1
|
Li S, Xu M, Yang D, Yang M, Wu H, Li X, Yang C, Fang Z, Wu Q, Tan L, Xiao W, Weng Q. Characterization and genomic analysis of a lytic Stenotrophomonas maltophilia short-tailed phage A1432 revealed a new genus of the family Mesyanzhinovviridae. Front Microbiol 2024; 15:1400700. [PMID: 38993489 PMCID: PMC11236537 DOI: 10.3389/fmicb.2024.1400700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/14/2024] [Indexed: 07/13/2024] Open
Abstract
Stenotrophomonas maltophilia (S. maltophilia) is an emerging opportunistic pathogen that exhibits resistant to a majority of commonly used antibiotics. Phages have the potential to serve as an alternative treatment for S. maltophilia infections. In this study, a lytic phage, A1432, infecting S. maltophilia YCR3A-1, was isolated and characterized from a karst cave. Transmission electron microscopy revealed that phage A1432 possesses an icosahedral head and a shorter tail. Phage A1432 demonstrated a narrow host range, with an optimal multiplicity of infection of 0.1. The one-step growth curve indicated a latent time of 10 min, a lysis period of 90 min, a burst size of 43.2 plaque-forming units per cell. In vitro bacteriolytic activity test showed that phage A1432 was capable to inhibit the growth of S. maltophilia YCR3A-1 in an MOI-dependent manner after 2 h of co-culture. BLASTn analysis showed that phage A1432 genome shares the highest similarity (81.46%) with Xanthomonas phage Xoo-sp2 in the NCBI database, while the query coverage was only 37%. The phage contains double-stranded DNA with a genome length of 61,660 bp and a GC content of 61.92%. It is predicted to have 79 open reading frames and one tRNA, with no virulence or antibiotic resistance genes. Phylogenetic analysis using terminase large subunit and DNA polymerase indicated that phage A1432 clustered with members of the Bradleyvirinae subfamily but diverged into a distinct branch. Further phylogenetic comparison analysis using Average Nucleotide Identity, proteomic phylogenetic analysis, genomic network analysis confirmed that phage A1432 belongs to a novel genus within the Bradleyvirinae subfamily, Mesyanzhinovviridae family. Additionally, phylogenetic analysis of the so far isolated S. maltophilia phages revealed significant genetic diversity among these phages. The results of this research will contribute valuable information for further studies on their morphological and genetic diversity, will aid in elucidating the evolutionary mechanisms that give rise to them.
Collapse
Affiliation(s)
- Shixia Li
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Man Xu
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Deying Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Mei Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Hejing Wu
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Xuelian Li
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Changzhou Yang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Zheng Fang
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Qingshan Wu
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Leitao Tan
- School of Life Sciences, Guizhou Normal University, Guiyang, China
| | - Wei Xiao
- Yunnan Institute of Microbiology, Yunnan International Joint Laboratory of Virology and Immunology, Yunnan University, Kunming, China
| | - Qingbei Weng
- School of Life Sciences, Guizhou Normal University, Guiyang, China
- Qiannan Normal University for Nationalities, Duyun, China
| |
Collapse
|
2
|
Feltin C, Garneau JR, Morris CE, Bérard A, Torres-Barceló C. Novel phages of Pseudomonas syringae unveil numerous potential auxiliary metabolic genes. J Gen Virol 2024; 105:001990. [PMID: 38833289 PMCID: PMC11256456 DOI: 10.1099/jgv.0.001990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024] Open
Abstract
Relatively few phages that infect plant pathogens have been isolated and investigated. The Pseudomonas syringae species complex is present in various environments, including plants. It can cause major crop diseases, such as bacterial canker on apricot trees. This study presents a collection of 25 unique phage genomes that infect P. syringae. These phages were isolated from apricot orchards with bacterial canker symptoms after enrichment with 21 strains of P. syringae. This collection comprises mostly virulent phages, with only three being temperate. They belong to 14 genera, 11 of which are newly discovered, and 18 new species, revealing great genetic diversity within this collection. Novel DNA packaging systems have been identified bioinformatically in one of the new phage species, but experimental confirmation is required to define the precise mechanism. Additionally, many phage genomes contain numerous potential auxiliary metabolic genes with diversified putative functions. At least three phages encode genes involved in bacterial tellurite resistance, a toxic metalloid. This suggests that viruses could play a role in bacterial stress tolerance. This research emphasizes the significance of continuing the search for new phages in the agricultural ecosystem to unravel novel ecological diversity and new gene functions. This work contributes to the foundation for future fundamental and applied research on phages infecting phytopathogenic bacteria.
Collapse
Affiliation(s)
- Chloé Feltin
- INRAE, Pathologie Végétale, F-84140, Montfavet, France
| | - Julian R. Garneau
- Department of Fundamental Microbiology, University of Lausanne, CH-1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
3
|
Liu M, Hu R, Xia M, He X, Jin Y. Novel broad-spectrum bacteriophages against Xanthomonas oryzae and their biocontrol potential in rice bacterial diseases. Environ Microbiol 2023; 25:2075-2087. [PMID: 37300421 DOI: 10.1111/1462-2920.16447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Bacterial leaf blight (BLB) and bacterial leaf streak (BLS)-caused by Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc), respectively-are two major bacterial diseases that threaten the safe production of rice, one of the most important food crops. Bacteriophages are considered potential biocontrol agents against rice bacterial pathogens, due to their host specificity and environmental safety. It is common for BLB and BLS to occur together in fields, which highlights the need for broad-spectrum phages capable of infecting both Xoo and Xoc. In this study, two lytic broad-spectrum phages (pXoo2106 and pXoo2107) that can infect various strains of Xoo and Xoc were assessed. Both phages belong to the class Caudoviricetes and one of them to the family Autographiviridae, while the other belongs to an unclassified family. Two phages alone or combined in a phage cocktail could effectively inhibit Xoo and Xoc growth in vitro. In an in vivo biocontrol experiment, the phage cocktail reduced the total CFU and significantly eased the symptoms caused by Xoo or Xoc. Our results suggest that pXoo2106 and pXoo2107 have a broad-spectrum host range targeting different X. oryzae strains, and have strong biocontrol potential in field applications against both BLB and BLS.
Collapse
Affiliation(s)
- Mengjiao Liu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Ran Hu
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Mian Xia
- Hainan Yazhou Bay Seed Laboratory, Hainan, China
| | - Xiaoqing He
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| | - Yi Jin
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- Beijing Key Laboratory of Food Processing and Safety in Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
4
|
Jo SJ, Kwon J, Kim SG, Lee SJ. The Biotechnological Application of Bacteriophages: What to Do and Where to Go in the Middle of the Post-Antibiotic Era. Microorganisms 2023; 11:2311. [PMID: 37764155 PMCID: PMC10534921 DOI: 10.3390/microorganisms11092311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Amid the escalating challenges of antibiotic resistance, bacterial infections have emerged as a global threat. Bacteriophages (phages), viral entities capable of selectively infecting bacteria, are gaining momentum as promising alternatives to traditional antibiotics. Their distinctive attributes, including host specificity, inherent self-amplification, and potential synergy with antibiotics, render them compelling candidates. Phage engineering, a burgeoning discipline, involves the strategic modification of bacteriophages to enhance their therapeutic potential and broaden their applications. The integration of CRISPR-Cas systems facilitates precise genetic modifications, enabling phages to serve as carriers of functional genes/proteins, thereby enhancing diagnostics, drug delivery, and therapy. Phage engineering holds promise in transforming precision medicine, addressing antibiotic resistance, and advancing diverse applications. Emphasizing the profound therapeutic potential of phages, this review underscores their pivotal role in combatting bacterial diseases and highlights their significance in the post-antibiotic era.
Collapse
Affiliation(s)
- Su Jin Jo
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Jun Kwon
- Laboratory of Veterinary Public Health, College of Veterinary Medicine, Jeonbuk National University, 79 Gobong-ro, Iksan City 54596, Republic of Korea
| | - Sang Guen Kim
- Department of Biological Sciences, Kyonggi University, Suwon 16227, Republic of Korea
| | - Seung-Jun Lee
- Department of Pharmaceutical Science and Engineering, Seowon University, 377-3 Musimseoro, Seowon-gu, Cheong-ju City 28674, Republic of Korea
| |
Collapse
|
5
|
My PDT, Vinh TQ, Ngoc TH, Anh PNQ, Duyen LTM, Thien NM, Tien LTT, Phuc VT, Oanh HN, Nga LP, Hoang HA. Complete genome sequence of a novel lytic phage of Xanthomonas oryzae pv. oryzae, the bacterial leaf blight pathogen in rice. Arch Virol 2023; 168:157. [PMID: 37160612 DOI: 10.1007/s00705-023-05788-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023]
Abstract
Bacteriophage L522, which infects Xanthomonas oryzae pv. oryzae, was isolated from a paddy leaf sample collected in Long An province, Vietnam. The phage shows myovirus morphology based on transmission electron microscopy. It displays a latent period and burst size of approximately 3 h and 63 new virions per infected cell (PFU/infected cell), respectively. The genome of L522 is 44,497 bp in length, with 52% GC content. Of the 63 genes identified, functions were predicted for 26. No virulence or antibiotic-resistance genes were detected. The results of a BLASTn search showed similarity to a previously reported Xanthomonas phage, with 85% average nucleotide sequence identity and 87.15% query coverage. Thus, this L522 is a representative of a new species in the genus Xipdecavirus.
Collapse
Affiliation(s)
- Pham D T My
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Tu Q Vinh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - To H Ngoc
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Pham N Q Anh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Le T M Duyen
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Nguyen M Thien
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Le T T Tien
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Vo T Phuc
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Huynh N Oanh
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Le P Nga
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam
| | - Hoang A Hoang
- Faculty of Chemical Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet, District 10, Ho Chi Minh City, Vietnam.
- Vietnam National University Ho Chi Minh City, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Vietnam.
| |
Collapse
|
6
|
Jiang H, Li C, Huang X, Ahmed T, Ogunyemi SO, Yu S, Wang X, Ali HM, Khan F, Yan C, Chen J, Li B. Phage combination alleviates bacterial leaf blight of rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1147351. [PMID: 37152174 PMCID: PMC10155274 DOI: 10.3389/fpls.2023.1147351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/27/2023] [Indexed: 05/09/2023]
Abstract
Rice bacterial leaf blight (BLB) is the most destructive bacterial diseases caused by Xanthomonas oryzae pv. oryzae (Xoo). Phages have been proposed as a green and efficient strategy to kill bacterial pathogens in crops, however, the mechanism of action of phages in the control of phyllosphere bacterial diseases remain unclear. Here, the glasshouse pot experiment results showed that phage combination could reduce the disease index by up to 64.3%. High-throughput sequencing technology was used to analyze the characteristics of phyllosphere microbiome changes and the results showed that phage combinations restored the impact of pathogen invasion on phyllosphere communities to a certain extent, and increased the diversity of bacterial communities. In addition, the phage combination reduced the relative abundance of epiphytic and endophytic Xoo by 58.9% and 33.9%, respectively. In particular, Sphingomonas and Stenotrophomonas were more abundant. According to structural equation modeling, phage combination directly and indirectly affected the disease index by affecting pathogen Xoo biomass and phage resistance. In summary, phage combination could better decrease the disease index. These findings provide new insights into phage biological control of phyllosphere bacterial diseases, theoretical data support, and new ideas for agricultural green prevention and control of phyllosphere diseases.
Collapse
Affiliation(s)
- Hubiao Jiang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Changxin Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, China
| | - Xuefang Huang
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Solabomi Olaitan Ogunyemi
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Shanhong Yu
- Taizhou Academy of Agricultural Sciences, Taizhou, China
| | - Xiao Wang
- Ningbo Jiangbei District Agricultural Technology Extension Service Station, Ningbo, China
| | - Hayssam M. Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Launceston, TAS, Australia
| | - Chengqi Yan
- Institute of Biotechnology, Ningbo Academy of Agricultural Sciences, Ningbo, China
| | - Jianping Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of Ministry of Agriculture and Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
7
|
Sharma A, Gupta AK, Devi B. Current trends in management of bacterial pathogens infecting plants. Antonie Van Leeuwenhoek 2023; 116:303-326. [PMID: 36683073 DOI: 10.1007/s10482-023-01809-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/08/2023] [Indexed: 01/24/2023]
Abstract
Plants are continuously challenged by different pathogenic microbes that reduce the quality and quantity of produce and therefore pose a serious threat to food security. Among them bacterial pathogens are known to cause disease outbreaks with devastating economic losses in temperate, tropical and subtropical regions throughout the world. Bacteria are structurally simple prokaryotic microorganisms and are diverse from a metabolic standpoint. Bacterial infection process mainly involves successful attachment or penetration by using extracellular enzymes, type secretion systems, toxins, growth regulators and by exploiting different molecules that modulate plant defence resulting in successful colonization. Theses bacterial pathogens are extremely difficult to control as they develop resistance to antibiotics. Therefore, attempts are made to search for innovative methods of disease management by the targeting bacterial virulence and manipulating the genes in host plants by exploiting genome editing methods. Here, we review the recent developments in bacterial disease management including the bioactive antimicrobial compounds, bacteriophage therapy, quorum-quenching mediated control, nanoparticles and CRISPR/Cas based genome editing techniques for bacterial disease management. Future research should focus on implementation of smart delivery systems and consumer acceptance of these innovative methods for sustainable disease management.
Collapse
Affiliation(s)
- Aditi Sharma
- College of Horticulture and Forestry, Thunag- Mandi, Dr. Y. S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India.
| | - A K Gupta
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| | - Banita Devi
- Department of Plant Pathology, Dr. Y.S. Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, 173 230, India
| |
Collapse
|
8
|
Jain L, Kumar V, Jain SK, Kaushal P, Ghosh PK. Isolation of bacteriophages infecting Xanthomonas oryzae pv. oryzae and genomic characterization of novel phage vB_XooS_NR08 for biocontrol of bacterial leaf blight of rice. Front Microbiol 2023; 14:1084025. [PMID: 37007514 PMCID: PMC10061587 DOI: 10.3389/fmicb.2023.1084025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 01/27/2023] [Indexed: 03/18/2023] Open
Abstract
Bacterial leaf blight (BLB) disease of rice caused by Xanthomonas oryzae pv. oryzae (Xoo) is one of the most destructive diseases worldwide in rice-growing regions. The Ineffectiveness of chemicals in disease management has increased the interest in phage therapy. In this study, we isolated 19 bacteriophages, infecting Xoo, from a rice field, which belonged to phage families Siphoviridae, Myoviridae, and Podoviridae on the basis of electron microscopy. Among 19 phages, Phage vB_XooS_NR08, a member of the Siphoviridae family, expressed antibacterial activity against all Xoo strains tested and did not lyse X. campestris and other unrelated bacterial hosts. Phage NR08 showed more than 80% viability at a temperature range of 4°C–40°C, pH range of 5–9, and direct exposure to sunlight for 2 h, whereas UV light and chemical agents were highly detrimental. In a one-step growth curve, NR08 has a 40-min latent period, followed by a 30-min burst period with a burst size of 250 particle/bacterium. The genome of NR08 is double-stranded DNA, linear having a size of 98,812 bp with a G + C content of 52.9%. Annotation of the whole-genome sequence indicated that NR08 encodes 142 putative open reading frames (ORFs), including one ORF for tRNA, namely, trna1-GlnTTG. Comparative genome analysis of NR08 showed that it shares maximum similarity with Pseudomonas phage PaMx42 (40% query coverage, 95.39% identity, and acc. Length 43,225) and Xanthomonas phage Samson (40% query coverage, 96.68% identity, and acc. Length 43,314). The average alignment percentage (AP) of NR08 with other Xoophages was only 0.32 to 1.25 since the genome of NR08 (98.8 kb) is almost double of most of the previously reported Xoophages (43–47 kb), thus indicating NR08 a novel Xoophage. In in vitro bacterial challenge assay, NR08 showed bacteriostasis up to 24 h and a 99.95% reduction in bacterial growth in 48 h. In rice pot efficacy trials, single-dose treatment of NR08 showed a significant reduction in disease up to 90.23% and 79.27% on 7 and 21 dpi, respectively. However, treatment using 2% skim milk-supplemented phage preparation was significantly less effective as compared to the neat phage preparation. In summary, this study characterized a novel Xoophage having the potential as a biocontrol agent in the mitigation of BLB in rice.
Collapse
|
9
|
Liu H, Yang S, Li T, Ma S, Wang P, Wang G, Su S, Ding Y, Yang L, Zhou X, Yang S. Design, Synthesis and Bioactivity Evaluation of Novel 2-(pyrazol-4-yl)-1,3,4-oxadiazoles Containing an Imidazole Fragment as Antibacterial Agents. Molecules 2023; 28:2442. [PMID: 36985415 PMCID: PMC10058659 DOI: 10.3390/molecules28062442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/30/2023] Open
Abstract
Imidazole alkaloids, a common class of five-membered aromatic heterocyclic compounds, exist widely in plants, animals and marine organisms. Because of imidazole's extensive and excellent biological and pharmacological activities, it has always been a topic of major interest for researchers and has been widely used as an active moiety in search of bioactive molecules. To find more efficient antibacterial compounds, a series of novel imidazole-fragment-decorated 2-(pyrazol-4-yl)-1,3,4-oxadiazoles were designed and synthesized based on our previous works via the active substructure splicing principle, and their bioactivities were systematically evaluated both in vitro and in vivo. The bioassays showed that some of the target compounds displayed excellent in vitro antibacterial activity toward three virulent phytopathogenic bacteria, including Xanthomonas oryzae pv. oryzae (Xoo), Xanthomonas axonopodis pv. citri (Xac) and Pseudomonas syringae pv. actinidiae (Psa), affording the lowest EC50 values of 7.40 (7c), 5.44 (9a) and 12.85 (9a) μg/mL, respectively. Meanwhile, compound 7c possessed good in vivo protective and curative activities to manage rice bacterial leaf blight at 200 μg/mL, with control efficacies of 47.34% and 41.18%, respectively. Furthermore, compound 9a showed commendable in vivo protective and curative activities to manage kiwifruit bacterial canker at 200 μg/mL, with control efficacies of 46.05% and 32.89%, respectively, which were much better than those of the commercial bactericide TC (31.58% and 17.11%, respectively). In addition, the antibacterial mechanism suggested that these new types of title compounds could negatively impact the cell membranes of phytopathogenic bacteria cells and cause the leakage of the intracellular component, thereby leading to the killing of bacteria. All these findings confirm that novel 2-(pyrazol-4-yl)-1,3,4-oxadiazoles containing an imidazole fragment are promising lead compounds for discovering new bactericidal agents.
Collapse
Affiliation(s)
| | | | | | | | - Peiyi Wang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | | | | | | | | | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | | |
Collapse
|
10
|
Dong Z, Wang K, Peng D, Yu C. Characteristics and complete genome analysis of the novel virulent phage Bfsp1 infecting Cytobacillus firmus. Arch Virol 2023; 168:56. [PMID: 36617608 DOI: 10.1007/s00705-022-05660-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/20/2022] [Indexed: 01/10/2023]
Abstract
We isolated, identified, and characterised Bfsp1, a novel virulent phage of Cytobacillus firmus. Morphologically, Bfsp1 is similar to phi29-like phages. The linear, double-stranded DNA genome of Bfsp1 is 22,320 bp in length, has a GC content of 36.06%, and has 10-bp inverted terminal repeats. The genome contains 33 open reading frames, and functions of 15 of them were predicted. Comparative genome analysis showed that Bfsp1 is distinct from other known phages, and this was confirmed by phylogenetic analysis. Morphological, genomic, and phylogenetic data indicated that Bfsp1 is a novel member of the family Salasmaviridae.
Collapse
Affiliation(s)
- Zhaoxia Dong
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China
| | - Kai Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| | - Cui Yu
- Industrial Crops Institute of Hubei Academy of Agricultural Sciences, Wuhan, 430064, Hubei, China.
| |
Collapse
|
11
|
Phage Therapy for Crops: Concepts, Experimental and Bioinformatics Approaches to Direct Its Application. Int J Mol Sci 2022; 24:ijms24010325. [PMID: 36613768 PMCID: PMC9820149 DOI: 10.3390/ijms24010325] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 12/28/2022] Open
Abstract
Phage therapy consists of applying bacteriophages, whose natural function is to kill specific bacteria. Bacteriophages are safe, evolve together with their host, and are environmentally friendly. At present, the indiscriminate use of antibiotics and salt minerals (Zn2+ or Cu2+) has caused the emergence of resistant strains that infect crops, causing difficulties and loss of food production. Phage therapy is an alternative that has shown positive results and can improve the treatments available for agriculture. However, the success of phage therapy depends on finding effective bacteriophages. This review focused on describing the potential, up to now, of applying phage therapy as an alternative treatment against bacterial diseases, with sustainable improvement in food production. We described the current isolation techniques, characterization, detection, and selection of lytic phages, highlighting the importance of complementary studies using genome analysis of the phage and its host. Finally, among these studies, we concentrated on the most relevant bacteriophages used for biocontrol of Pseudomonas spp., Xanthomonas spp., Pectobacterium spp., Ralstonia spp., Burkholderia spp., Dickeya spp., Clavibacter michiganensis, and Agrobacterium tumefaciens as agents that cause damage to crops, and affect food production around the world.
Collapse
|
12
|
Yun YB, Um Y, Kim YK. Optimization of the Bacteriophage Cocktail for the Prevention of Brown Blotch Disease Caused by Pseudomonas tolaasii. THE PLANT PATHOLOGY JOURNAL 2022; 38:472-481. [PMID: 36221919 PMCID: PMC9561164 DOI: 10.5423/ppj.oa.03.2022.0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 07/11/2022] [Accepted: 08/08/2022] [Indexed: 06/16/2023]
Abstract
Brown blotch disease, caused by Pseudomonas tolaasii, is one of the most serious diseases in mushroom cultivation, and its control remains an important issue. This study isolated and evaluated pathogen-specific bacteriophages for the biological control of the disease. In previous studies, 23 varieties of P. tolaasii were isolated from infected mushrooms with disease symptoms and classified into three subtypes, Ptα, Ptβ, and Ptγ, based on their 16S rRNA gene sequences analysis and pathogenic characters. In this study, 42 virulent bacteriophages were isolated against these pathogens and tested for their host range. Some phages could lyse more than two pathogens only within the corresponding subtype, and no phage exhibited a wide host range across different pathogen subtypes. To eliminate all pathogens of the Ptα, Ptβ, and Ptγ subtype, corresponding phages of one, six, and one strains were required, respectively. These phages were able to suppress the disease completely, as confirmed by the field-scale on-farm cultivation experiments. These results suggested that a cocktail of these eight phages is sufficient to control the disease induced by all 23 P. tolaasii pathogens. Additionally, the antibacterial effect of this phage cocktail persisted in the second cycle of mushroom growth on the cultivation bed.
Collapse
Affiliation(s)
- Yeong-Bae Yun
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644,
Korea
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040,
Korea
| | - Yurry Um
- Forest Medicinal Resources Research Center, National Institute of Forest Science, Yeongju 36040,
Korea
| | - Young-Kee Kim
- Department of Environmental and Biological Chemistry, Chungbuk National University, Cheongju 28644,
Korea
| |
Collapse
|
13
|
Wang K, Chen D, Liu Q, Zhu P, Sun M, Peng D. Isolation and Characterization of Novel Lytic Bacteriophage vB_RsoP_BMB50 infecting Ralstonia solanacearum. Curr Microbiol 2022; 79:245. [PMID: 35834130 DOI: 10.1007/s00284-022-02940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/17/2022] [Indexed: 11/25/2022]
Abstract
Ralstonia solanacearum is a soil-borne phytopathogen, and it can cause bacterial wilt disease in a variety of key crops around the world, thus resulting in enormous financial losses. However, there is a lack of effective, green, and safe prevention and control measures against increasingly devastating bacterial wilt disease. Bacteriophages (phages) are considered as potential biocontrol agents against bacterial wilt disease. Although many phages infecting R. solanacearum have been isolated, so far, these Ralstonia phages are still insufficient to deal with the diversity of the bacteria of R. solanacearum. In this study, a novel lytic bacteriophage vB_RsoP_BMB50 infecting multiple R. solanacearum was isolated from tomato fields in Dalian, China. Transmission electron microscopy and genomics analysis indicated that vB_RsoP_BMB50 belonged to the subfamily Okabevirinae, Autographiviridae family, and order Caudovirales, and it comprised a double-stranded DNA with a full length of 43,665 bp and a mean G+C content of 61.79%, containing 53 open reading frames (ORFs). This novel phage exhibited a large burst size, high temperature stability (4-50 °C), and strong pH tolerance (pH 5-10). Comparative analyses and phylogenetic analyses revealed that vB_RsoP_BMB50 represented a novel Ralstonia phage genus since it exhibited a low sequence similarity to other phages in the GenBank database. Due to its broad lytic spectrum, high thermal stability, and strong pH tolerance, vB_RsoP_BMB50 is considered as an effective candidate biocontrol agent against bacterial wilt disease caused by R. solanacearum.
Collapse
Affiliation(s)
- Kai Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Dawei Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Quanrong Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Pengfei Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Ming Sun
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
14
|
Huang Y, Wang W, Zhang Z, Gu Y, Huang A, Wang J, Hao H. Phage Products for Fighting Antimicrobial Resistance. Microorganisms 2022; 10:microorganisms10071324. [PMID: 35889048 PMCID: PMC9324367 DOI: 10.3390/microorganisms10071324] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 12/19/2022] Open
Abstract
Antimicrobial resistance (AMR) has become a global public health issue and antibiotic agents have lagged behind the rise in bacterial resistance. We are searching for a new method to combat AMR and phages are viruses that can effectively fight bacterial infections, which have renewed interest as antibiotic alternatives with their specificity. Large phage products have been produced in recent years to fight AMR. Using the “one health” approach, this review summarizes the phage products used in plant, food, animal, and human health. In addition, the advantages and disadvantages and future perspectives for the development of phage therapy as an antibiotic alternative to combat AMR are also discussed in this review.
Collapse
Affiliation(s)
- Yuanling Huang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhui Wang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhihao Zhang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Yufeng Gu
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Anxiong Huang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhao Wang
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
| | - Haihong Hao
- National Reference Laboratory of Veterinary Drug Residues, Huazhong Agricultural University, Wuhan 430070, China; (Y.H.); (W.W.); (Z.Z.); (Y.G.); (A.H.); (J.W.)
- MOA Laboratory for Risk Assessment of Quality and Safety of Livestock and Poultry Products, Huazhong Agricultural University, Wuhan 430070, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen 518000, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
- Correspondence:
| |
Collapse
|
15
|
McCutcheon JG, Lin A, Dennis JJ. Characterization of Stenotrophomonas maltophilia phage AXL1 as a member of the genus Pamexvirus encoding resistance to trimethoprim-sulfamethoxazole. Sci Rep 2022; 12:10299. [PMID: 35717537 PMCID: PMC9206674 DOI: 10.1038/s41598-022-14025-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/31/2022] [Indexed: 11/08/2022] Open
Abstract
Stenotrophomonas maltophilia is a ubiquitous environmental bacterium capable of causing disease in humans. Antibiotics are largely ineffective against this pathogen due to numerous chromosomally encoded antibiotic resistance mechanisms. An alternative treatment option is phage therapy, the use of bacteriophages to selectively kill target bacteria that are causing infection. To this aim, we isolated the Siphoviridae bacteriophage AXL1 (vB_SmaS-AXL_1) from soil and herein describe its characterization. Host range analysis on a panel of 30 clinical S. maltophilia strains reveals a moderate tropism that includes cross-species infection of Xanthomonas, with AXL1 using the type IV pilus as its host surface receptor for infection. Complete genome sequencing and analysis revealed a 63,962 bp genome encoding 83 putative proteins. Comparative genomics place AXL1 in the genus Pamexvirus, along with seven other phages that infect one of Stenotrophomonas, Pseudomonas or Xanthomonas species. Functional genomic analyses identified an AXL1-encoded dihydrofolate reductase enzyme that provides additional resistance to the antibiotic combination trimethoprim-sulfamethoxazole, the current recommended treatment option for S. maltophilia infections. This research characterizes the sixth type IV pilus-binding phage of S. maltophilia and is an example of phage-encoded antibiotic resistance.
Collapse
Affiliation(s)
- Jaclyn G McCutcheon
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Andrea Lin
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Jonathan J Dennis
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
| |
Collapse
|
16
|
Guo H, Wu S, Song R, Liu T, He S, Song B, Hu D. Discovery of Mesoionic Derivatives Containing a Dithioacetal Skeleton as Novel Potential Antibacterial Agents and Mechanism Research. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:7015-7028. [PMID: 35658411 DOI: 10.1021/acs.jafc.2c01641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In this study, the design and synthesis of novel pyrido[1,2-a]pyrimidinone mesoionic derivatives incorporating dithioacetal structures were carried out. The three-dimensional quantitative structure-activity relationship (3D-QSAR) model was built according to the EC50 values and directed the synthesis of compound A32. The biological activity test against Xanthomonas oryzae pv. oryzae (Xoo) and Xanthomonas oryzae pv. oryzicola (Xoc) indicated that compound A32 showed good antibacterial activity with EC50 values of 10.9 and 17.5 mg/L, which were lower than the EC50 values of bismerthiazol (29.3 and 39.8 mg/L) and thiodiazole copper (64.8 and 78.1 mg/L). Furthermore, the in vivo antibacterial activity against bacterial leaf blight (BLB) and bacterial leaf streak (BLS) revealed that the protective activity of compound A32 was 43.9 and 41.7%, respectively, which was better than the protective activity of thiodiazole copper (40.6 and 35.0%). In addition, the protective activity against bacterial leaf blight of compound A32 was associated with the increasing rice defensive enzyme activity and the upregulation of proteins involved in oxidative phosphorylation. Moreover, compound A32 could upregulate the expression of complex I (nicotinamide adenine dinucleotide hydrogen (NADH) dehydrogenase) in the oxidative phosphorylation pathway, which was verified by complex I activity evaluation.
Collapse
Affiliation(s)
- Haomo Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Sikai Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Runjiang Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ting Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Siqi He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
17
|
Nazir A, Qi C, Shi N, Gao X, Feng Q, Qing H, Li F, Tong Y. Characterization and Genomic Analysis of a Novel Drexlervirial Bacteriophage IME268 with Lytic Activity Against Klebsiella pneumoniae. Infect Drug Resist 2022; 15:1533-1546. [PMID: 35414748 PMCID: PMC8994998 DOI: 10.2147/idr.s347110] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
Introduction Klebsiella pneumoniae, a multidrug resistant bacterium, that causes nosocomial infections including septicemia, pneumonia etc. Bacteriophages are potential antimicrobial agents for the treatment of antibiotic resistant bacteria. Methods and Results In this study, a novel bacteriophage IME268 was isolated from hospital sewage against clinical multi-drug resistant Klebsiella pneumoniae. Transmission electron microscopy and genomic characterization of this phage exhibited it belongs to the Webervirus genus, Drexlerviridae family. Phage IME268 possessed a double-stranded DNA genome composed of 49,552bp with a GC content of 50.5%. The phage genome encodes 77 open reading frames, out of 44 are hypothetical proteins while 33 had assigned putative functions. No tRNA, virulence related or antibiotic resistance genes were found in phage genome. Comparative genomic analysis showed that phage IME268 has 95% identity with 87% query cover with other phages in NCBI database. Multiplicity of infection, one step growth curve and host range of phage were also measured. Conclusion According to findings, Phage IME268 is a promising biological agent that infects Klebsiella pneumoniae and can be used in future phage therapies.
Collapse
Affiliation(s)
- Amina Nazir
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, Shandong Province, People’s Republic of China
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| | - Chunling Qi
- Clinical Laboratory Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Na Shi
- Clinical Laboratory Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Xue Gao
- Clinical Laboratory Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Qiang Feng
- Clinical Laboratory Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, People’s Republic of China
| | - Fei Li
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
- Clinical Laboratory Center, The Affiliated Taian City Central Hospital of Qingdao University, Taian, 271000, People’s Republic of China
- Correspondence: Fei Li; Yigang Tong, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China, Email ;
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People’s Republic of China
| |
Collapse
|
18
|
PAM-free loop-mediated isothermal amplification coupled with CRISPR/Cas12a cleavage (Cas-PfLAMP) for rapid detection of rice pathogens. Biosens Bioelectron 2022; 204:114076. [DOI: 10.1016/j.bios.2022.114076] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/24/2022] [Accepted: 02/03/2022] [Indexed: 12/26/2022]
|
19
|
Holtappels D, Fortuna KJ, Moons L, Broeckaert N, Bäcker LE, Venneman S, Rombouts S, Lippens L, Baeyen S, Pollet S, Noben JP, Oechslin F, Vallino M, Aertsen A, Maes M, Van Vaerenbergh J, Lavigne R, Wagemans J. The potential of bacteriophages to control Xanthomonas campestris pv. campestris at different stages of disease development. Microb Biotechnol 2022; 15:1762-1782. [PMID: 35084112 PMCID: PMC9151335 DOI: 10.1111/1751-7915.14004] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/23/2022] Open
Abstract
Xanthomonas campestris pv. campestris (Xcc) is a vascular pathogen that invades the xylem of Brassica crops. Current chemical and antibiotics‐based control measures for this bacterium are unsustainable and inefficient. After establishing a representative collection of Xcc strains, we isolated and characterized bacteriophages from two clades of phages to assess their potential in phage‐based biocontrol. The most promising phages, FoX2 and FoX6, specifically recognize (lipo) polysaccharides, associated with the wxc gene cluster, on the surface of the bacterial cell wall. Next, we determined and optimized the applicability of FoX2 and FoX6 in an array of complementary bioassays, ranging from seed decontamination to irrigation‐ and spray‐based applications. Here, an irrigation‐based application showed promising results. In a final proof‐of‐concept, a CaCl2‐formulated phage cocktail was shown to control the outbreak of Xcc in the open field. This comprehensive approach illustrates the potential of phage biocontrol of black rot disease in Brassica and serves as a reference for the broader implementation of phage biocontrol in integrated pest management strategies.
Collapse
Affiliation(s)
| | | | - Lauren Moons
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | | | - Léon E Bäcker
- Laboratory of Food Microbiology, KU Leuven, Leuven, Belgium
| | - Sofie Venneman
- Proefstation voor de groenteteelt, Sint-Katelijne-Waver, Belgium
| | - Sofie Rombouts
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium.,Flanders Research Institute for Agriculture, Fisheries and Food, Ghent, Belgium
| | - Louis Lippens
- Provinciaal Proefcentrum voor de Groenteteelt Oost-Vlaanderen, Kruishoutem, Belgium
| | - Steve Baeyen
- Flanders Research Institute for Agriculture, Fisheries and Food, Ghent, Belgium
| | | | - Jean-Paul Noben
- Biomedical Research Institute and Transnational University Limburg, Hasselt University, Hasselt, Belgium
| | - Frank Oechslin
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Counsil of Italy, Turin, Italy
| | - Abram Aertsen
- Laboratory of Food Microbiology, KU Leuven, Leuven, Belgium
| | | | | | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| | | |
Collapse
|
20
|
Nakayinga R, Makumi A, Tumuhaise V, Tinzaara W. Xanthomonas bacteriophages: a review of their biology and biocontrol applications in agriculture. BMC Microbiol 2021; 21:291. [PMID: 34696726 PMCID: PMC8543423 DOI: 10.1186/s12866-021-02351-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Phytopathogenic bacteria are economically important because they affect crop yields and threaten the livelihoods of farmers worldwide. The genus Xanthomonas is particularly significant because it is associated with some plant diseases that cause tremendous loss in yields of globally essential crops. Current management practices are ineffective, unsustainable and harmful to natural ecosystems. Bacteriophage (phage) biocontrol for plant disease management has been of particular interest from the early nineteenth century to date. Xanthomonas phage research for plant disease management continues to demonstrate promising results under laboratory and field conditions. AgriPhage has developed phage products for the control of Xanthomonas campestris pv. vesicatoria and Xanthomonas citri subsp. citri. These are causative agents for tomato, pepper spot and speck disease as well as citrus canker disease. Phage-mediated biocontrol is becoming a viable option because phages occur naturally and are safe for disease control and management. Thorough knowledge of biological characteristics of Xanthomonas phages is vital for developing effective biocontrol products. This review covers Xanthomonas phage research highlighting aspects of their ecology, biology and biocontrol applications.
Collapse
Affiliation(s)
- Ritah Nakayinga
- Department of Biological Sciences, Faculty of Science, Kyambogo University, P.O. Box 1, Kyambogo, Uganda.
| | - Angela Makumi
- Department of Animal and Human Health, General Biosciences, International Livestock Research Institute, P.O. Box 3070, Nairobi, 00100, Kenya
| | - Venansio Tumuhaise
- Department of Agriculture, Faculty of Vocational Studies, Kyambogo University, P.O. Box 1, Kyambogo, Uganda
| | - William Tinzaara
- Department of Agriculture, Faculty of Vocational Studies, Kyambogo University, P.O. Box 1, Kyambogo, Uganda
| |
Collapse
|
21
|
Mou H, Shi J, Chen J, Hu D. Synthesis, antibacterial activity and mechanism of new butenolides derivatives containing an amide moiety. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 178:104913. [PMID: 34446189 DOI: 10.1016/j.pestbp.2021.104913] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
A series of novel butenolide derivatives containing an amide were designed and synthesized with flupyradifurone as the lead compound. The biological activities test found that this series of compounds did not exhibit insecticidal activity, but had good antibacterial activities. Among all target compounds, compound 19 showed good antibacterial activity in vitro against Xanthomonas oryzae pv. oryzae (Xoo), with an EC50 value of 35.8 mg/L, which was superior to that of bismerthiazol (73.5 mg/L). Under greenhouse conditions, the curative and protective activities of compound 19 against bacterial leaf blight were 40.9% and 48.9% at 100 mg/L, respectively, which were superior to those of bismerthiazol (31.2% and 31.4%). In addition, compound 19 can not only cause changes in the cell surface morphology of Xoo, but also increase the activity of rice defense enzymes. The mechanism of action studies showed that the protective activity of compound 19 against rice bacterial leaf blight is closely related to the improvement of defense-related enzyme activities and the upregulation of proteins involved in oxidative phosphorylation.
Collapse
Affiliation(s)
- Honglan Mou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jing Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| | - Deyu Hu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
22
|
Jungkhun N, Farias ARG, Barphagha I, Patarapuwadol S, Ham JH. Isolation and Characterization of Bacteriophages Infecting Burkholderia glumae, the Major Causal Agent of Bacterial Panicle Blight in Rice. PLANT DISEASE 2021; 105:2551-2559. [PMID: 33417498 DOI: 10.1094/pdis-08-20-1711-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bacterial panicle blight (BPB), caused by Burkholderia glumae, is one of the most severe seed-borne bacterial diseases of rice in the world, which can decrease rice production by ≤75%. Nevertheless, there are few effective measures to manage this disease. In an attempt to develop an alternative management tool for BPB, we isolated and characterized phages from soil and water that are effective to lyse several strains of B. glumae. After tests of host ranges, the phages NBP1-1, NBP4-7, and NBP4-8 were selected for further comprehensive characterization, all of which could lyse B. glumae BGLa14-8 (phage sensitive) but not B. glumae 336gr-1 (phage insensitive). This result indicates that the phages killing B. glumae cells have specific host ranges at the strain level within the bacterial species. In the greenhouse condition of this study, foliar application of the phage NBP4-7 reduced the severity of BPB caused by B. glumae BGLa14-8 ≤62% but did not cause any significant effect on the infection by B. glumae 336gr-1. Electron microscopy and whole-genome sequencing were also performed to characterize the three selected phages. Transmission electron microscopy revealed that the selected phages belong to the family Myoviridae. Furthermore, whole-genome sequence analysis indicated that the three phages belong to a same species and are closely related to the Burkholderia phage KL3, a member of the Myoviridae family.
Collapse
Affiliation(s)
- Nootjarin Jungkhun
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
- Chiang Rai Rice Research Center, Rice Department, Phan, Chiang Rai 57120, Thailand
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Antonio R G Farias
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
- Department of Agronomy, Universidade Federal Rural de Pernambuco, Recife 52.171-900, Brazil
| | - Inderjit Barphagha
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| | - Sujin Patarapuwadol
- Department of Plant Pathology, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, U.S.A
| |
Collapse
|
23
|
Liu J, Chia SL, Tan GH. Isolation and Characterization of Novel Phages Targeting Xanthomonas oryzae: Culprit of Bacterial Leaf Blight Disease in Rice. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:142-151. [PMID: 36161243 PMCID: PMC9041505 DOI: 10.1089/phage.2021.0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Background: Bacterial leaf blight (BLB) disease caused 80% of disease incidence in paddy in Kedah and Selangor states of Malaysia. The pathogenic bacterium, Xanthomonas oryzae pv. oryzae (Xoo), is one of the destructive pathogens infecting lowland irrigated and rainfed paddy in Asia's tropical and temperate environments. Bacteriophages (or phages) have been proposed to control the pathogen due to their efficacy and safety aspects. Material and Methods: In this study, a total of 70 Xoo-phages were isolated from termite which living in rice-growing area. Results: 2 lytic phages NΦ-1 and NΦ-3 were selected due to the high titer of the virus. Electron microscopic analysis showed that those phages belonged to the family Podoviridae, order Caudovirales with short noncontracted tails. Moreover, these phages have a narrow host range specifically target Xoo with a higher burst size. Whole-genome sequencing showed that the Xoo-phage NΦ-1 and NΦ-3 consists of a linear double-stranded DNA molecule of length 41,151 and 38,454 bp, respectively. Conclusion: This study successfully characterized two novel Xanthomonas phages and their potential as antimicrobial agents against BLB disease in rice.
Collapse
Affiliation(s)
- Jian Liu
- Microbial Culture Collection Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Suet Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
| | - Geok Hun Tan
- Microbial Culture Collection Unit, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
24
|
Nazir A, Dong Z, Liu J, Tahir RA, Ashraf N, Qing H, Peng D, Tong Y. Isolation, Characterization, and Genome Sequence Analysis of a Novel Lytic Phage, Xoo-sp15 Infecting Xanthomonas oryzae pv. oryzae. Curr Microbiol 2021; 78:3192-3200. [PMID: 34213617 DOI: 10.1007/s00284-021-02556-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/26/2021] [Indexed: 01/21/2023]
Abstract
Xanthomonas oryzae pv. oryzae (X. oryzae) is a bacterial pathovar of rice diseases all over the world. Owing to emerging antibacterial resistance, phage therapies have gained significant attention to treat various bacterial infections. Nevertheless, comprehensive research is needed for their use as a safe biocontrol agent. In this study, isolation and characterization of a novel phage Xoo-sp15, that infects X. oryzae was ascertained through experimental and bioinformatics analyses to determine its virulent potency and reliability. High throughput sequencing demonstrated that Xoo-sp15 has a dsDNA genome with a total size of 157,091 bp and 39.9% GC content lower than its host (63.6%). Morphological and phylogenetic analyses characterized it as a new member of the Bastille-like group within the family Herelleviridae. In silico analysis revealed that it contains 229 open reading frames and 16 tRNAs. Additionally, this novel phage does not contain any resistant determinants and can infect nine X. oryzae strains. Therefore, Xoo-sp15 has the potential to serve as a novel candidate for phage therapy.
Collapse
Affiliation(s)
- Amina Nazir
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Zhaoxia Dong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Jin Liu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Rana Adnan Tahir
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China
- Department of Biosciences, COMSATS University, Sahiwal Campus, Islamabad, Pakistan
| | - Neelma Ashraf
- Industrial Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constitute College of Pakistan Institute of Engineering and Applied Sciences, Faisalabad, Pakistan
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Sciences, Beijing Institute of Technology, Beijing, China.
| | - Donghai Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China.
| |
Collapse
|
25
|
Bacteriophage-Mediated Control of Phytopathogenic Xanthomonads: A Promising Green Solution for the Future. Microorganisms 2021; 9:microorganisms9051056. [PMID: 34068401 PMCID: PMC8153558 DOI: 10.3390/microorganisms9051056] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/05/2021] [Accepted: 05/11/2021] [Indexed: 12/21/2022] Open
Abstract
Xanthomonads, members of the family Xanthomonadaceae, are economically important plant pathogenic bacteria responsible for infections of over 400 plant species. Bacteriophage-based biopesticides can provide an environmentally friendly, effective solution to control these bacteria. Bacteriophage-based biocontrol has important advantages over chemical pesticides, and treatment with these biopesticides is a minor intervention into the microflora. However, bacteriophages’ agricultural application has limitations rooted in these viruses’ biological properties as active substances. These disadvantageous features, together with the complicated registration process of bacteriophage-based biopesticides, means that there are few products available on the market. This review summarizes our knowledge of the Xanthomonas-host plant and bacteriophage-host bacterium interaction’s possible influence on bacteriophage-based biocontrol strategies and provides examples of greenhouse and field trials and products readily available in the EU and the USA. It also details the most important advantages and limitations of the agricultural application of bacteriophages. This paper also investigates the legal background and industrial property right issues of bacteriophage-based biopesticides. When appropriately applied, bacteriophages can provide a promising tool against xanthomonads, a possibility that is untapped. Information presented in this review aims to explore the potential of bacteriophage-based biopesticides in the control of xanthomonads in the future.
Collapse
|
26
|
Phage Biocontrol of Bacterial Leaf Blight Disease on Welsh Onion Caused by Xanthomonas axonopodis pv. allii. Antibiotics (Basel) 2021; 10:antibiotics10050517. [PMID: 34062921 PMCID: PMC8147253 DOI: 10.3390/antibiotics10050517] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/26/2021] [Accepted: 04/28/2021] [Indexed: 02/06/2023] Open
Abstract
Bacterial leaf blight, which is caused by Xanthomonas axonopodis pv. allii, annually causes significant yield losses to Welsh onion in many producing countries, including Vietnam. In this study, we isolated and characterized lytic phages Φ16, Φ17A and Φ31, specific to X. axonopodis pv. allii and belonging to a new phage species and genus within the Autographiviridae, from four provinces in the Mekong Delta of Vietnam. Moreover, we evaluated their efficacy for the biocontrol of leaf blight in greenhouse and field conditions. When applying the three highly related phages individually or as a three-phage cocktail at 108 PFU/mL in greenhouse conditions, our results show that treatment with Φ31 alone provides higher disease prevention than the two other phages or the phage cocktail. Furthermore, we compared phage concentrations from 105 to 108 and showed optimal disease control at 107 and 108 PFU/mL. Finally, under field conditions, both phage Φ31 alone and the phage cocktail treatments suppressed disease symptoms, which was comparable to the chemical bactericide oxolinic acid (Starner). Phage treatment also significantly improved yield, showing the potential of phage as a biocontrol strategy for managing leaf blight in Welsh onion.
Collapse
|
27
|
Genomic analysis of bacteriophage Xoo-sp13 infecting Xanthomonas oryzae pv. oryzae. Arch Virol 2021; 166:1263-1265. [PMID: 33585960 PMCID: PMC7970823 DOI: 10.1007/s00705-021-04985-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/21/2020] [Indexed: 12/20/2022]
Abstract
Xanthomonas oryzae pv. oryzae is a bacterial pathogen that gives rise to diseases in rice all over the world. A bacteriophage infecting this bacterium was isolated from rice fields in China. Here, we report the complete genome sequence of this phage, which has a linear dsDNA genome of 309,023 bp and a G + C content of 42.43%. It contains 401 open reading frames and encodes 28 tRNAs. It belongs to the family Myoviridae and has a broad host range, making it a possible candidate for phage therapy.
Collapse
|
28
|
Sequence Analysis of a Jumbo Bacteriophage, Xoo-sp14, That Infects Xanthomonas oryzae pv. oryzae. Microbiol Resour Announc 2020; 9:9/48/e01072-20. [PMID: 33239465 PMCID: PMC7686423 DOI: 10.1128/mra.01072-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A jumbo bacteriophage, Xoo-sp14, infecting Xanthomonas oryzae pv. oryzae was isolated from rice fields in China. Here, we report the complete genome sequence of this phage, revealing that it had a linear double-stranded DNA (dsDNA) molecule 232,104 bp long, with a G+C content of 58%. It has 251 annotated protein-coding sequences.
Collapse
|
29
|
Holtappels D, Fortuna K, Lavigne R, Wagemans J. The future of phage biocontrol in integrated plant protection for sustainable crop production. Curr Opin Biotechnol 2020; 68:60-71. [PMID: 33176252 DOI: 10.1016/j.copbio.2020.08.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
Bacterial phytopathogens significantly reduce crop yields and hence, pose a threat to the food supply of our increasing world population. In this context, bacteriophages are investigated as potential sustainable biocontrol agents. Here, recent advances in phage biocontrol are reviewed and considered within the framework of integrated plant protection strategies. This shows that understanding the pathogen's biology is crucial to develop a targeted strategy, tailored to individual pathosystems and driven by biotechnological insights. Moreover, the potential synergy of phages in contemporary farming practices based on the Internet of Things is proposed, potentially enabling a timely and cost-efficient treatment of plants at an early stage of the disease. Finally, these prospects are placed in the regulatory context of virus-oriented integrated pest control.
Collapse
Affiliation(s)
| | - Kiandro Fortuna
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Belgium
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Belgium.
| |
Collapse
|
30
|
Vu NT, Oh CS. Bacteriophage Usage for Bacterial Disease Management and Diagnosis in Plants. THE PLANT PATHOLOGY JOURNAL 2020; 36:204-217. [PMID: 32547337 PMCID: PMC7272851 DOI: 10.5423/ppj.rw.04.2020.0074] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/13/2020] [Indexed: 05/07/2023]
Abstract
In nature, plants are always under the threat of pests and diseases. Pathogenic bacteria are one of the major pathogen types to cause diseases in diverse plants, resulting in negative effects on plant growth and crop yield. Chemical bactericides and antibiotics have been used as major approaches for controlling bacterial plant diseases in the field or greenhouse. However, the appearance of resistant bacteria to common antibiotics and bactericides as well as their potential negative effects on environment and human health demands bacteriologists to develop alternative control agents. Bacteriophages, the viruses that can infect and kill only target bacteria very specifically, have been demonstrated as potential agents, which may have no negative effects on environment and human health. Many bacteriophages have been isolated against diverse plant-pathogenic bacteria, and many studies have shown to efficiently manage the disease development in both controlled and open conditions such as greenhouse and field. Moreover, the specificity of bacteriophages to certain bacterial species has been applied to develop detection tools for the diagnosis of plant-pathogenic bacteria. In this paper, we summarize the promising results from greenhouse or field experiments with bacteriophages to manage diseases caused by plant-pathogenic bacteria. In addition, we summarize the usage of bacteriophages for the specific detection of plant-pathogenic bacteria.
Collapse
Affiliation(s)
- Nguyen Trung Vu
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
| | - Chang-Sik Oh
- Department of Horticultural Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Korea
- Corresponding author. Phone) +82-31-201-2678, FAX) +82-31-204-8116, E-mail) , ORCID Chang-Sik Oh https://orcid.org/0000-0002-2123-862X
| |
Collapse
|
31
|
Kering KK, Kibii BJ, Wei H. Biocontrol of phytobacteria with bacteriophage cocktails. PEST MANAGEMENT SCIENCE 2019; 75:1775-1781. [PMID: 30624034 DOI: 10.1002/ps.5324] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/01/2019] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
Crop loss due to plant pathogens has provoked renewed interest in bacteriophages as a feasible biocontrol strategy of plant diseases. Phage cocktails in particular present a viable option for broadening the phage host range, limiting the emergence of bacterial resistance while maintaining the lytic activity of the phages. It is therefore important that the design used to formulate a phage cocktail should result in the most effective cocktail against the pathogen. It is also critical that certain factors are considered during the formulation and application of a phage cocktail: their stability, the production time and cost of complex cocktails, the potential impact on untargeted bacteria, the timing of phage application, and the persistence in the plant environment. Continuous monitoring is required to ensure that the efficacy of a cocktail is sustained due to the dynamic nature of phages. Although phage cocktails are considered as a plausible biocontrol strategy of phytobacteria, more research needs to be done to understand the complex interaction between phages and bacteria in the plant environment, and to overcome the technical obstacles. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kelvin K Kering
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Belindah J Kibii
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongping Wei
- Key Laboratory of Special Pathogens and Biosafety, Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
32
|
Peters DL, McCutcheon JG, Stothard P, Dennis JJ. Novel Stenotrophomonas maltophilia temperate phage DLP4 is capable of lysogenic conversion. BMC Genomics 2019; 20:300. [PMID: 30991961 PMCID: PMC6469090 DOI: 10.1186/s12864-019-5674-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 04/08/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Temperate bacteriophages are capable of lysogenic conversion of new bacterial hosts. This phenomenon is often ascribed to "moron" elements that are acquired horizontally and transcribed independently from the rest of the phage genes. Whereas some bacterial species exhibit relatively little prophage-dependent phenotypic changes, other bacterial species such as Stenotrophomonas maltophilia appear to commonly adopt prophage genetic contributions. RESULTS The novel S. maltophilia bacteriophage DLP4 was isolated from soil using the highly antibiotic-resistant S. maltophilia strain D1585. Genome sequence analysis and functionality testing showed that DLP4 is a temperate phage capable of lysogenizing D1585. Two moron genes of interest, folA (BIT20_024) and ybiA (BIT20_065), were identified and investigated for their putative activities using complementation testing and phenotypic and transcriptomic changes between wild-type D1585 and the D1585::DLP4 lysogen. The gp24 / folA gene encodes dihydrofolate reductase (DHFR: FolA), an enzyme responsible for resistance to the antibiotic trimethoprim. I-TASSER analysis of DLP4 FolA predicted structural similarity to Bacillus anthracis DHFR and minimum inhibitory concentration experiments demonstrated that lysogenic conversion of D1585 by DLP4 provided the host cell with an increase in trimethoprim resistance. The gp65 / ybiA gene encodes N-glycosidase YbiA, which in E. coli BW25113 is required for its swarming motility phenotype. Expressing DLP4 ybiA in strain ybiA770(del)::kan restored its swarming motility activity to wildtype levels. Reverse transcription-PCR confirmed the expression of both of these genes during DLP4 lysogeny. CONCLUSIONS S. maltophilia temperate phage DLP4 contributes to the antibiotic resistance exhibited by its lysogenized host strain. Genomic analyses can greatly assist in the identification of phage moron genes potentially involved in lysogenic conversion. Further research is required to fully understand the specific contributions temperate phage moron genes provide with respect to the antibiotic resistance and virulence of S. maltophilia host cells.
Collapse
Affiliation(s)
- Danielle L. Peters
- Department of Biological Sciences, 6-065 Centennial Centre for Interdisciplinery Science, University of Alberta, Edmonton, Alberta T6G 2E9 Canada
| | - Jaclyn G. McCutcheon
- Department of Biological Sciences, 6-065 Centennial Centre for Interdisciplinery Science, University of Alberta, Edmonton, Alberta T6G 2E9 Canada
| | - Paul Stothard
- Department of Biological Sciences, 6-065 Centennial Centre for Interdisciplinery Science, University of Alberta, Edmonton, Alberta T6G 2E9 Canada
| | - Jonathan J. Dennis
- Department of Biological Sciences, 6-065 Centennial Centre for Interdisciplinery Science, University of Alberta, Edmonton, Alberta T6G 2E9 Canada
| |
Collapse
|