1
|
Fox CR, Yousef NN, Varudkar N, Shiffer EM, Aquino JR, Kedarinath K, Parks GD. Resistance to complement-mediated lysis of parainfluenza virus 5-infected cells is acquired after transition from acute to persistent infection. J Virol 2025; 99:e0189524. [PMID: 39791880 PMCID: PMC11852780 DOI: 10.1128/jvi.01895-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 12/13/2024] [Indexed: 01/12/2025] Open
Abstract
Persistent viral infections can be an important medical problem, with persistently infected (PI) cells extending viral shedding, maintaining inflammation, and providing potential sources for new viral variants. Given that PI cells can acquire resistance to some innate immune pathways, we tested the hypothesis that complement (C')-mediated lysis of parainfluenza virus 5 (PIV5)-infected cells would differ between acute-infected and PI cells. Biochemical and real-time cell viability assays showed effective C'-mediated lysis of A549 lung cells acutely infected with PIV5, through pathways that depended on C3 and C5, but largely independent of C6. A PIV5 PI cell line established by long-term culturing of acutely infected A549 cells showed a high-level persistent expression of PIV5 proteins and infectious virus. Under conditions that led to effective lysis of acute PIV5-infected cells, the PI cells were nearly completely resistant to C'-mediated killing. This lack of C' killing was not due to failure to activate C', since C'-treated PIV5 PI cells had extensive C3 and membrane attack complex deposition, as well as production of C3a and C5a. Transcriptomics analysis revealed the C' cascade as the most significantly upregulated pathway in PIV5 PI cells versus acute infection. Biochemical analyses showed that resistance to C' killing correlated with increased expression in PI cells of two major C' inhibitors: complement factor H and Vitronectin. The finding of acquisition of C' resistance after the transition from acute PIV5 infection to PI cells raises the potential to inform therapeutics for PIs based on modulating C' pathways. IMPORTANCE A persistent infection (PI) with RNA viruses can extend virus shedding, prolong inflammation, and be a source of new viral variants. Since profound changes to innate immune pathways can occur in PI cells, it was important to test PI cells for changes in sensitivity to the complement (C') system, powerful innate immune pathways capable of lysing infected cells. Using parainfluenza virus 5 (PIV5) as a model system, we show that PI cells are nearly completely resistant to C'-mediated lysis, in stark contrast to high sensitivity of acute PIV5-infected cells to C' killing. A key finding was the upregulated expression in PI cells of two C' inhibitors: Vitronectin and complement factor H. These are important results with strong potential to inform therapeutics, given that polymorphisms in C' genes can correlate with severity of viral infections, and clinical trials are underway with new drugs that modulate C' responses.
Collapse
Affiliation(s)
- Candace R. Fox
- University of Central Florida, College of Medicine, Orlando, Florida, USA
| | - Nasser N. Yousef
- University of Central Florida, College of Medicine, Orlando, Florida, USA
| | - Namita Varudkar
- University of Central Florida, College of Medicine, Orlando, Florida, USA
| | | | - Jenna R. Aquino
- University of Central Florida, College of Medicine, Orlando, Florida, USA
| | - Kritika Kedarinath
- University of Central Florida, College of Medicine, Orlando, Florida, USA
| | - Griffith D. Parks
- University of Central Florida, College of Medicine, Orlando, Florida, USA
| |
Collapse
|
2
|
Branda F, Pavia G, Ciccozzi A, Quirino A, Marascio N, Matera G, Romano C, Locci C, Azzena I, Pascale N, Sanna D, Casu M, Ceccarelli G, Ciccozzi M, Scarpa F. Zoonotic Paramyxoviruses: Evolution, Ecology, and Public Health Strategies in a Changing World. Viruses 2024; 16:1688. [PMID: 39599803 PMCID: PMC11599060 DOI: 10.3390/v16111688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
The family Paramyxoviridae includes a number of negative RNA viruses known for their wide host range and significant zoonotic potential. In recent years, there has been a surge in the identification of emerging zoonotic paramyxoviruses, particularly those hosted by bat species, which serve as key reservoirs. Among these, the genera Henipavirus and Pararubulavirus are of particular concern. Henipaviruses, including the highly pathogenic Hendra and Nipah viruses, have caused severe outbreaks with high mortality rates in both humans and animals. In contrast, zoonotic pararubulaviruses such as the Menangle virus typically induce mild symptoms or remain asymptomatic in human hosts. This review summarizes current knowledge on the evolution, ecology, and epidemiology of emerging zoonotic paramyxoviruses, focusing on recently discovered viruses and their potential to cause future epidemics. We explore the molecular mechanisms underlying host-switching events, viral replication strategies, and immune evasion tactics that facilitate interspecies transmission. In addition, we discuss ecological factors influencing virus emergence, including changes in bat populations and habitats and the role of wildlife-human interfaces. We also examine the public health impact of these emerging viruses, underlining the importance of enhanced surveillance, developing improved diagnostic tools, and implementing proactive strategies to prevent potential outbreaks. By providing a comprehensive overview of recent advances and gaps in knowledge, this review aims to inform future research directions and public health policies related to zoonotic paramyxoviruses.
Collapse
Affiliation(s)
- Francesco Branda
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy (M.C.)
| | - Grazia Pavia
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro—“Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (G.P.); (A.Q.); (N.M.); (G.M.)
| | - Alessandra Ciccozzi
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.)
| | - Angela Quirino
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro—“Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (G.P.); (A.Q.); (N.M.); (G.M.)
| | - Nadia Marascio
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro—“Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (G.P.); (A.Q.); (N.M.); (G.M.)
| | - Giovanni Matera
- Unit of Clinical Microbiology, Department of Health Sciences, “Magna Græcia” University of Catanzaro—“Renato Dulbecco” Teaching Hospital, 88100 Catanzaro, Italy; (G.P.); (A.Q.); (N.M.); (G.M.)
| | - Chiara Romano
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy (M.C.)
| | - Chiara Locci
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.)
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Ilenia Azzena
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Noemi Pascale
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
- Department of Chemical Physical Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
| | - Daria Sanna
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.)
| | - Marco Casu
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (I.A.); (N.P.); (M.C.)
| | - Giancarlo Ceccarelli
- Department of Public Health and Infectious Diseases, University Hospital Policlinico Umberto I, Sapienza University of Rome, 00161 Rome, Italy;
| | - Massimo Ciccozzi
- Unit of Medical Statistics and Molecular Epidemiology, Università Campus Bio-Medico di Roma, 00128 Rome, Italy (M.C.)
| | - Fabio Scarpa
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy; (A.C.); (C.L.); (D.S.)
| |
Collapse
|
3
|
Haas GD, Lee B. Paramyxoviruses from bats: changes in receptor specificity and their role in host adaptation. Curr Opin Virol 2023; 58:101292. [PMID: 36508860 PMCID: PMC9974588 DOI: 10.1016/j.coviro.2022.101292] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/20/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022]
Abstract
Global metagenomic surveys have revealed that bats host a diverse array of paramyxoviruses, including species from at least five major genera. An essential determinant of successful spillover is the entry of a virus into a new host. We evaluate the role of receptor usage in the zoonotic potential of bat-borne henipaviruses, morbilliviruses, pararubulaviruses, orthorubulaviruses, and jeilongviruses; successful spillover into humans depends upon compatibility of a respective viral attachment protein with its cognate receptor. We also emphasize the importance of postentry restrictions in preventing spillover. Metagenomics and characterization of newly identified paramyxoviruses have greatly improved our understanding of spillover determinants, allowing for better forecasts of which bat-borne viruses may pose the greatest risk for cross-species transmission into humans.
Collapse
Affiliation(s)
- Griffin D Haas
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA.
| |
Collapse
|
4
|
Douglas J, Drummond AJ, Kingston RL. Evolutionary history of cotranscriptional editing in the paramyxoviral phosphoprotein gene. Virus Evol 2021; 7:veab028. [PMID: 34141448 PMCID: PMC8204654 DOI: 10.1093/ve/veab028] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The phosphoprotein gene of the paramyxoviruses encodes multiple protein products. The P, V, and W proteins are generated by transcriptional slippage. This process results in the insertion of non-templated guanosine nucleosides into the mRNA at a conserved edit site. The P protein is an essential component of the viral RNA polymerase and is encoded by a faithful copy of the gene in the majority of paramyxoviruses. However, in some cases, the non-essential V protein is encoded by default and guanosines must be inserted into the mRNA in order to encode P. The number of guanosines inserted into the P gene can be described by a probability distribution, which varies between viruses. In this article, we review the nature of these distributions, which can be inferred from mRNA sequencing data, and reconstruct the evolutionary history of cotranscriptional editing in the paramyxovirus family. Our model suggests that, throughout known history of the family, the system has switched from a P default to a V default mode four times; complete loss of the editing system has occurred twice, the canonical zinc finger domain of the V protein has been deleted or heavily mutated a further two times, and the W protein has independently evolved a novel function three times. Finally, we review the physical mechanisms of cotranscriptional editing via slippage of the viral RNA polymerase.
Collapse
Affiliation(s)
- Jordan Douglas
- Centre for Computational Evolution, University of Auckland, Auckland 1010, New Zealand
- School of Computer Science, University of Auckland, Auckland 1010, New Zealand
| | - Alexei J Drummond
- Centre for Computational Evolution, University of Auckland, Auckland 1010, New Zealand
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| | - Richard L Kingston
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
5
|
Anbalagan S, Arunprasanna V, Dinakaran S, Krishnan M. Combinatory therapeutic approaches for common cold and SARS-CoV-2. SYNERGY 2020. [PMCID: PMC7837184 DOI: 10.1016/j.synres.2020.100069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Many countries in the world face the new challenge of having human coronavirus infection to manage commendably - the large affliction of human health. Together, each country has modern drugs and a variety of medicinal products developed from their traditional medical practitioners to treat a common cold. In this review, we describe potentially synergistic therapeutics of traditional and complementary medicine available for common cold which might be useful for prevention or for the adjuvant treatment of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Further, we provide a phylogenetic overview of SARSCoV-2 based on a complete genome sequence of common cold viruses. We suggest modern and traditional medicine and preventive strategies which might control the disease to offer more suitable and acceptable common cold management including coronavirus. A substantial proportion of medicinal products developed by traditional medicine against common cold as well as modern medicine mainly focus on symptoms suppression. The recombinant interferon alpha-2b and lactoferrin derived from modern medicine in combination with herbal based products from traditional medicine may support the prevention of novel coronavirus infections. An integrated approach against common cold viruses to establish efficacy and safety through modern and traditional medicine and regular physical exercise along with preventive dietary sources is proposed.
Collapse
|
6
|
Achimota Pararubulavirus 3: A New Bat-Derived Paramyxovirus of the Genus Pararubulavirus. Viruses 2020; 12:v12111236. [PMID: 33143230 PMCID: PMC7692193 DOI: 10.3390/v12111236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/29/2022] Open
Abstract
Bats are an important source of viral zoonoses, including paramyxoviruses. The paramyxoviral Pararubulavirus genus contains viruses mostly derived from bats that are common, diverse, distributed throughout the Old World, and known to be zoonotic. Here, we describe a new member of the genus Achimota pararubulavirus 3 (AchPV3) and its isolation from the urine of African straw-coloured fruit bats on primary bat kidneys cells. We sequenced and analysed the genome of AchPV3 relative to other Paramyxoviridae, revealing it to be similar to known pararubulaviruses. Phylogenetic analysis of AchPV3 revealed the failure of molecular detection in the urine sample from which AchPV3 was derived and an attachment protein most closely related with AchPV2—a pararubulavirus known to cause cross-species transmission. Together these findings add to the picture of pararubulaviruses, their sources, and variable zoonotic potential, which is key to our understanding of host restriction and spillover of bat-derived paramyxoviruses. AchPV3 represents a novel candidate zoonosis and an important tool for further study.
Collapse
|
7
|
Ng WM, Stelfox AJ, Bowden TA. Unraveling virus relationships by structure-based phylogenetic classification. Virus Evol 2020; 6:veaa003. [PMID: 32064119 PMCID: PMC7015158 DOI: 10.1093/ve/veaa003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Delineation of the intricacies of protein function from macromolecular structure constitutes a continual obstacle in the study of cell and pathogen biology. Structure-based phylogenetic analysis has emerged as a powerful tool for addressing this challenge, allowing the detection and quantification of conserved architectural properties between proteins, including those with low or no detectable sequence homology. With a focus on viral protein structure, we highlight how a number of investigations have utilized this powerful method to infer common functionality and ancestry.
Collapse
Affiliation(s)
- Weng M Ng
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Alice J Stelfox
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Thomas A Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
8
|
A structure-based rationale for sialic acid independent host-cell entry of Sosuga virus. Proc Natl Acad Sci U S A 2019; 116:21514-21520. [PMID: 31591233 PMCID: PMC6815108 DOI: 10.1073/pnas.1906717116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The bat-borne paramyxovirus, Sosuga virus (SosV), is one of many paramyxoviruses recently identified and classified within the newly established genus Pararubulavirus, family Paramyxoviridae The envelope surface of SosV presents a receptor-binding protein (RBP), SosV-RBP, which facilitates host-cell attachment and entry. Unlike closely related hemagglutinin neuraminidase RBPs from other genera of the Paramyxoviridae, SosV-RBP and other pararubulavirus RBPs lack many of the stringently conserved residues required for sialic acid recognition and hydrolysis. We determined the crystal structure of the globular head region of SosV-RBP, revealing that while the glycoprotein presents a classical paramyxoviral six-bladed β-propeller fold and structurally classifies in close proximity to paramyxoviral RBPs with hemagglutinin-neuraminidase (HN) functionality, it presents a receptor-binding face incongruent with sialic acid recognition. Hemadsorption and neuraminidase activity analysis confirms the limited capacity of SosV-RBP to interact with sialic acid in vitro and indicates that SosV-RBP undergoes a nonclassical route of host-cell entry. The close overall structural conservation of SosV-RBP with other classical HN RBPs supports a model by which pararubulaviruses only recently diverged from sialic acid binding functionality.
Collapse
|