1
|
Kamboj A, Dumka S, Saxena MK, Singh Y, Kaur BP, da Silva SJR, Kumar S. A Comprehensive Review of Our Understanding and Challenges of Viral Vaccines against Swine Pathogens. Viruses 2024; 16:833. [PMID: 38932126 PMCID: PMC11209531 DOI: 10.3390/v16060833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Pig farming has become a strategically significant and economically important industry across the globe. It is also a potentially vulnerable sector due to challenges posed by transboundary diseases in which viral infections are at the forefront. Among the porcine viral diseases, African swine fever, classical swine fever, foot and mouth disease, porcine reproductive and respiratory syndrome, pseudorabies, swine influenza, and transmissible gastroenteritis are some of the diseases that cause substantial economic losses in the pig industry. It is a well-established fact that vaccination is undoubtedly the most effective strategy to control viral infections in animals. From the period of Jenner and Pasteur to the recent new-generation technology era, the development of vaccines has contributed significantly to reducing the burden of viral infections on animals and humans. Inactivated and modified live viral vaccines provide partial protection against key pathogens. However, there is a need to improve these vaccines to address emerging infections more comprehensively and ensure their safety. The recent reports on new-generation vaccines against swine viruses like DNA, viral-vector-based replicon, chimeric, peptide, plant-made, virus-like particle, and nanoparticle-based vaccines are very encouraging. The current review gathers comprehensive information on the available vaccines and the future perspectives on porcine viral vaccines.
Collapse
Affiliation(s)
- Aman Kamboj
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Shaurya Dumka
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | - Mumtesh Kumar Saxena
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Yashpal Singh
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Bani Preet Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | | | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| |
Collapse
|
2
|
Maity HK, Samanta K, Deb R, Gupta VK. Revisiting Porcine Circovirus Infection: Recent Insights and Its Significance in the Piggery Sector. Vaccines (Basel) 2023; 11:1308. [PMID: 37631876 PMCID: PMC10457769 DOI: 10.3390/vaccines11081308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine circovirus (PCV), a member of the Circoviridae family within the genus Circovirus, poses a significant economic risk to the global swine industry. PCV2, which has nine identified genotypes (a-i), has emerged as the predominant genotype worldwide, particularly PCV2d. PCV2 has been commonly found in both domestic pigs and wild boars, and sporadically in non-porcine animals. The virus spreads among swine populations through horizontal and vertical transmission routes. Despite the availability of commercial vaccines for controlling porcine circovirus infections and associated diseases, the continuous genotypic shifts from a to b, and subsequently from b to d, have maintained PCV2 as a significant pathogen with substantial economic implications. This review aims to provide an updated understanding of the biology, genetic variation, distribution, and preventive strategies concerning porcine circoviruses and their associated diseases in swine.
Collapse
Affiliation(s)
- Hemanta Kumar Maity
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Kartik Samanta
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Rajib Deb
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| | - Vivek Kumar Gupta
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| |
Collapse
|
3
|
Zhang H, Luo Q, He Y, Zheng Y, Sha H, Li G, Kong W, Liao J, Zhao M. Research Progress on the Development of Porcine Reproductive and Respiratory Syndrome Vaccines. Vet Sci 2023; 10:491. [PMID: 37624278 PMCID: PMC10459618 DOI: 10.3390/vetsci10080491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/26/2023] Open
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is a highly contagious disease in the pig industry, but its pathogenesis is not yet fully understood. The disease is caused by the PRRS virus (PRRSV), which primarily infects porcine alveolar macrophages and disrupts the immune system. Unfortunately, there is no specific drug to cure PRRS, so vaccination is crucial for controlling the disease. There are various types of single and combined vaccines available, including live, inactivated, subunit, DNA, and vector vaccines. Among them, live vaccines provide better protection, but cross-protection is weak. Inactivated vaccines are safe but have poor immune efficacy. Subunit vaccines can be used in the third trimester of pregnancy, and DNA vaccines can enhance the protective effect of live vaccines. However, vector vaccines only confer partial protection and have not been widely used in practice. A PRRS vaccine that meets new-generation international standards is still needed. This manuscript provides a comprehensive review of the advantages, disadvantages, and applicability of live-attenuated, inactivated, subunit, live vector, DNA, gene-deletion, synthetic peptide, virus-like particle, and other types of vaccines for the prevention and control of PRRS. The aim is to provide a theoretical basis for vaccine research and development.
Collapse
Affiliation(s)
- Hang Zhang
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.Z.); (Q.L.); (Y.H.); (Y.Z.); (H.S.); (G.L.)
| | - Qin Luo
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.Z.); (Q.L.); (Y.H.); (Y.Z.); (H.S.); (G.L.)
| | - Yingxin He
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.Z.); (Q.L.); (Y.H.); (Y.Z.); (H.S.); (G.L.)
| | - Yajie Zheng
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.Z.); (Q.L.); (Y.H.); (Y.Z.); (H.S.); (G.L.)
| | - Huiyang Sha
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.Z.); (Q.L.); (Y.H.); (Y.Z.); (H.S.); (G.L.)
| | - Gan Li
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.Z.); (Q.L.); (Y.H.); (Y.Z.); (H.S.); (G.L.)
| | - Weili Kong
- Gladstone Institutes of Virology and Immunology, University of California, San Francisco, CA 94158, USA;
| | - Jiedan Liao
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.Z.); (Q.L.); (Y.H.); (Y.Z.); (H.S.); (G.L.)
| | - Mengmeng Zhao
- School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.Z.); (Q.L.); (Y.H.); (Y.Z.); (H.S.); (G.L.)
| |
Collapse
|
4
|
Mo Q, Wang H, He W, Lin S, Xie X, Wang Y, Wang X, Ouyang K, Chen Y, Huang W, Wei Z. Simultaneous expression of three reporter proteins from a porcine reproductive and respiratory syndrome virus-based vector. J Virol Methods 2023; 316:114711. [PMID: 36921673 DOI: 10.1016/j.jviromet.2023.114711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/14/2023]
Abstract
The mechanism of discontinuous transcription for the synthesis of a series of sub-genomic mRNAs to express the structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV) potentially allows for the simultaneous expression of multiple foreign genes. This can occur by insertion of multiple novel independent transcription units between the ORF sequences of the PRRSV genome. Here, an expression cassette consisting of a red fluorescent protein (RFP) gene flanked at its 3' end by transcription-regulating sequences (TRS) and an expression cassette consisting of an iLOV gene flanked at its 5' end by TRS, was constructed. The resulting expression cassette containing a RFP and an iLOV gene were introduced between ORF1b and 2 as well as ORF7 and 3'UTR, respectively, in an infectious PRRSV cDNA clone. Transfection of the resulting clone (pGX-12RFP-73iLOV) into cells resulted in the recovery of a recombinant virus (rGX-12RFP-73iLOV). Simultaneous expression of RFP and iLOV was observed in MARC-145 cells infected with rGX-RFP-iLOV. To test the ability of the PRRSV genome to express all three reporter genes simultaneously, an expression cassette containing the Gluc gene and one containing the iLOV gene were also inserted in between ORF1b and 2 as well as ORF7 and 3'UTR, respectively. This was performed in a recently obtained infectious PRRSV cDNA clone carrying a RFP gene in nsp2. Transfection of the construct (pGX-R-Gluc-iLOV) carrying the three reporter genes into cells allowed the rescue of the recombinant reporter virus (rGX-R-Gluc-iLOV) which showed similar growth characteristics to the parental virus but yielded 100-fold less infectious viruses. Fluorescence microscopy of cells infected with rGX-R-Gluc-iLOV demonstrated the presence of both RFP and iLOV genes. Gluc activities in supernatants harvested at different time points from cells infected with recombinant viruses carrying Gluc showed increased levels of Gluc activity as the infection progressed. This indicated that Gluc gene as well as its activity were acceptable parameters to monitor viral propagation. Our results indicate that it is possible to introduce at least three foreign proteins simultaneously in a PRRSV-based vector and such studies will prove invaluable in our future understanding of these viruses.
Collapse
Affiliation(s)
- Qingrong Mo
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Hao Wang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Wei He
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Siyuan Lin
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Xin Xie
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Yuxu Wang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Xindong Wang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Kang Ouyang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Ying Chen
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Weijian Huang
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China
| | - Zuzhang Wei
- Laboratory of Animal infectious Diseases and molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning 530005, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning 530005, China; Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, PR China; Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning 530005, China.
| |
Collapse
|
5
|
Li Y, Ren C, Li C, Xiao Y, Zhou Y. A Recombinant Porcine Reproductive and Respiratory Syndrome Virus Stably Expressing a Gaussia Luciferase for Antiviral Drug Screening Assay and Luciferase-Based Neutralization Assay. Front Microbiol 2022; 13:907281. [PMID: 35633700 PMCID: PMC9136234 DOI: 10.3389/fmicb.2022.907281] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/26/2022] [Indexed: 12/31/2022] Open
Abstract
The reverse genetics system is a valuable tool in the virological study of RNA viruses. With the availability of reverse genetics, the porcine reproductive and respiratory syndrome virus (PRRSV) has been utilized as a viral vector for the expression of foreign genes of interest. Here, we constructed a full-length cDNA clone of a highly pathogenic PRRSV (HP-PRRSV) TA-12 strain. Using this cDNA clone, we generated a reporter virus expressing a gaussia luciferase (Gluc) via an additional subgenomic RNA between ORF7 and 3′UTR. This reporter virus exhibited similar growth kinetics to the wild-type (WT) virus and remained genetically stable for at least ten passages in MARC-145 cells. In cells infected with this reporter virus, the correlation between the expression levels of Gluc in culture media and the virus titers suggested that Gluc is a good indicator of the reporter virus infection. With this reporter virus, we further established the Gluc readout-based assays for antiviral drug screening and serum neutralizing antibody detection that exhibited comparable performance to the classical assays. Taken together, we established a reverse genetics system of HP-PRRSV and generated a novel reporter virus that could serve as a valuable tool for antiviral drug screening and serum neutralizing antibody detection.
Collapse
Affiliation(s)
- Yanhua Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
- *Correspondence: Yanhua Li,
| | - Cicheng Ren
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Chenxi Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou, China
| | - Yihong Xiao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an, China
| | - Yanyang Zhou
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Qiu M, Li S, Ye M, Li J, Sun Z, Li X, Xu Y, Xiao Y, Li C, Feng B, Lin H, Zheng W, Yu X, Tian K, Zhu J, Chen N. Systemic Homologous Neutralizing Antibodies Are Inadequate for the Evaluation of Vaccine Protective Efficacy against Coinfection by High Virulent PEDV and PRRSV. Microbiol Spectr 2022; 10:e0257421. [PMID: 35315711 PMCID: PMC9045284 DOI: 10.1128/spectrum.02574-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
G2 porcine epidemic diarrhea virus (G2 PEDV) and highly pathogenic porcine reproductive and respiratory syndrome virus 2 (HP-PRRSV2) are two of the most prevalent swine pathogens in China's swine herds, and their coinfection occurs commonly. Several PED and PRRS vaccines have been utilized in China for decades, and systemic homologous neutralizing antibodies (shnAbs) in serum are frequently used to evaluate the protective efficacy of PED and PRRS vaccines. To develop a vaccine candidate against G2 PEDV and HP-PRRSV2 coinfection, in this study, we generated a chimeric virus (rJSTZ1712-12-S) expressing S protein of G2 PEDV using an avirulent HP-PRRSV2 rJSTZ1712-12 infectious clone as the viral vector. The rJSTZ1712-12-S strain has similar replication efficacies as the parental rJSTZ1712-12 virus. In addition, animal inoculation indicated that rJSTZ1712-12-S is not pathogenic to piglets and can induce shnAbs against both G2 PEDV and HP-PRRSV2 isolates after prime-boost immunization. However, passive transfer study in neonatal piglets deprived of sow colostrum showed that rJSTZ1712-12-S-induced shnAbs may only decrease PEDV and PRRSV viremia but cannot confer sufficient protection against dual challenge of high virulent G2 PEDV XJ1904-34 strain and HP-PRRSV2 XJ17-5 isolate. Overall, this study provides the first evidence that shnAbs confer insufficient protection against PEDV and PRRSV coinfection and are inadequate for the evaluation of protective efficacy of PED and PRRS bivalent vaccine (especially for the PED vaccine). IMPORTANCE Porcine epidemic diarrhea virus (PEDV) and porcine reproductive and respiratory syndrome virus (PRRSV) coinfection occurs commonly and can synergistically reduce feed intake and pig growth. Vaccination is an effective strategy utilized for PED and PRRS control, and systemic homologous neutralizing antibodies (shnAbs) in serum are commonly used for protective efficacy evaluation of PED and PRRS vaccines. Currently, no commercial vaccine is available against PEDV and PRRSV coinfection. This study generated a chimeric vaccine candidate against the coinfection of prevalent PEDV and PRRSV in China. The chimeric strain can induce satisfied shnAbs against both PEDV and PRRSV after prime-boost inoculation in pigs. But the shnAbs cannot confer sufficient protection against PEDV and PRRSV coinfection in neonatal piglets. To the best of our knowledge, these findings provide the first evidence that shnAbs confer insufficient protection against PEDV and PRRSV coinfection and are inadequate for evaluating PED and PRRS bivalent vaccine protective efficacy.
Collapse
Affiliation(s)
- Ming Qiu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Shubin Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Mengxue Ye
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jixiang Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhe Sun
- National Research Center for Veterinary Medicine, Luoyang, Henan, China
| | - Xinshuai Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yulin Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Yanzhao Xiao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Chen Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Binghui Feng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Hong Lin
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Wanglong Zheng
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiuling Yu
- National Research Center for Veterinary Medicine, Luoyang, Henan, China
| | - Kegong Tian
- National Research Center for Veterinary Medicine, Luoyang, Henan, China
| | - Jianzhong Zhu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| | - Nanhua Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Yangzhou, Jiangsu, China
- Comparative Medicine Research Institute, Yangzhou University, Yangzhou, Jiangsu, China
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China
| |
Collapse
|
7
|
McLean RK, Graham SP. The pig as an amplifying host for new and emerging zoonotic viruses. One Health 2022; 14:100384. [PMID: 35392655 PMCID: PMC8975596 DOI: 10.1016/j.onehlt.2022.100384] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/23/2022] Open
Abstract
Pig production is a rapidly growing segment of the global livestock sector, especially in Asia and Africa. Expansion and intensification of pig production has resulted in significant changes to traditional pig husbandry practices leading to an environment conducive to increased emergence and spread of infectious diseases. These include a number of zoonotic viruses including influenza, Japanese encephalitis, Nipah and coronaviruses. Pigs are known to independently facilitate the creation of novel reassortant influenza A virus strains, capable of causing pandemics. Moreover, pigs play a role in the amplification of Japanese encephalitis virus, transmitted by mosquito vectors found in areas inhabited by over half the world's human population. Furthermore, pigs acted as an amplifying host in the first and still most severe outbreak of Nipah virus in Malaysia, that necessitated the culling over 1 million pigs. Finally, novel porcine coronaviruses are being discovered in high pig-density countries which have pandemic potential. In this review, we discuss the role that pigs play as intermediate/amplifying hosts for zoonotic viruses with pandemic potential and consider how multivalent vaccination of pigs could in turn safeguard human health.
Collapse
|
8
|
Tian D, Subramaniam S, Heffron CL, Mahsoub HM, Sooryanarain H, Wang B, Cao QM, Hassebroek A, LeRoith T, Foss DL, Calvert JG, Meng XJ. Construction and efficacy evaluation of novel swine leukocyte antigen (SLA) class I and class II allele-specific poly-T cell epitope vaccines against porcine reproductive and respiratory syndrome virus. J Gen Virol 2021; 101:1191-1201. [PMID: 32894211 DOI: 10.1099/jgv.0.001492] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes an economically important global swine disease. Here we report the development of subunit PRRSV-2 vaccines by expressing swine leucocyte antigen (SLA) class I and class II allele-specific epitope antigens in a robust adenovirus vector. SLA I-specific CD8 and SLA II-specific CD4 T cell epitopes of PRRSV-2 NADC20 were predicted in silico. Stable murine leukaemia cell lines (RMA-S), which are TAP-deficient and lacking endogenous class I epitope loading, were established to express different SLA I alleles. The binding stability of PRRSV T cell epitope peptides with SLA I alleles expressed on RMA-S cells was characterized. Two PRRSV poly-T cell epitope peptides were designed. NADC20-PP1 included 39 class I epitopes, consisting of 8 top-ranked epitopes specific to each of 5 SLA I alleles, and fused to 5 class II epitopes specific to SLA II alleles. NADC20-PP2, a subset of PP1, included two top-ranked class I epitopes specific to each of the five SLA I alleles. Two vaccine candidates, Ad-NADC20-PP1 and Ad-NADC20-PP2, were constructed by expressing the polytope peptides in a replication-incompetent human adenovirus 5 vector. A vaccination and challenge study in 30 piglets showed that animals vaccinated with the vaccines had numerically lower gross and histopathology lung lesions, and numerically lower PRRSV RNA loads in lung and serum after challenge compared to the controls, although there was no statistical significance. The results suggested that the Ad-NADC20-PP1 and Ad-NADC20-PP2 vaccines provided little or no protection, further highlighting the tremendous challenges faced in developing an effective subunit PRRSV-2 vaccine.
Collapse
Affiliation(s)
- Debin Tian
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sakthivel Subramaniam
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - C Lynn Heffron
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Hassan M Mahsoub
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Harini Sooryanarain
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Bo Wang
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Qian M Cao
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Anna Hassebroek
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Tanya LeRoith
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | | | | | - Xiang-Jin Meng
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
9
|
Future perspectives on swine viral vaccines: where are we headed? Porcine Health Manag 2021; 7:1. [PMID: 33397477 PMCID: PMC7780603 DOI: 10.1186/s40813-020-00179-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 11/27/2020] [Indexed: 12/18/2022] Open
Abstract
Deliberate infection of humans with smallpox, also known as variolation, was a common practice in Asia and dates back to the fifteenth century. The world's first human vaccination was administered in 1796 by Edward Jenner, a British physician. One of the first pig vaccines, which targeted the bacterium Erysipelothrix rhusiopathiae, was introduced in 1883 in France by Louis Pasteur. Since then vaccination has become an essential part of pig production, and viral vaccines in particular are essential tools for pig producers and veterinarians to manage pig herd health. Traditionally, viral vaccines for pigs are either based on attenuated-live virus strains or inactivated viral antigens. With the advent of genomic sequencing and molecular engineering, novel vaccine strategies and tools, including subunit and nucleic acid vaccines, became available and are being increasingly used in pigs. This review aims to summarize recent trends and technologies available for the production and use of vaccines targeting pig viruses.
Collapse
|
10
|
Porcine Reproductive and Respiratory Syndrome Virus Reverse Genetics and the Major Applications. Viruses 2020; 12:v12111245. [PMID: 33142752 PMCID: PMC7692847 DOI: 10.3390/v12111245] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/15/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) is a positive sense, single-stranded RNA virus that is known to infect only pigs. The virus emerged in the late 1980s and became endemic in most swine producing countries, causing substantial economic losses to the swine industry. The first reverse genetics system for PRRSV was reported in 1998. Since then, several infectious cDNA clones for PRRSV have been constructed. The availability of these infectious cDNA clones has facilitated the genetic modifications of the viral genome at precise locations. Common approaches to manipulate the viral genome include site-directed mutagenesis, deletion of viral genes or gene fragments, insertion of foreign genes, and swapping genes between PRRSV strains or between PRRSV and other members of the Arteriviridae family. In this review, we describe the approaches to construct an infectious cDNA for PRRSV and the ten major applications of these infectious clones to study virus biology and virus–host interaction, and to design a new generation of vaccines with improved levels of safety and efficacy.
Collapse
|
11
|
Wang H, Xie X, He W, Wang Y, Ren T, Ouyang K, Chen Y, Huang W, Wei Z. Generation of a Recombinant Porcine Reproductive and Respiratory Syndrome Virus Stably Expressing Two Marker Genes. Front Vet Sci 2020; 7:548282. [PMID: 33195521 PMCID: PMC7641969 DOI: 10.3389/fvets.2020.548282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) has been used as a gene expression vector in the development of vaccines. Most of these recombinant PRRSV vectors express only a single foreign gene through either an internal insertion in the hypervariable region of nsp2 or expression cassette and some of these recombinant vectors are genetically unstable. Here, we combined internal insertion in nsp2 and expression cassette methods to generate a novel recombinant PRRSV stably expressing the red fluorescence protein (RFP) and the green fluorescence protein (GFP) genes. Biological characteristic analysis of the recombinant PRRSV carrying the two marker genes, rGX-RFP-GFP, showed that it displayed similar growth kinetics and yet it yielded less infectious viruses when compared to the parental virus rGXAM. Co-expression of both the RFP and GFP was observed using confocal fluorescence microscopy when the rGX-RFP-GFP viruses infected MARC-145 cells. Furthermore, the PRRSV-based two-marker gene expression vector is genetically stable during 20 serial passages in MARC-145 cells. These data demonstrate that it is possible to express two interested immunogens from a single PRRSV vector.
Collapse
Affiliation(s)
- Hao Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Xin Xie
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wei He
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Yuxu Wang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Tongwei Ren
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Generation of a porcine reproductive and respiratory syndrome virus expressing a marker gene inserted between ORF4 and ORF5a. Arch Virol 2020; 165:1803-1813. [PMID: 32474688 DOI: 10.1007/s00705-020-04679-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/24/2020] [Indexed: 01/11/2023]
Abstract
In recent years, the availability of reverse genetics systems for porcine reproductive and respiratory syndrome virus (PRRSV) has created new perspectives for the use of recombinant viruses as expression vectors. Most of these recombinant PRRSV vectors express foreign genes through either an independent transcription unit inserted in ORF1b and ORF2, or in ORF7 and the 3' UTR. The aim of this study was to find an alternative site for foreign gene insertion into the PRRSV genome. Here, we constructed an infectious cDNA clone for a cell-adapted PRRSV strain, GXNN1396-P96. This cDNA-clone-derived recombinant virus (rGXAM) was comparable in its growth kinetics in MARC-145 cells to the parental virus, GX1396-P96. Using the infectious cDNA-clone, we inserted an independent transcription unit in ORF4 and ORF5a to generate a novel PRRSV-based recombinant virus expressing the green fluorescent protein (GFP) gene. Biological characterization of the recombinant virus, rGX45BSTRS-GFP, showed that it maintained similar growth characteristics but produced fewer infectious virions than the parental PRRSV. These data demonstrate that the ORF4 and ORF5a site is able to tolerate the insertion of foreign genes.
Collapse
|
13
|
Wang L, Zhao D, Sun B, Yu M, Wang Y, Ru Y, Jiang Y, Qiao X, Cui W, Zhou H, Li Y, Xu Y, Tang L. Oral vaccination with the porcine circovirus type 2 (PCV-2) capsid protein expressed by Lactococcus lactis induces a specific immune response against PCV-2 in mice. J Appl Microbiol 2019; 128:74-87. [PMID: 31574195 DOI: 10.1111/jam.14473] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 08/30/2019] [Accepted: 09/27/2019] [Indexed: 01/01/2023]
Abstract
AIMS Porcine circovirus type 2 (PCV2) can cause postweaning, multisystemic wasting syndrome in pigs, which leads to enormous losses in the swine industry worldwide. Here, a genetically engineered Lactococcus strain expressing the main protective antigen of PCV2, the Cap protein, was developed to act against PCV2 infection as an oral vaccine. METHODS AND RESULTS Expression of the Cap protein was confirmed via western blot, ELISA and fluorescence microscopy. Over 90% of the recombinant pAMJ399-Cap/MG1363 survived a simulated gastrointestinal transit. It also survived the murine intestinal tract for at least 11 days. Then, the safety and immunogenicity of pAMJ399-Cap/MG1363 in orally immunized mice was evaluated. The levels of the sIgA, IgG and cytokines (IL-4 and IFN-γ) obtained from the mice immunized with pAMJ399-Cap/MG1363 were significantly higher than those in the control groups. CONCLUSIONS pAMJ399-Cap/MG1363 can survive in the gastrointestinal transit and effectively induce mucosal, cellular and humoral immune response against PCV2 infection via oral administration. SIGNIFICANCE AND IMPACT OF THE STUDY This study demonstrates the potential of the genetically engineered Lactococcus lactis as a candidate for an oral vaccine against PCV2.
Collapse
Affiliation(s)
- L Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - D Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - B Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - M Yu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Y Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Y Ru
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Y Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - X Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - W Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - H Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Y Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Y Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - L Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang, P.R. China.,Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| |
Collapse
|
14
|
Ding P, Jin Q, Zhou W, Chai Y, Liu X, Wang Y, Chen X, Guo J, Deng R, Gao GF, Zhang G. A Universal Influenza Nanovaccine for "Mixing Vessel" Hosts Confers Potential Ability to Block Cross-Species Transmission. Adv Healthc Mater 2019; 8:e1900456. [PMID: 31267679 DOI: 10.1002/adhm.201900456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/01/2019] [Indexed: 12/14/2022]
Abstract
Influenza A virus (IAV), a deadly zoonotic pathogen, poses a tremendous threat and burden to global health systems. Pigs act as "mixing vessel" hosts to support and generate new pandemic viruses. Preventing the spread of IAV in pigs effectively can delay or even block cross-species transmission. Universal vaccines based on the highly conserved ectodomain of influenza matrix protein 2 (M2e) have been widely reported, but have not been applied due to inadequate protection. Porcine circovirus type 2 (PCV2) causes immunosuppression and promotes swine influenza virus (SIV) infection. Here, M2e is inserted into capsid protein of PCV2 without burying the neutralizing epitopes and self-assembles to form a bivalent nanovaccine. Inoculation with the nanovaccine induces robust M2e- and PCV2-specific immune responses. The nanovaccine confers protection against lethal challenges of IAV from different species in mice, and significantly reduces SIV titers in pigs' respiratory tract and blocks SIV transmission. These results indicate that the nanovaccine is an economical and promising PCV2 and universal IAV bivalent vaccine, and it will synergistically and powerfully offer potential ability to block IAV cross-species reassortment and transmission.
Collapse
Affiliation(s)
- Peiyang Ding
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
- College of Veterinary MedicineNorthwest A&F University Yangling 712100 China
| | - Qianyue Jin
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
- Jiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou University Yangzhou 225009 China
| | - Wen Zhou
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
- College of Veterinary MedicineNorthwest A&F University Yangling 712100 China
| | - Yongxiao Chai
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
- College of Animal Science and Veterinary MedicineHenan Agricultural University Zhengzhou 450002 China
| | - Xiao Liu
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
- College of Animal Science and Veterinary MedicineHenan Agricultural University Zhengzhou 450002 China
| | - Yao Wang
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
- College of Animal Science and Veterinary MedicineHenan Agricultural University Zhengzhou 450002 China
| | - Xinxin Chen
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Junqing Guo
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - Ruiguang Deng
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
| | - George F. Gao
- CAS Key Laboratory of Pathogenic Microbiology and ImmunologyInstitute of MicrobiologyChinese Academy of Sciences Beijing 100101 China
| | - Gaiping Zhang
- Henan Provincial Key Laboratory of Animal ImmunologyHenan Academy of Agricultural Sciences Zhengzhou 450002 China
- College of Veterinary MedicineNorthwest A&F University Yangling 712100 China
- Jiangsu Co‐Innovation Center for Prevention and Control of Important Animal Infectious Diseases and ZoonosesYangzhou University Yangzhou 225009 China
- College of Animal Science and Veterinary MedicineHenan Agricultural University Zhengzhou 450002 China
| |
Collapse
|