to Vif mostly through its N-terminal domain. Moreover, the model ensemble quantifies the dynamic heterogeneity of the A3G C-terminal domain and Cul5 positions. Finally, the model was used to rationalize previous structural, mutagenesis and functional data not used for modeling, including information related to the A3G-bound and unbound structures as well as mapping functional mutations to the A3G-Vif interface. The experimental and computational approach described here is generally applicable to other challenging host-pathogen protein complexes.
Collapse
Affiliation(s)
- Robyn M Kaake
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA
| | - Ignacia Echeverria
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - Seung Joong Kim
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA
| | - John Von Dollen
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA
| | - Nicholas M Chesarino
- Divisions of Human Biology and Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Yuqing Feng
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Clinton Yu
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - Hai Ta
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Linda Chelico
- Department of Biochemistry, Microbiology, Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Lan Huang
- Department of Physiology & Biophysics, University of California, Irvine, California, USA
| | - John Gross
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA
| | - Andrej Sali
- Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA; Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, USA.
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, California, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, California, USA; Gladstone Institute of Data Science and Biotechnology, J. David Gladstone Institutes, San Francisco, California, USA.
| |
Collapse
|
2
|
Ai Y, He H, Chen P, Yan B, Zhang W, Ding Z, Li D, Chen J, Ma Y, Cao Y, Zhu J, Li J, Ou J, Du S, Wang X, Ma J, Gao S, Qi X. An alkaloid initiates phosphodiesterase 3A-schlafen 12 dependent apoptosis without affecting the phosphodiesterase activity. Nat Commun 2020; 11:3236. [PMID: 32591543 PMCID: PMC7319972 DOI: 10.1038/s41467-020-17052-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
The promotion of apoptosis in tumor cells is a popular strategy for developing anti-cancer drugs. Here, we demonstrate that the plant indole alkaloid natural product nauclefine induces apoptosis of diverse cancer cells via a PDE3A-SLFN12 dependent death pathway. Nauclefine binds PDE3A but does not inhibit the PDE3A's phosphodiesterase activity, thus representing a previously unknown type of PDE3A modulator that can initiate apoptosis without affecting PDE3A's canonical function. We demonstrate that PDE3A's H840, Q975, Q1001, and F1004 residues-as well as I105 in SLFN12-are essential for nauclefine-induced PDE3A-SLFN12 interaction and cell death. Extending these molecular insights, we show in vivo that nauclefine inhibits tumor xenograft growth, doing so in a PDE3A- and SLFN12-dependent manner. Thus, beyond demonstrating potent cytotoxic effects of an alkaloid natural product, our study illustrates a potentially side-effect-reducing strategy for targeting PDE3A for anti-cancer therapeutics without affecting its phosphodiesterase activity.
Collapse
Affiliation(s)
- Youwei Ai
- College of Wildlife and Protected Area, Northeast Forestry University, Hexing Road, 150040, Harbin, China.
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| | - Haibing He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, 200062, Shanghai, China
| | - Peihao Chen
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Bo Yan
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Wenbin Zhang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Zhangcheng Ding
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Dianrong Li
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jie Chen
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Yan Ma
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Yang Cao
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Jie Zhu
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Jiaojiao Li
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
| | - Jinjie Ou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, 200062, Shanghai, China
| | - Shan Du
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, 200062, Shanghai, China
| | - Xiaodong Wang
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China
| | - Jianzhang Ma
- College of Wildlife and Protected Area, Northeast Forestry University, Hexing Road, 150040, Harbin, China.
| | - Shuanhu Gao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, East China Normal University, 3663N Zhongshan Road, 200062, Shanghai, China.
| | - Xiangbing Qi
- National Institute of Biological Sciences, 7 Science Park Road, Zhongguancun Life Science Park, 102206, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|