1
|
Tamer C, Ulrich K, Di Paola N, Kurucay HN, Albayrak H, Weidmann M. Evolution of an Extended Pathogenicity Motif in VP2 of Infectious Pancreatic Necrosis Virus Isolates from Farmed Rainbow Trout in Turkey. Viruses 2024; 16:994. [PMID: 38932285 PMCID: PMC11209135 DOI: 10.3390/v16060994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/07/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Infectious pancreatic necrosis virus (IPNV) causes economic losses with a highly variable mortality rate worldwide, especially in rainbow trout. The virus has a double-stranded bi-partite RNA genome designated segment A and B. New complete genome sequences of nine rainbow trout isolates from Turkey were determined and subjected to phylogenetic analysis, identifying all as genotype 5 (serotype Sp). A time-dependent change in the extended pathogenicity motif of VP2 from P217T221A247 (PTA) to PTE P217T221E247 over a period of 10 years was identified. A wider analysis of 99 IPNV sequences from Turkey and Iran revealed the emergence of the motif PTE from 2007 to 2017, inducing significant morbidity in fry by 2013. In fact, displacement of the PTA motif, by the PTE motif in IPNV isolates appeared to be connected to a production peak of rainbow trout in 2013. An additional CAI analysis provided more evidence, indicating that rainbow trout culture in Turkey has an influence on the evolution of IPNV.
Collapse
Affiliation(s)
- Cuneyt Tamer
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, 55139 Samsun, Turkey; (C.T.); (H.N.K.)
| | - Kristina Ulrich
- Institute of Aquaculture, University of Stirling, Scotland FK9 4LA, UK;
| | - Nicholas Di Paola
- Center for Genome Sciences, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702-5011, USA;
| | - Hanne Nur Kurucay
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, 55139 Samsun, Turkey; (C.T.); (H.N.K.)
| | - Harun Albayrak
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayıs University, 55139 Samsun, Turkey; (C.T.); (H.N.K.)
| | - Manfred Weidmann
- Medizinische Hochschule Brandenburg Theodor Fontane, 01968 Senftenberg, Germany
| |
Collapse
|
2
|
Nielsen SS, Alvarez J, Calistri P, Canali E, Drewe JA, Garin‐Bastuji B, Rojas JLG, Gortázar C, Herskin MS, Michel V, Miranda MÁ, Padalino B, Pasquali P, Roberts HC, Spoolder H, Ståhl K, Velarde A, Viltrop A, Winckler C, Bron J, Olesen NJ, Sindre H, Stone D, Vendramin N, Antoniou S, Kohnle L, Papanikolaou A, Karagianni A, Bicout DJ. Assessment of listing and categorisation of animal diseases within the framework of the Animal Health Law (Regulation (EU) No 2016/429): infectious pancreatic necrosis (IPN). EFSA J 2023; 21:e08028. [PMID: 37313317 PMCID: PMC10258726 DOI: 10.2903/j.efsa.2023.8028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023] Open
Abstract
Infectious pancreatic necrosis (IPN) was assessed according to the criteria of the Animal Health Law (AHL), in particular, the criteria of Article 7 on disease profile and impacts, Article 5 on its eligibility to be listed, Annex IV for its categorisation according to disease prevention and control rules as in Article 9, and Article 8 for listing animal species related to IPN. The assessment was performed following a methodology previously published. The outcome reported is the median of the probability ranges provided by the experts, which indicates whether each criterion is fulfilled (lower bound ≥ 66%) or not (upper bound ≤ 33%), or whether there is uncertainty about fulfilment. Reasoning points are reported for criteria with an uncertain outcome. According to the assessment here performed, it is uncertain whether IPN can be considered eligible to be listed for Union intervention according to Article 5 of the AHL (50-90% probability). According to the criteria in Annex IV, for the purpose of categorisation related to the level of prevention and control as in Article 9 of the AHL, the AHAW Panel concluded that IPN does not meet the criteria in Section 1 (Category A; 0-1% probability of meeting the criteria) and it is uncertain whether it meets the criteria in Sections 2, 3, 4 and 5 (Categories B, C, D and E; 33-66%, 33-66%, 50-90% and 50-99% probability of meeting the criteria, respectively). The animal species to be listed for IPN according to Article 8 criteria are provided.
Collapse
|
3
|
Shao Y, Ren G, Zhao J, Lu T, Liu Q, Xu L. Dynamic Distribution of Infectious Pancreatic Necrosis Virus (IPNV) Strains of Genogroups 1, 5, and 7 after Intraperitoneal Administration in Rainbow Trout ( Oncorhynchus mykiss). Viruses 2022; 14:2634. [PMID: 36560638 PMCID: PMC9784894 DOI: 10.3390/v14122634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/15/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Infectious pancreatic necrosis virus (IPNV) is the causative agent of rainbow trout (Oncorhynchus mykiss) IPN and causes significant loss of fingerlings. The currently prevalent IPNV genogroups in China are genogroups 1 and 5. However, in this study, we isolated and identified a novel IPNV, IPNV-P202019, which belonged to genogroup 7. Here, a total of 200 specific-pathogen-free rainbow trout (10 g average weight) were divided randomly into four groups to investigate the distribution of different IPNV strains (genogroups 1, 5, and 7) in 9 tissues of rainbow trout by means of intraperitoneal (ip) injection. Fish in each group were monitored after 3-, 7-, 14-, 21- and 28- days post-infection (dpi). The study showed no mortality in all groups. The distribution of IPNV genogroups 1 and 5 was similar in different tissues and had a higher number of viral loads after 3, 7, or 14 dpi. However, the distribution of IPNV genogroup 7 was detected particularly in the spleen, head kidney, and feces and had a lower number of viral loads. The results of this study provide valid data for the distribution of IPNV in rainbow trout tissues and showed that IPNV genogroups 1 and 5 were still the prevalent genogroups of IPNV in China. Although rainbow trout carried IPNV genogroup 7, the viral load was too low to be pathogenic.
Collapse
Affiliation(s)
| | | | | | | | | | - Liming Xu
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin 150070, China
| |
Collapse
|
4
|
Zhang QY, Ke F, Gui L, Zhao Z. Recent insights into aquatic viruses: Emerging and reemerging pathogens, molecular features, biological effects, and novel investigative approaches. WATER BIOLOGY AND SECURITY 2022; 1:100062. [DOI: 10.1016/j.watbs.2022.100062] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Duan K, Tang X, Zhao J, Ren G, Shao Y, Lu T, He B, Xu L. An inactivated vaccine against infectious pancreatic necrosis virus in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2022; 127:48-55. [PMID: 35697270 DOI: 10.1016/j.fsi.2022.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/05/2022] [Accepted: 06/08/2022] [Indexed: 06/15/2023]
Abstract
Infectious pancreatic necrosis virus (IPNV), belonging to the genus Aquabirnavirus within the family Birnaviridae, causes huge economic loss to the global salmonid industry every year. Recently, outbreaks of disease caused by genogroup I IPNV were found in many rainbow trout (Oncorhynchus mykiss) farms worldwide. An inactivated vaccine was prepared using a genogroup I IPNV isolate with an optimized procedure as incubation with β-propanolactone (BPL) at the final concentration of 0.5% at room temperature for 48 h. The inactivated vaccine was used to immunize rainbow trout, and the protection efficiency was evaluated by viral loads determination, immune-related genes quantification, and neutralizing antibody tests. The viral loads in immunized rainbow trout were significantly decreased and the strongest antiviral effect was observed on 30 days post-immunization (d.p.i). The expression of innate immune-related genes IFN-1, and Mx-1 genes were significantly up-regulated on 3, 7, and 15 d.p.i (p < 0.05), and adaptive immune-related genes CD4, CD8, and IgM genes were significantly up-regulated on 15 and 30 d.p.i (p < 0.05). Neutralizing antibodies were firstly detected on 30 d.p.i and the highest titer was observed on 45 d.p.i, which began to decrease on 60 d.p.i, but was still significantly higher than that in negative control fish. The results indicated that the vaccine prepared in this study could stimulate the non-specific and specific immune response and provide significant immune protection to the vaccinated rainbow trout.
Collapse
Affiliation(s)
- Kaiyue Duan
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China
| | - Xin Tang
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China
| | - Jingzhuang Zhao
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China
| | - Guangming Ren
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China
| | - Yizhi Shao
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China
| | - Tongyan Lu
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China
| | - Baoquan He
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China
| | - Liming Xu
- Department of Aquatic Animal Diseases and Control, Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Harbin, 150070, China.
| |
Collapse
|
6
|
Strem RI, Ehrlich R, Shashar N, Sharon G. First description of Vibrio harveyi as the causative agent of morbidity and mortality in farmed flathead grey mullet Mugil cephalus. DISEASES OF AQUATIC ORGANISMS 2022; 154:33-48. [PMID: 37318383 DOI: 10.3354/dao03724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Flathead grey mullet Mugil cephalus is an important species in the aquaculture industry in the Mediterranean basin and throughout the world. During the last 10 yr, M. cephalus breeding stocks, larvae, and juveniles cultured in Eilat (Israel) have shown neurological signs such as uncoordinated circular swimming, while also presenting oral hemorrhages. Death follows days after the onset of the clinical signs, and mortality rates may reach 80% in some cases, causing high economical losses. Bacteriology isolations from different organs, including the brain, and a Koch's postulate experiment, confirmed Vibrio harveyi as the causative agent. Histological analyses showed the presence of the bacterium in different organs. However, in the brain, the bacterium was observed only within blood vessels and meninges. In some samples, mild to severe brain tissue damage was seen. In order to understand the virulence and lethality of V. harveyi, a median lethal dose was calculated, and the result was 106 colony-forming units fish-1. To the best of our knowledge, this is the first report that describes V. harveyi isolated from the brain of M. cephalus and validates it as an etiological agent causing neurological signs in this fish species.
Collapse
Affiliation(s)
- Rosa Ines Strem
- Department of Life Sciences, Eilat Campus, Ben Gurion University of the Negev, 8855630 Israel
| | | | | | | |
Collapse
|
7
|
Macqueen DJ, Eve O, Gundappa MK, Daniels RR, Gallagher MD, Alexandersen S, Karlsen M. Genomic Epidemiology of Salmonid Alphavirus in Norwegian Aquaculture Reveals Recent Subtype-2 Transmission Dynamics and Novel Subtype-3 Lineages. Viruses 2021; 13:2549. [PMID: 34960818 PMCID: PMC8705410 DOI: 10.3390/v13122549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022] Open
Abstract
Viral disease poses a major barrier to sustainable aquaculture, with outbreaks causing large economic losses and growing concerns for fish welfare. Genomic epidemiology can support disease control by providing rapid inferences on viral evolution and disease transmission. In this study, genomic epidemiology was used to investigate salmonid alphavirus (SAV), the causative agent of pancreas disease (PD) in Atlantic salmon. Our aim was to reconstruct SAV subtype-2 (SAV2) diversity and transmission dynamics in recent Norwegian aquaculture, including the origin of SAV2 in regions where this subtype is not tolerated under current legislation. Using nanopore sequencing, we captured ~90% of the SAV2 genome for n = 68 field isolates from 10 aquaculture production regions sampled between 2018 and 2020. Using time-calibrated phylogenetics, we infer that, following its introduction to Norway around 2010, SAV2 split into two clades (SAV2a and 2b) around 2013. While co-present at the same sites near the boundary of Møre og Romsdal and Trøndelag, SAV2a and 2b were generally detected in non-overlapping locations at more Southern and Northern latitudes, respectively. We provide evidence for recent SAV2 transmission over large distances, revealing a strong connection between Møre og Romsdal and SAV2 detected in 2019/20 in Rogaland. We also demonstrate separate introductions of SAV2a and 2b outside the SAV2 zone in Sognefjorden (Vestland), connected to samples from Møre og Romsdal and Trøndelag, respectively, and a likely 100 km Northward transmission of SAV2b within Trøndelag. Finally, we recovered genomes of SAV2a and SAV3 co-infecting single fish in Rogaland, involving novel SAV3 lineages that diverged from previously characterized strains >25 years ago. Overall, this study demonstrates useful applications of genomic epidemiology for tracking viral disease spread in aquaculture.
Collapse
Affiliation(s)
- Daniel J. Macqueen
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK; (O.E.); (M.K.G.); (R.R.D.)
| | - Oliver Eve
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK; (O.E.); (M.K.G.); (R.R.D.)
| | - Manu Kumar Gundappa
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK; (O.E.); (M.K.G.); (R.R.D.)
| | - Rose Ruiz Daniels
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Edinburgh EH25 9RG, UK; (O.E.); (M.K.G.); (R.R.D.)
| | | | | | | |
Collapse
|
8
|
Tamer C, Cavunt A, Durmaz Y, Ozan E, Kadi H, Kalayci G, Ozkan B, Isidan H, Albayrak H. Inactivated infectious pancreatic necrosis virus (IPNV) vaccine and E.coli-expressed recombinant IPNV-VP2 subunit vaccine afford protection against IPNV challenge in rainbow trout. FISH & SHELLFISH IMMUNOLOGY 2021; 115:205-211. [PMID: 34153431 DOI: 10.1016/j.fsi.2021.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 06/13/2023]
Abstract
Infectious pancreatic necrosis (IPN) is a highly contagious disease causing high mortality in juvenile trouts. Since there is no effective way to treatment against IPNV, early diagnosis and prevention play an important role in combating the disease. The different types of IPNV vaccines (inactive, live, recombinant, DNA, etc) have been produced from local isolates and have been used in developed countries. In Turkey, there is no commercial licensed vaccines against IPNV. Due to this reason, IPNV vaccine is needed in Turkey. The production of recombinant VP2 subunit vaccine (IPNV-VP2) and inactivated whole particle virus vaccine (IPNV-WPV) were attempted from selected isolate belong to sp serotype. For this purpose; the virus was produced in RTG-2 cell line and RT-PCR amplification was performed by using primers with restriction enzymes. The whole VP2 gene was cloned into a plasmid vector and VP2 was expressed by using E. coli expression system. A trial was conducted to determine the immunity ability of IPNV-VP2 and IPNV-WPV in rainbow trout. According to the SN50 assay, the IPNV-WPV stimulates immune response faster than the IPNV-VP2 vaccine. Besides, the relative percent of Survive (RPS) was detected as 79% in fish vaccinated with IPNV-WPV and 70% in fish vaccinated with IPNV-VP2. Thus, we can say that the recombinant vaccine of IPNV-VP2 is almost protected against IPNV infection as well as the inactive vaccine.
Collapse
Affiliation(s)
- Cuneyt Tamer
- Ondokuz Mayıs University, Faculty of Veterinary Medicine, Department of Virology, Samsun/Turkey.
| | - Abdullah Cavunt
- Samsun Food Control Laboratory Directorate, Republic of Turkey Ministry of Agriculture and Forestry, Samsun/Turkey
| | - Yuksel Durmaz
- Samsun Veterinary Control Institute, Republic of Turkey Ministry of Agriculture and Forestry, Samsun/Turkey
| | - Emre Ozan
- Ondokuz Mayıs University, Faculty of Veterinary Medicine, Department of Veterinary Experimental Animals, Samsun/Turkey
| | - Hamza Kadi
- Samsun Veterinary Control Institute, Republic of Turkey Ministry of Agriculture and Forestry, Samsun/Turkey
| | - Gulnur Kalayci
- Izmir Bornova Veterinary Control Institute, Republic of Turkey Ministry of Agriculture and Forestry, Izmir/Turkey
| | - Buket Ozkan
- Izmir Bornova Veterinary Control Institute, Republic of Turkey Ministry of Agriculture and Forestry, Izmir/Turkey
| | - Hakan Isidan
- Sivas Cumhuriyet University, Faculty of Veterinary Medicine, Department of Virology, Sivas/Turkey
| | - Harun Albayrak
- Ondokuz Mayıs University, Faculty of Veterinary Medicine, Department of Virology, Samsun/Turkey
| |
Collapse
|
9
|
Benkaroun J, Muir KF, Allshire R, Tamer C, Weidmann M. Isolation of a New Infectious Pancreatic Necrosis Virus (IPNV) Variant from a Fish Farm in Scotland. Viruses 2021; 13:v13030385. [PMID: 33670941 PMCID: PMC7997178 DOI: 10.3390/v13030385] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 12/16/2022] Open
Abstract
The aquatic virus, infectious pancreatic necrosis virus (IPNV), is known to infect various farmed fish, in particular salmonids, and is responsible for large economic losses in the aquaculture industry. Common practices to detect the virus include qPCR tests based on specific primers and serum neutralization tests for virus serotyping. Following the potential presence of IPNV viruses in a fish farm in Scotland containing vaccinated and IPNV-resistant fish, the common serotyping of the IPNV isolates was not made possible. This led us to determine the complete genome of the new IPNV isolates in order to investigate the cause of the serotyping discrepancy. Next-generation sequencing using the Illumina technology along with the sequence-independent single primer amplification (SISPA) approach was conducted to fully characterize the new Scottish isolates. With this approach, the full genome of two isolates, V1810-4 and V1810-6, was determined and analyzed. The potential origin of the virus isolates was investigated by phylogenetic analyses along with tridimensional and secondary protein structure analyses. These revealed the emergence of a new variant from one of the main virus serotypes, probably caused by the presence of selective pressure exerted by the vaccinated IPNV-resistant farmed fish.
Collapse
Affiliation(s)
- Jessica Benkaroun
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (J.B.); (K.F.M.); (R.A.)
| | - Katherine Fiona Muir
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (J.B.); (K.F.M.); (R.A.)
| | - Rosa Allshire
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (J.B.); (K.F.M.); (R.A.)
| | - Cüneyt Tamer
- Department of Virology, Faculty of Veterinary Medicine, Ondokuz Mayis University, 55139 Samsun, Turkey;
| | - Manfred Weidmann
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, UK; (J.B.); (K.F.M.); (R.A.)
- Medizinische Hochschule Brandenburg Theodor Fontane, 01968 Senftenberg, Germany
- Correspondence: ; Tel.: +49-17649588432
| |
Collapse
|
10
|
Huang W, Guo Y, Li N, Feng Y, Xiao L. Codon usage analysis of zoonotic coronaviruses reveals lower adaptation to humans by SARS-CoV-2. INFECTION GENETICS AND EVOLUTION 2021; 89:104736. [PMID: 33516969 PMCID: PMC7843097 DOI: 10.1016/j.meegid.2021.104736] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/28/2020] [Accepted: 01/22/2021] [Indexed: 12/25/2022]
Abstract
Since 2002, the world has witnessed major outbreaks of acute respiratory illness by three zoonotic coronaviruses (CoVs), which differ from each other in pathogenicity. Reasons for the lower pathogenicity of SARS-CoV-2 than the other two zoonotic coronaviruses, SARS-CoV and MERS-CoV, are not well understood. We herein compared the codon usage patterns of the three zoonotic CoVs causing severe acute respiratory syndromes and four human-specific CoVs (NL63, 229E, OC43, and HKU1) causing mild diseases. We found that the seven viruses have different codon usages, with SARS-CoV-2 having the lowest effective number of codons (ENC) among the zoonotic CoVs. Human codon adaptation index (CAI) analysis revealed that the CAI value of SARS-CoV-2 is the lowest among the zoonotic CoVs. The ENC and CAI values of SARS-CoV-2 were more similar to those of the less-pathogenic human-specific CoVs. To further investigate adaptive evolution within SARS-CoV-2, we examined codon usage patterns in 3573 genomes of SARS-CoV-2 collected over the initial 4 months of the pandemic. We showed that the ENC values and the CAI values of SARS-CoV-2 were decreasing over the period. The low ENC and CAI values could be responsible for the lower pathogenicity of SARS-CoV-2. While mutational pressure appears to shape codon adaptation in the overall genomes of SARS-CoV-2 and other zoonotic CoVs, the E gene of SARS-CoV-2, which has the highest codon usage bias, appears to be under strong natural selection. Data from the study contribute to our understanding of the pathogenicity and evolution of SARS-CoV-2 in humans.
Collapse
Affiliation(s)
- Wanyi Huang
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Yaqiong Guo
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Na Li
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Yaoyu Feng
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Lihua Xiao
- Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
11
|
Ahmadivand S, Weidmann M, El-Matbouli M, Rahmati-Holasoo H. Low Pathogenic Strain of Infectious Pancreatic Necrosis Virus (IPNV) Associated with Recent Outbreaks in Iranian Trout Farms. Pathogens 2020; 9:pathogens9100782. [PMID: 32987803 PMCID: PMC7650613 DOI: 10.3390/pathogens9100782] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022] Open
Abstract
Infectious pancreatic necrosis (IPN), first described as acute viral catarrhal enteritis, is a highly contagious disease with variable pathogenicity that has been linked to genetic variation in the viral VP2 gene encoding the capsid protein. In this study, the IPN virus (IPNV) is isolated from the moribund fish from five of fourteen Iranian trout farms from 2015 to 2017. The affected fish showed mortality rates ranging from 20% to 60%, with the main clinical signs of exophthalmia, darkened skin, and mild abdominal distension, as well as yellow mucoid fluid in the intestine. Histopathological examination of intestinal sections confirmed acute catarrhal enteritis in all samples. RT-PCR assay of the kidney tissue and cell culture (CHSE-214) samples consistently confirmed the presence of the virus. The phylogenetic analysis of the partial VP2 sequence revealed that the detected isolates belong to genogroup 5, and are closely related to the Sp serotype strains of European origin. Characterization of VP2 of all isolates revealed the P217T221 motif that previously was associated with avirulence or low virulence, while all IPNV-positive fish in this study were clinically affected with moderate mortality. The IPNV isolates from Iran are associated with two lineages that appear to have originated from Europe, possibly via imported eggs.
Collapse
Affiliation(s)
- Sohrab Ahmadivand
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran P.O. Box 14155-6453, Iran;
- Correspondence: ; Tel.: +98-91-9991-2385
| | - Manfred Weidmann
- Institute of Aquaculture, University of Stirling, Stirling FK9 4LA, Scotland, UK;
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Hooman Rahmati-Holasoo
- Department of Aquatic Animal Health, Faculty of Veterinary Medicine, University of Tehran, Tehran P.O. Box 14155-6453, Iran;
| |
Collapse
|
12
|
Discrete Virus Factories Form in the Cytoplasm of Cells Coinfected with Two Replication-Competent Tagged Reporter Birnaviruses That Subsequently Coalesce over Time. J Virol 2020; 94:JVI.02107-19. [PMID: 32321810 PMCID: PMC7307154 DOI: 10.1128/jvi.02107-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/10/2020] [Indexed: 02/07/2023] Open
Abstract
The Birnaviridae family, responsible for major economic losses to poultry and aquaculture, is composed of nonenveloped viruses with a segmented double-stranded RNA (dsRNA) genome that replicate in discrete cytoplasmic virus factories (VFs). Reassortment is common; however, the underlying mechanism remains unknown given that VFs may act as a barrier to genome mixing. In order to provide new information on VF trafficking during dsRNA virus coinfection, we rescued two recombinant infectious bursal disease viruses (IBDVs) of strain PBG98 containing either a split GFP11 or a tetracysteine (TC) tag fused to the VP1 polymerase (PBG98-VP1-GFP11 and PBG98-VP1-TC). DF-1 cells transfected with GFP1-10 prior to PBG98-VP1-GFP11 infection or stained with a biarsenical derivative of the red fluorophore resorufin (ReAsH) following PBG98-VP1-TC infection, had green or red foci in the cytoplasm, respectively, that colocalized with VP3 and dsRNA, consistent with VFs. The average number of VFs decreased from a mean of 60 to 5 per cell between 10 and 24 h postinfection (hpi) (P < 0.0001), while the average area increased from 1.24 to 45.01 μm2 (P < 0.0001), and live cell imaging revealed that the VFs were highly dynamic structures that coalesced in the cytoplasm. Small VFs moved faster than large (average 0.57 μm/s at 16 hpi compared to 0.22 μm/s at 22 hpi), and VF coalescence was dependent on an intact microtubule network and actin cytoskeleton. During coinfection with PBG98-VP1-GFP11 and PBG98-VP1-TC viruses, discrete VFs initially formed from each input virus that subsequently coalesced 10 to 16 hpi, and we speculate that Birnaviridae reassortment requires VF coalescence.IMPORTANCE Reassortment is common in viruses with segmented double-stranded RNA (dsRNA) genomes. However, these viruses typically replicate within discrete cytoplasmic virus factories (VFs) that may represent a barrier to genome mixing. We generated the first replication competent tagged reporter birnaviruses, infectious bursal disease viruses (IBDVs) containing a split GFP11 or tetracysteine (TC) tag and used the viruses to track the location and movement of IBDV VFs, in order to better understand the intracellular dynamics of VFs during a coinfection. Discrete VFs initially formed from each virus that subsequently coalesced from 10 h postinfection. We hypothesize that VF coalescence is required for the reassortment of the Birnaviridae This study provides new information that adds to our understanding of dsRNA virus VF trafficking.
Collapse
|
13
|
The Infectious Pancreatic Necrosis Virus (IPNV) and its Virulence Determinants: What is Known and What Should be Known. Pathogens 2020; 9:pathogens9020094. [PMID: 32033004 PMCID: PMC7168660 DOI: 10.3390/pathogens9020094] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/25/2020] [Accepted: 01/31/2020] [Indexed: 12/30/2022] Open
Abstract
Infectious pancreatic necrosis (IPN) is a disease of great concern in aquaculture, mainly among salmonid farmers, since losses in salmonid fish—mostly very young rainbow trout (Salmo gairdnery) fry and Atlantic salmon (Salmo salar) post-smolt—frequently reach 80–90% of stocks. The virus causing the typical signs of the IPN disease in salmonids, named infectious pancreatic necrosis virus (IPNV), has also been isolated from other fish species either suffering related diseases (then named IPNV-like virus) or asymptomatic; the general term aquabirnavirus is used to encompass all these viruses. Aquabirnaviruses are non-enveloped, icosahedral bisegmented dsRNA viruses, whose genome codifies five viral proteins, three of which are structural, and one of them is an RNA-dependent RNA polymerase. Due to the great importance of the disease, there have been great efforts to find a way to predict the level of virulence of IPNV isolates. The viral genome and proteins have been the main focus of research. However, to date such a reliable magic marker has not been discovered. This review describes the processes followed for decades in the attempts to discover the viral determinants of virulence, and to help the reader understand how viral components can be involved in virulence modulation in vitro and in vivo. There is also a brief description of the disease, of host defenses, and of the molecular structure and function of the virus and its viral components.
Collapse
|