1
|
Oliveira NA, Sevim H. Dendritic cell differentiation from human induced pluripotent stem cells: challenges and progress. Stem Cells Dev 2022; 31:207-220. [PMID: 35316109 DOI: 10.1089/scd.2021.0305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are the major antigen-presenting cells of the immune system responsible for initiating and coordinating immune responses. These abilities provide potential for several clinical applications, such as the development of immunogenic vaccines. However, difficulty in obtaining DCs from conventional sources, such as bone marrow (BM), peripheral blood (PBMC), and cord blood (CB), is a significantly hinders routine application. The use of human induced pluripotent stem cells (hiPSCs) is a valuable alternative for generating sufficient numbers of DCs to be used in basic and pre-clinical studies. Despite the many challenges that must be overcome to achieve an efficient protocol for obtaining the major DC types from hiPSCs, recent progress has been made. Here we review the current state of developing DCs from hiPSCs, as well as the key elements required to enable the routine use of hiPSC-derived DCs in pre-clinical and clinical assays.
Collapse
Affiliation(s)
- Nelio Aj Oliveira
- Jackson Laboratory - Farmington, 481263, Cell Engineering , Farmington, Connecticut, United States, 06032-2374;
| | - Handan Sevim
- Hacettepe Universitesi, 37515, Faculty of Science Department of Biology, Ankara, Ankara, Turkey;
| |
Collapse
|
2
|
Shimizu J, Sasaki T, Yamanaka A, Ichihara Y, Koketsu R, Samune Y, Cruz P, Sato K, Tanga N, Yoshimura Y, Murakami A, Yamada M, Itoi K, Nakayama EE, Miyazaki K, Shioda T. The potential of COVID-19 patients' sera to cause antibody-dependent enhancement of infection and IL-6 production. Sci Rep 2021; 11:23713. [PMID: 34887501 PMCID: PMC8660863 DOI: 10.1038/s41598-021-03273-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
Since the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), many vaccine trials have been initiated. An important goal of vaccination is the development of neutralizing antibody (Ab) against SARS-CoV-2. However, the possible induction of antibody-dependent enhancement (ADE) of infection, which is known for other coronaviruses and dengue virus infections, is a particular concern in vaccine development. Here, we demonstrated that human iPS cell-derived, immortalized, and ACE2- and TMPRSS2-expressing myeloid cell lines are useful as host cells for SARS-CoV-2 infection. The established cell lines were cloned and screened based on their function in terms of susceptibility to SARS-CoV-2-infection or IL-6 productivity. Using the resulting K-ML2 (AT) clone 35 for SARS-CoV-2-infection or its subclone 35–40 for IL-6 productivity, it was possible to evaluate the potential of sera from severe COVID-19 patients to cause ADE and to stimulate IL-6 production upon infection with SARS-CoV-2.
Collapse
Affiliation(s)
- Jun Shimizu
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Tadahiro Sasaki
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Atsushi Yamanaka
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan.,Faculty of Tropical Medicine, Mahidol-Osaka Center for Infectious Diseases, Mahidol University, Bangkok, Thailand
| | - Yoko Ichihara
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Ritsuko Koketsu
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Yoshihiro Samune
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Pedro Cruz
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Kei Sato
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Naomi Tanga
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Yuka Yoshimura
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Ami Murakami
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Misuzu Yamada
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Kiyoe Itoi
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan
| | - Emi E Nakayama
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871, Japan
| | - Kazuo Miyazaki
- MiCAN Technologies Inc., KKVP 1-36, Goryo-ohara, Nishikyo-Ku, Kyoto, 615-8245, Japan.
| | - Tatsuo Shioda
- Department of Viral Infection, Research Institute for Microbial Diseases, Osaka University, 3-1, Yamada-oka, Suita, Osaka, 565-0871, Japan. .,Faculty of Tropical Medicine, Mahidol-Osaka Center for Infectious Diseases, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
3
|
Dengue virus susceptibility in novel immortalized myeloid cells. Heliyon 2020; 6:e05407. [PMID: 33195842 PMCID: PMC7644905 DOI: 10.1016/j.heliyon.2020.e05407] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/31/2020] [Accepted: 10/28/2020] [Indexed: 12/20/2022] Open
Abstract
Human dendritic cells (DCs) are the main target cells of dengue virus (DENV). Because humans injected with even a small volume of DENV from mosquito saliva display a high level of viremia, DCs are expected to be highly susceptible to DENV. In the present study, we assessed the efficiency of DENV infection using the novel immortalized human myeloid cell lines iPS-ML and iPS-DC. To prepare the DC-like myeloid cell line (iPS-DC), iPS-ML cells were cultured in the presence of IL-4 for 72 h. iPS-DC cells were the most susceptible to DENV, followed by iPS-ML, Vero and K562 cells. In contrast, the highest infective yield titer was observed in Vero cells. To investigate further uses of iPS-ML and iPS-DC, these cells were applied to an assay measuring antibody-dependent enhancement (ADE) activity in DENV infection. Serum samples collected from healthy Thai participants and mouse monoclonal antibodies displayed similar ADE activity patterns when examined with iPS-ML, iPS-DC, or K562 cells, the last of which are usually used in conventional ADE assays. Interestingly, iPS-ML cells showed greater susceptibility to ADE activity than iPS-DC and K562 cells. Here, we demonstrated the potential utility of the novel immortalized human myeloid cell lines iPS-ML and iPS-DC in future research on DENV.
Collapse
|