1
|
Schlievert PM, Nelson JD, Kilgore SH, Radoshevich L, Klingelhutz AJ, Leung DYM. Purification, characterization, and cloning of a novel pro-inflammatory secreted protein from Staphylococcus aureus. Microbiol Spectr 2023; 11:e0289823. [PMID: 37937984 PMCID: PMC10715055 DOI: 10.1128/spectrum.02898-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
IMPORTANCE Staphylococcus aureus causes a myriad of human diseases, ranging from relatively mild soft tissue infections to highly fatal pneumonia, sepsis, and toxic shock syndrome. The organisms primarily cause diseases across mucosal and skin barriers. In order to facilitate penetration of barriers, S. aureus causes harmful inflammation by inducing chemokines from epithelial cells. We report the cloning and characterization of a novel secreted S. aureus protein that induces chemokine production from epithelial cells as its major demonstrable function. This secreted protein possibly helps S. aureus and its secreted proteins to penetrate host barriers.
Collapse
Affiliation(s)
- Patrick M. Schlievert
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Jacob D. Nelson
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Samuel H. Kilgore
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Lilliana Radoshevich
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Aloysius J. Klingelhutz
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | | |
Collapse
|
2
|
Pulia MS, Anderson J, Ye Z, Elsayed NS, Le T, Patitucci J, Ganta K, Hall M, Singh VK, Shukla SK. Expression of Staphylococcal Virulence Genes In Situ in Human Skin and Soft Tissue Infections. Antibiotics (Basel) 2022; 11:527. [PMID: 35453277 PMCID: PMC9032627 DOI: 10.3390/antibiotics11040527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Staphylococcus aureus, the most common pathogen in skin and soft tissue infections (SSTI), harbors many well-characterized virulence genes. However, the expression of many of them in SSTIs is unknown. In this study, S. aureus virulence genes expressed in SSTI were investigated. METHODS Fifty-three subjects presenting to the outpatient's care and emergency departments with a purulent SSTI at two medical centers in Wisconsin, USA, were enrolled in the study. Total mRNA was extracted from the purulent or swab materials, made into cDNA and sequenced on MiSeq platform. The relative cDNA counts to gmk and identifications of the transcripts were carried out with respect to USA300 reference genome and using SAMTOOLS v.1.3 and BWA, respectively. RESULT A significantly higher cDNA count was observed for many of the virulence and regulatory gene transcripts in the pus samples compared to the swab samples relative to the cDNA counts for gmk, a housekeeping gene. They were for lukS-PV (18.6 vs. 14.2), isaA (13.4 vs. 8.5), ssaA (4.8 vs. 3.1), hlgC (1.4 vs. 1.33), atl (17.7 vs. 8.33), clfA (3.9 vs. 0.83), eno (6.04 vs. 3.16), fnbA (5.93 vs. 0.33), saeS (6.3 vs. 1.33), saeR (5.4 vs. 3.33) and agrC (5.6 vs. 1.5). CONCLUSIONS A relative increase in the transcripts of several toxins, adhesion and regulatory genes with respect to a gmk in purulent materials suggests their role in situ during SSTIs, perhaps in an orchestrated manner.
Collapse
Affiliation(s)
- Michael S. Pulia
- Department of Emergency Medicine, University of Wisconsin, School of Medicine and Public Health, Madison, WI 53726, USA;
| | - Jennifer Anderson
- Integrated Research Development Center, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (J.A.); (T.L.)
| | - Zhan Ye
- Bioinformatics Research Center, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (Z.Y.); (J.P.)
| | - Noha S. Elsayed
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (N.S.E.); (K.G.)
| | - Thao Le
- Integrated Research Development Center, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (J.A.); (T.L.)
| | - Jacob Patitucci
- Bioinformatics Research Center, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (Z.Y.); (J.P.)
| | - Krishna Ganta
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (N.S.E.); (K.G.)
| | - Matthew Hall
- Department of Infectious Diseases, Marshfield Clinic Health System, Marshfield, WI 54449, USA;
| | - Vineet K. Singh
- Department of Microbiology and Immunology, Kirksville College of Osteopathic Medicine, A.T. Still, University of Health Sciences, Kirksville, MO 63501, USA;
| | - Sanjay K. Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (N.S.E.); (K.G.)
| |
Collapse
|
3
|
Shukla SK, Carter TC, Ye Z, Pantrangi M, Rose WE. Modeling of Effective Antimicrobials to Reduce Staphylococcus aureus Virulence Gene Expression Using a Two-Compartment Hollow Fiber Infection Model. Toxins (Basel) 2020; 12:toxins12020069. [PMID: 31979087 PMCID: PMC7076779 DOI: 10.3390/toxins12020069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 01/20/2020] [Indexed: 11/17/2022] Open
Abstract
Toxins produced by community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) contribute to virulence. We developed a statistical approach to determine an optimum sequence of antimicrobials to treat CA-MRSA infections based on an antimicrobial’s ability to reduce virulence. In an in vitro pharmacodynamic hollow fiber model, expression of six virulence genes (lukSF-PV, sek, seq, ssl8, ear, and lpl10) in CA-MRSA USA300 was measured by RT-PCR at six time points with or without human-simulated, pharmacokinetic dosing of five antimicrobials (clindamycin, minocycline, vancomycin, linezolid, and trimethoprim/sulfamethoxazole (SXT)). Statistical modeling identified the antimicrobial causing the greatest decrease in virulence gene expression at each time-point. The optimum sequence was SXT at T0 and T4, linezolid at T8, and clindamycin at T24–T72 when lukSF-PV was weighted as the most important gene or when all six genes were weighted equally. This changed to SXT at T0–T24, linezolid at T48, and clindamycin at T72 when lukSF-PV was weighted as unimportant. The empirical p-value for each optimum sequence according to the different weights was 0.001, 0.0009, and 0.0018 with 10,000 permutations, respectively, indicating statistical significance. A statistical method integrating data on change in gene expression upon multiple antimicrobial exposures is a promising tool for identifying a sequence of antimicrobials that is effective in sustaining reduced CA-MRSA virulence.
Collapse
Affiliation(s)
- Sanjay K. Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (T.C.C.); (Z.Y.); (M.P.)
- Correspondence:
| | - Tonia C. Carter
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (T.C.C.); (Z.Y.); (M.P.)
| | - Zhan Ye
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (T.C.C.); (Z.Y.); (M.P.)
| | - Madhulatha Pantrangi
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI 54449, USA; (T.C.C.); (Z.Y.); (M.P.)
| | - Warren E. Rose
- Pharmacy Practice Division, School of Pharmacy, University of Wisconsin, Madison, WI 53705, USA;
| |
Collapse
|
4
|
Lebeurre J, Dahyot S, Diene S, Paulay A, Aubourg M, Argemi X, Giard JC, Tournier I, François P, Pestel-Caron M. Comparative Genome Analysis of Staphylococcus lugdunensis Shows Clonal Complex-Dependent Diversity of the Putative Virulence Factor, ess/Type VII Locus. Front Microbiol 2019; 10:2479. [PMID: 31736914 PMCID: PMC6834553 DOI: 10.3389/fmicb.2019.02479] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022] Open
Abstract
Staphylococcus lugdunensis is a commensal bacterium of human skin that has emerged as a virulent Coagulase-Negative Staphylococcus in both community-acquired and healthcare associated infections. Genotyping methods have shown a clonal population structure of this pathogen but failed to identify hypervirulent lineages. Here, complete genomes of three pathogenic and three carriage S. lugdunensis strains were obtained by Single-Molecule sequencing (PacBio) and compared to 15 complete genomes available in GenBank database. The aim was to identify (i) genetic determinants specific to pathogenic or carriage strains or specific to clonal complexes (CCs) defined by MultiLocus Sequence Typing, and (ii) antibiotic resistance genes and new putative virulence factors encoded or not by mobile genetic elements (MGE). Comparative genomic analysis did not show a strict correlation between gene content and the ability of the six strains to cause infections in humans and in a Galleria mellonella infection model. However, this study identified new MGEs (five prophages, two genomic islands and one plasmid) and genetic variations of some putative virulence-associated loci, especially in CC3 strains. For a clonal population, high variability and eight CC-dependent genetic organizations were observed for the ess locus, which encodes a putative type VII secretion system (T7SS) homologous to that of S. aureus. Further phenotypic and functional studies are needed to characterize this particular CC3 and to evaluate the role of T7SS in the virulence of S. lugdunensis.
Collapse
Affiliation(s)
| | - Sandrine Dahyot
- UNIROUEN, GRAM EA2656, Rouen University Hospital, Normandie Université, Rouen, France
| | - Seydina Diene
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | | | - Marion Aubourg
- EA4655 U2RM (Équipe Antibio-Résistance), Université de Caen Basse-Normandie, Caen, France
| | - Xavier Argemi
- CHRU de Strasbourg, VBP EA7290, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut de Bactériologie, Université de Strasbourg, Strasbourg, France
| | - Jean-Christophe Giard
- EA4655 U2RM (Équipe Antibio-Résistance), Université de Caen Basse-Normandie, Caen, France
| | - Isabelle Tournier
- UNIROUEN, Inserm U1245, Normandy Centre for Genomic and Personalized Medicine, Rouen University Hospital, Normandie Université, Rouen, France
| | - Patrice François
- Genomic Research Laboratory, Service of Infectious Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Martine Pestel-Caron
- UNIROUEN, GRAM EA2656, Rouen University Hospital, Normandie Université, Rouen, France
| |
Collapse
|