1
|
Wang S, Li W, Wang Z, Yang W, Li E, Xia X, Yan F, Chiu S. Emerging and reemerging infectious diseases: global trends and new strategies for their prevention and control. Signal Transduct Target Ther 2024; 9:223. [PMID: 39256346 PMCID: PMC11412324 DOI: 10.1038/s41392-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/13/2024] [Accepted: 07/05/2024] [Indexed: 09/12/2024] Open
Abstract
To adequately prepare for potential hazards caused by emerging and reemerging infectious diseases, the WHO has issued a list of high-priority pathogens that are likely to cause future outbreaks and for which research and development (R&D) efforts are dedicated, known as paramount R&D blueprints. Within R&D efforts, the goal is to obtain effective prophylactic and therapeutic approaches, which depends on a comprehensive knowledge of the etiology, epidemiology, and pathogenesis of these diseases. In this process, the accessibility of animal models is a priority bottleneck because it plays a key role in bridging the gap between in-depth understanding and control efforts for infectious diseases. Here, we reviewed preclinical animal models for high priority disease in terms of their ability to simulate human infections, including both natural susceptibility models, artificially engineered models, and surrogate models. In addition, we have thoroughly reviewed the current landscape of vaccines, antibodies, and small molecule drugs, particularly hopeful candidates in the advanced stages of these infectious diseases. More importantly, focusing on global trends and novel technologies, several aspects of the prevention and control of infectious disease were discussed in detail, including but not limited to gaps in currently available animal models and medical responses, better immune correlates of protection established in animal models and humans, further understanding of disease mechanisms, and the role of artificial intelligence in guiding or supplementing the development of animal models, vaccines, and drugs. Overall, this review described pioneering approaches and sophisticated techniques involved in the study of the epidemiology, pathogenesis, prevention, and clinical theatment of WHO high-priority pathogens and proposed potential directions. Technological advances in these aspects would consolidate the line of defense, thus ensuring a timely response to WHO high priority pathogens.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Wujian Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhenshan Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, Jilin, China
| | - Wanying Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Entao Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, 130000, China.
| | - Sandra Chiu
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, Anhui, China.
- Key Laboratory of Anhui Province for Emerging and Reemerging Infectious Diseases, Hefei, 230027, Anhui, China.
- Department of Laboratory Medicine, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
2
|
Xu Y, Vertrees D, He Y, Momben-Abolfath S, Li X, Brewah YA, Scott DE, Konduru K, Rios M, Struble EB. Nanoluciferase Reporter Zika Viruses as Tools for Assessing Infection Kinetics and Antibody Potency. Viruses 2023; 15:2190. [PMID: 38005868 PMCID: PMC10674863 DOI: 10.3390/v15112190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Zika virus (ZIKV) has become endemic in multiple tropical and subtropical regions and has the potential to become widespread in countries with limited prior exposure to this infection. One of the most concerning sequelae of ZIKV infection is the teratogenic effect on the developing fetus, with the mechanisms of viral spread to and across the placenta remaining largely unknown. Although vaccine trials and prophylactic or therapeutic treatments are being studied, there are no approved treatments or vaccines for ZIKV. Appropriate tests, including potency and in vivo assays to assess the safety and efficacy of these modalities, can greatly aid both the research of the pathophysiology of the infection and the development of anti-ZIKV therapeutics. Building on previous work, we tested reporter ZIKV variants that express nanoluciferase in cell culture and in vivo assays. We found that these variants can propagate in cells shown to be susceptible to the widely used clinical isolate PRVABC59, including Vero and human placenta cell lines. When used in neutralization assays with bioluminescence as readout, these variants gave rise to neutralization curves similar to those produced by PRVABC59, while being better suited for performing high-throughput assays. In addition, the engineered reporter variants can be useful research tools when used in other in vitro and in vivo assays, as we illustrated in transcytosis experiments and a pilot study in guinea pigs.
Collapse
Affiliation(s)
- Yanqun Xu
- Laboratory of Plasma Derivatives, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (Y.X.); (D.V.); (Y.H.); (X.L.); (Y.A.B.); (D.E.S.)
| | - Devin Vertrees
- Laboratory of Plasma Derivatives, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (Y.X.); (D.V.); (Y.H.); (X.L.); (Y.A.B.); (D.E.S.)
| | - Yong He
- Laboratory of Plasma Derivatives, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (Y.X.); (D.V.); (Y.H.); (X.L.); (Y.A.B.); (D.E.S.)
| | - Sanaz Momben-Abolfath
- Laboratory of Plasma Derivatives, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (Y.X.); (D.V.); (Y.H.); (X.L.); (Y.A.B.); (D.E.S.)
| | - Xiaohong Li
- Laboratory of Plasma Derivatives, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (Y.X.); (D.V.); (Y.H.); (X.L.); (Y.A.B.); (D.E.S.)
| | - Yambasu A. Brewah
- Laboratory of Plasma Derivatives, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (Y.X.); (D.V.); (Y.H.); (X.L.); (Y.A.B.); (D.E.S.)
| | - Dorothy E. Scott
- Laboratory of Plasma Derivatives, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (Y.X.); (D.V.); (Y.H.); (X.L.); (Y.A.B.); (D.E.S.)
| | - Krishnamurthy Konduru
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (K.K.); (M.R.)
| | - Maria Rios
- Laboratory of Molecular Virology, Division of Emerging and Transfusion Transmitted Diseases, Office of Blood Research and Review, Center for Biologics Evaluation and Research, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA; (K.K.); (M.R.)
| | - Evi B. Struble
- Laboratory of Plasma Derivatives, Division of Plasma Protein Therapeutics, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD 20993, USA; (Y.X.); (D.V.); (Y.H.); (X.L.); (Y.A.B.); (D.E.S.)
| |
Collapse
|
3
|
Shofa M, Okamura T, Urano E, Matsuura Y, Yasutomi Y, Saito A. Repeated Intravaginal Inoculation of Zika Virus Protects Cynomolgus Monkeys from Subcutaneous Superchallenge. Int J Mol Sci 2022; 23:ijms232214002. [PMID: 36430481 PMCID: PMC9696507 DOI: 10.3390/ijms232214002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Zika virus (ZIKV) outbreaks in Central and South America caused severe public health problems in 2015 and 2016. These outbreaks were finally contained through several methods, including mosquito control using insecticides and repellents. Additionally, the development of herd immunity in these countries might have contributed to containing the epidemic. While ZIKV is mainly transmitted by mosquito bites and mucosal transmission via bodily fluids, including the semen of infected individuals, has also been reported. We evaluated the effect of mucosal ZIKV infection on continuous subcutaneous challenges in a cynomolgus monkey model. Repeated intravaginal inoculations of ZIKV did not induce detectable viremia or clinical symptoms, and all animals developed a potent neutralizing antibody, protecting animals from the subsequent subcutaneous superchallenge. These results suggest that viral replication at mucosal sites can induce protective immunity without causing systemic viremia or symptoms.
Collapse
Affiliation(s)
- Maya Shofa
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Tomotaka Okamura
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 305-0843, Japan
| | - Emiko Urano
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 305-0843, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Osaka 565-0871, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yasuhiro Yasutomi
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki 305-0843, Japan
- Department of Molecular and Experimental Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
- Correspondence: (Y.Y.); (A.S.)
| | - Akatsuki Saito
- Department of Veterinary Science, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
- Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
- Correspondence: (Y.Y.); (A.S.)
| |
Collapse
|
4
|
Gomes JA, Wachholz GE, Boquett JA, Vianna FSL, Schuler-Faccini L, Fraga LR. Molecular Mechanisms of ZIKV-Induced Teratogenesis: A Systematic Review of Studies in Animal Models. Mol Neurobiol 2022; 60:68-83. [PMID: 36215025 PMCID: PMC9549063 DOI: 10.1007/s12035-022-03046-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 09/21/2022] [Indexed: 12/09/2022]
Abstract
Zika virus (ZIKV) is a teratogen that causes congenital anomalies, being linked to microcephaly in children exposed during pregnancy. Animal studies have been conducted to investigate the molecular mechanisms related to ZIKV teratogenesis. Although animal models can mimic the effects of ZIKV in human embryo development, few in vivo studies have addressed molecular changes following ZIKV infection in embryos. Moreover, few literature reviews have been conducted with these studies. The aim of this systematic review is to evaluate the molecular mechanisms of ZIKV teratogenesis determined from studies in animal models. PubMed/MEDLINE, EMBASE, Web of Science, and Scopus as well as grey literature were searched for studies that evaluated molecular alterations related to ZIKV teratogenesis which occurred during embryonic development. Nine studies were included: six with mice, one with mice and guinea pigs, one with pigs and one with chickens. In general, studies presented an unclear or high risk of bias for methodological criteria. Most of studies reported embryos exposed to ZIKV presenting microcephaly, reduced cortex thickness, and growth restriction. Different techniques were used to evaluated molecular changes in the animals following ZIKV infection: RNA sequencing, RT-qPCR, and in situ hybridization. It was found that common pathways are changed in most studies, being pathways related to immune response upregulated and those involved to neurodevelopment downregulated.
Collapse
Affiliation(s)
- Julia A Gomes
- Teratology Information Service, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
| | - Gabriela E Wachholz
- Angiogenesis Laboratory, Department of Medical Oncology, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, The Netherlands
| | - Juliano A Boquett
- Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Biosciences Institute, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Child and Adolescent Health, Faculty of Medicine, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
| | - Fernanda S L Vianna
- Teratology Information Service, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Biosciences Institute, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, 90035-003, Brazil
| | - Lavínia Schuler-Faccini
- Teratology Information Service, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil
- Postgraduate Program in Genetics and Molecular Biology, Department of Genetics, Biosciences Institute, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, Brazil
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, 90035-003, Brazil
| | - Lucas R Fraga
- Teratology Information Service, Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil.
- Laboratory of Genomic Medicine, Experimental Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, 90035-903, Brazil.
- Postgraduate Program in Medicine: Medical Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, 90035-003, Brazil.
- Department of Morphological Sciences, Institute of Health Sciences, Universidade Federal Do Rio Grande Do Sul, Porto Alegre, 90050-170, Brazil.
| |
Collapse
|