2
|
Fujii Y, Masatani T, Nishiyama S, Takahashi T, Okajima M, Izumi F, Sakoda Y, Takada A, Ozawa M, Sugiyama M, Ito N. Molecular characterization of an avian rotavirus a strain detected from a large-billed crow (Corvus macrorhynchos) in Japan. Virology 2024; 596:110114. [PMID: 38781709 DOI: 10.1016/j.virol.2024.110114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/02/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
Avian rotaviruses A (RVAs) are occasionally transmitted to animals other than the original hosts across species barriers. Information on RVAs carried by various bird species is important for identifying the origin of such interspecies transmission. In this study, to facilitate an understanding of the ecology of RVAs from wild birds, we characterized all of the genes of an RVA strain, JC-105, that was detected in a fecal sample of a large-billed crow (Corvus macrorhynchos) in Japan. All of the genes of this strain except for the VP4 and VP7 genes, which were classified as novel genotypes (P[56] and G40, respectively), were closely related to those of the avian-like RVA strain detected from a raccoon, indicating the possibility that crows had been involved in the transmission of avian RVAs to raccoons. Our findings highlight the need for further viral investigations in wild birds and mammals to understand the mechanisms of avian-to-mammal RVA transmission.
Collapse
Affiliation(s)
- Yuji Fujii
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Tatsunori Masatani
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Shoko Nishiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Tatsuki Takahashi
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Misuzu Okajima
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Fumiki Izumi
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Faculty of Veterinary Medicine, Hokkaido University, Kita-18, Nishi-9, Kita-ku, Sapporo, Hokkaido 060-0818, Japan
| | - Ayato Takada
- Division of Global Epidemiology, International Institute for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan; International Collaboration Unit, International Institute for Zoonosis Control, Hokkaido University, Kita-20, Nishi-10, Kita-ku, Sapporo, Hokkaido 001-0020, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan; Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Makoto Ozawa
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, Kagoshima 890-0065, Japan
| | - Makoto Sugiyama
- Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.
| | - Naoto Ito
- Joint Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; Laboratory of Zoonotic Diseases, Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; Center for One Medicine Innovative Translational Research (COMIT), Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan; The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.
| |
Collapse
|
3
|
Okamoto A, Takemae H, Nagai M, Hashimoto S, Mizutani T, Furuya T. First report of the whole-genome sequence analysis of avian rotavirus A from Japanese chickens. Virus Genes 2024; 60:25-31. [PMID: 38102511 DOI: 10.1007/s11262-023-02040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/11/2023] [Indexed: 12/17/2023]
Abstract
Rotavirus A infects many mammalian species, including humans and causes diarrhea and gastrointestinal diseases. The virus also infects various bird species, including chickens, although information of avian rotavirus A (ARVA) infection in chicken populations in Japan is scarce. In this study, we report for the first time the whole-genome sequences of ARVA strains from Japanese chicken populations. The virus strains were inoculated to MA104 cells and cultured viruses were used to obtain the sequences with the MiSeq system, and genetic analysis demonstrated the genotype constellation of G19-P[30]-I11-R6-C6-M7-A16-N6-T8-E10-H8 of the Japanese chicken ARVA isolates. Phylogenetic analyses demonstrated that the VP1, VP2, VP3, VP4, VP7, NSP2, and NSP4 coding gene sequences of the Japanese strains were closer to those of Korean than the European ARVA strains, although such relationship was not clear for other genes. The data suggest that the Japanese ARVA strains and the ones in Korea have genetically close relationship, although the origin is not clear at this point. Further information including the whole-genome sequences of the Korean strains and sequences of other Japanese chicken ARVA strains will be necessary for elucidation of their origin.
Collapse
Affiliation(s)
- Ayana Okamoto
- Laboratory of Veterinary Infectious Diseases, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Hitoshi Takemae
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Makoto Nagai
- Department of Large Animal Clinic, Azabu University, Veterinary Teaching Hospital, Azabu University, Sagamihara, Kanagawa, 252-5201, Japan
| | - Shinichiro Hashimoto
- Wellfam Foods Corporation, 1-6-5 Kudan Minami, Chiyoda-ku, Tokyo, 102-0074, Japan
| | - Tetsuya Mizutani
- Center for Infectious Disease Epidemiology and Prevention Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Tetsuya Furuya
- Laboratory of Veterinary Infectious Diseases, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan.
| |
Collapse
|