1
|
Rodrigues YC, Silva MJA, dos Reis HS, dos Santos PAS, Sardinha DM, Gouveia MIM, dos Santos CS, Marcon DJ, Aires CAM, Souza CDO, Quaresma AJPG, Lima LNGC, Brasiliense DM, Lima KVB. Molecular Epidemiology of Pseudomonas aeruginosa in Brazil: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2024; 13:983. [PMID: 39452249 PMCID: PMC11504043 DOI: 10.3390/antibiotics13100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Globally, Pseudomonas aeruginosa is a high-priority opportunistic pathogen which displays several intrinsic and acquired antimicrobial resistance (AMR) mechanisms, leading to challenging treatments and mortality of patients. Moreover, its wide virulence arsenal, particularly the type III secretion system (T3SS) exoU+ virulotype, plays a crucial role in pathogenicity and poor outcome of infections. In depth insights into the molecular epidemiology of P. aeruginosa, especially the prevalence of high-risk clones (HRCs), are crucial for the comprehension of virulence and AMR features and their dissemination among distinct strains. This study aims to evaluate the prevalence and distribution of HRCs and non-HRCs among Brazilian isolates of P. aeruginosa. METHODS A systematic review and meta-analysis were conducted on studies published between 2011 and 2023, focusing on the prevalence of P. aeruginosa clones determined by multilocus sequence typing (MLST) in Brazil. Data were extracted from retrospective cross-sectional and case-control studies, encompassing clinical and non-clinical samples. The analysis included calculating the prevalence rates of various sequence types (STs) and assessing the regional variability in the distribution of HRCs and non-HRCs. RESULTS A total of 872 samples were analyzed within all studies, of which 298 (34.17%) were MLST typed, identifying 78 unique STs. HRCs accounted for 48.90% of the MLST-typed isolates, with ST277 being the most prevalent (100/298-33.55%), followed by ST244 (29/298-9.73%), ST235 (13/298-4.36%), ST111 (2/298-0.67%), and ST357 (2/298-0.67%). Significant regional variability was observed, with the Southeast region showing a high prevalence of ST277, while the North region shows a high prevalence of MLST-typed samples and HRCs. CONCLUSIONS Finally, this systematic review and meta-analysis highlight the role of P. aeruginosa clones in critical issue of AMR in P. aeruginosa in Brazil and the need of integration of comprehensive data from individual studies.
Collapse
Affiliation(s)
- Yan Corrêa Rodrigues
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Marcos Jessé Abrahão Silva
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Herald Souza dos Reis
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
| | - Pabllo Antonny Silva dos Santos
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Daniele Melo Sardinha
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
| | - Maria Isabel Montoril Gouveia
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Carolynne Silva dos Santos
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Davi Josué Marcon
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Caio Augusto Martins Aires
- Department of Health Sciences (DCS), Federal Rural University of the Semi-Arid Region (UFERSA), Av. Francisco Mota, 572-Bairro Costa e Silva, Mossoró 59625-900, RN, Brazil;
| | - Cintya de Oliveira Souza
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
| | - Ana Judith Pires Garcia Quaresma
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Luana Nepomuceno Gondim Costa Lima
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Danielle Murici Brasiliense
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| | - Karla Valéria Batista Lima
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (H.S.d.R.); (P.A.S.d.S.); (D.M.S.); (M.I.M.G.); (C.S.d.S.); (D.J.M.); (C.d.O.S.); (A.J.P.G.Q.); (L.N.G.C.L.); (D.M.B.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Tv. Perebebuí, 2623-Marco, Belém 66087-662, PA, Brazil
| |
Collapse
|
2
|
Rath A, Kieninger B, Hahn J, Edinger M, Holler E, Kratzer A, Fritsch J, Eichner A, Caplunik-Pratsch A, Schneider-Brachert W. Retrospective genome-oriented analysis reveals low transmission rate of multidrug-resistant Pseudomonas aeruginosa from contaminated toilets at a bone marrow transplant unit. J Hosp Infect 2024; 150:96-104. [PMID: 38830540 DOI: 10.1016/j.jhin.2024.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 06/05/2024]
Abstract
BACKGROUND Prevention of toilet-to-patient transmission of multidrug-resistant Pseudomonas aeruginosa (MDR PA) poses management-related challenges at many bone marrow transplant units (BMTUs). AIM To conduct a longitudinal retrospective analysis of the toilet-to-patient transmission rate for MDR PA under existing infection control (IC) measures at a BMTU with persistent MDR PA toilet colonization. METHODS The local IC bundle comprised: (1) patient education regarding IC; (2) routine patient screening; (3) toilet flushing volume of 9 L; (4) bromination of toilet water tanks, and (5) toilet decontamination using hydrogen peroxide. Toilet water was sampled periodically between 2016 and 2021 (minimum every three months: 26 intervals). Upon MDR PA detection, disinfection and re-sampling were repeated until ≤3 cfu/100 mL was reached. Whole-genome sequencing (WGS) was performed retrospectively on all available MDR PA isolates (90 out of 117 positive environmental samples, 10 out of 14 patients, including nine nosocomial). FINDINGS WGS of patient isolates identified six sequence types (STs), with ST235/CT1352/FIM-1 and ST309/CT3049/no-carbapenemase being predominant (three isolates each). Environmental sampling consistently identified MDR PA ST235 (65.5% ST235/CT1352/FIM-1), showing low genetic diversity (difference of ≤29 alleles by core-genome multi-locus sequence typing (cgMLST)). This indicates that direct toilet-to-patient transmission was infrequent although MDR PA was widespread (detection on 79 occasions, detection in every toilet). Only three MDR PA patient isolates can be attributed to the ST235/CT1352/FIM-1 toilet MRD PA population over six years. CONCLUSION Stringent targeted toilet disinfection can reduce the potential risk for MDR PA acquisition by patients.
Collapse
Affiliation(s)
- A Rath
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany.
| | - B Kieninger
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - J Hahn
- Department of Internal Medicine III, Haematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - M Edinger
- Department of Internal Medicine III, Haematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - E Holler
- Department of Internal Medicine III, Haematology and Oncology, University Hospital Regensburg, Regensburg, Germany
| | - A Kratzer
- Hospital Pharmacy, University Hospital Regensburg, Regensburg, Germany
| | - J Fritsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - A Eichner
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - A Caplunik-Pratsch
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| | - W Schneider-Brachert
- Department of Infection Prevention and Infectious Diseases, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
3
|
Dos Santos PAS, Silva MJA, Gouveia MIM, Lima LNGC, Quaresma AJPG, De Lima PDL, Brasiliense DM, Lima KVB, Rodrigues YC. The Prevalence of Metallo-Beta-Lactamese-(MβL)-Producing Pseudomonas aeruginosa Isolates in Brazil: A Systematic Review and Meta-Analysis. Microorganisms 2023; 11:2366. [PMID: 37764210 PMCID: PMC10534863 DOI: 10.3390/microorganisms11092366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 09/29/2023] Open
Abstract
The purpose of the current study is to describe the prevalence of Pseudomonas aeruginosa (PA)-producing MβL among Brazilian isolates and the frequency of blaSPM-1 in MβL-PA-producing isolates. From January 2009 to August 2023, we carried out an investigation on this subject in the internet databases SciELO, PubMed, Science Direct, and LILACS. A total of 20 papers that met the eligibility requirements were chosen by comprehensive meta-analysis software v2.2 for data retrieval and analysis by one meta-analysis using a fixed-effects model for the two investigations. The prevalence of MβL-producing P. aeruginosa was 35.8% or 0.358 (95% CI = 0.324-0.393). The studies' differences were significantly different from one another (x2 = 243.15; p < 0.001; I2 = 92.18%), so they were divided into subgroups based on Brazilian regions. There was indication of asymmetry in the meta-analyses' publishing bias funnel plot; so, a meta-regression was conducted by the study's publication year. According to the findings of Begg's test, no discernible publishing bias was found. blaSPM-1 prevalence was estimated at 66.9% or 0.669 in MβL-PA isolates (95% CI = 0.593-0.738). The analysis of this one showed an average heterogeneity (x2 = 90.93; p < 0.001; I2 = 80.20%). According to the results of Begg's test and a funnel plot, no discernible publishing bias was found. The research showed that MβL-P. aeruginosa and SPM-1 isolates were relatively common among individuals in Brazil. P. aeruginosa and other opportunistic bacteria are spreading quickly and causing severe infections, so efforts are needed to pinpoint risk factors, reservoirs, transmission pathways, and the origin of infection.
Collapse
Affiliation(s)
- Pabllo Antonny Silva Dos Santos
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
| | - Marcos Jessé Abrahão Silva
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Maria Isabel Montoril Gouveia
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
| | - Luana Nepomuceno Gondim Costa Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Ana Judith Pires Garcia Quaresma
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
| | - Patrícia Danielle Lima De Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
| | - Danielle Murici Brasiliense
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Karla Valéria Batista Lima
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém 66087-662, PA, Brazil; (P.A.S.D.S.); (L.N.G.C.L.); (P.D.L.D.L.); (D.M.B.); (K.V.B.L.)
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
| | - Yan Corrêa Rodrigues
- Bacteriology and Mycology Section, Evandro Chagas Institute (SABMI/IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil; (M.I.M.G.); (A.J.P.G.Q.)
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua 67030-000, PA, Brazil
- Department of Natural Science, State University of Pará (DCNA/UEPA), Belém 66050-540, PA, Brazil
| |
Collapse
|
4
|
Yuan F, Xiao W, Wang X, Fu Y, Wei X. Clinical Characteristics and Prognosis of Bloodstream Infection with Carbapenem-Resistant Pseudomonas aeruginosa in Patients with Hematologic Malignancies. Infect Drug Resist 2023; 16:4943-4952. [PMID: 37546370 PMCID: PMC10402715 DOI: 10.2147/idr.s419064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/26/2023] [Indexed: 08/08/2023] Open
Abstract
Objective To analyze the clinical characteristics and prognostic risk factors of carbapenem-resistant Pseudomonas aeruginosa (CRPA) bloodstream infections in patients with hematologic malignancies. Methods Medical records and drug susceptibility data of patients with hematologic malignancies complicated by CRPA bloodstream infections admitted to the Cancer Hospital of Zhengzhou University between January 1, 2018, and December 31, 2022, were retrospectively analyzed. Results A total of 64 patients were included in the study, with a mortality rate of 37.5% (24/64) at 28 days after the occurrence of CRPA bloodstream infection. In Cox regression analysis, an absolute neutrophil count <0.5×109/L at discharge (HR 0.039, 95% CI 0.006 ~ 0.258, p=0.001), admission to the intensive care unit (HR 7.546, 95% CI 1.345 ~ 42.338, p= 0.022), and a higher Pitt bacteremia score (HR 0.207, 95% CI 0.046 ~ 0.939, p = 0.041) were independent risk factors associated with 28-day mortality. Survival analysis showed that patients receiving ceftazidime-avibactam-based (HR 0.368, 95% CI 0.107~ 1.268, p = 0.023) or polymyxin B (HR 2.561, 95% CI 0.721 ~ 9.101, p = 0.015) therapy had a higher survival rate. Conclusion Patients with hematologic neoplasms had high mortality from CRPA bloodstream infections, and admission to the intensive care unit, higher Pitt bacteremia score (PBS) scores, granulocyte deficiency, and granulocyte deficiency at discharge were independently associated with higher mortality. Early anti-infective treatment with ceftazidime-avibactam or polymyxin B may improve the clinical prognosis of patients.
Collapse
Affiliation(s)
- Fangfang Yuan
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University& Henan Cancer Hospital, Zhengzhou, People’s Republic of China
| | - Weiqiang Xiao
- Department of Laboratory Science, The Affiliated Cancer Hospital of Zhengzhou University& Henan Cancer Hospital, Zhengzhou, People’s Republic of China;
| | - Xiaokun Wang
- Department of Laboratory Science, The Affiliated Cancer Hospital of Zhengzhou University& Henan Cancer Hospital, Zhengzhou, People’s Republic of China;
| | - Yuewen Fu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University& Henan Cancer Hospital, Zhengzhou, People’s Republic of China
| | - Xudong Wei
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University& Henan Cancer Hospital, Zhengzhou, People’s Republic of China
| |
Collapse
|
5
|
Contreras-Gómez MJ, Martinez JRW, Rivas L, Riquelme-Neira R, Ugalde JA, Wozniak A, García P, Munita JM, Olivares-Pacheco J, Alcalde-Rico M. Role of the multi-drug efflux systems on the baseline susceptibility to ceftazidime/avibactam and ceftolozane/tazobactam in clinical isolates of non-carbapenemase-producing carbapenem-resistant Pseudomonas aeruginosa. Front Pharmacol 2022; 13:1007162. [PMID: 36263116 PMCID: PMC9574371 DOI: 10.3389/fphar.2022.1007162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 09/13/2022] [Indexed: 11/19/2022] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa (CRPA) is one of the pathogens that urgently needs new drugs and new alternatives for its control. The primary strategy to combat this bacterium is combining treatments of beta-lactam with a beta-lactamase inhibitor. The most used combinations against P. aeruginosa are ceftazidime/avibactam (CZA) and ceftolozane/tazobactam (C/T). Although mechanisms leading to CZA and C/T resistance have already been described, among which are the resistance-nodulation-division (RND) efflux pumps, the role that these extrusion systems may play in CZA, and C/T baseline susceptibility of clinical isolates remains unknown. For this purpose, 161 isolates of non-carbapenemase-producing (Non-CP) CRPA were selected, and susceptibility tests to CZA and C/T were performed in the presence and absence of the RND efflux pumps inhibitor, Phenylalanine-arginine β-naphthylamide (PAβN). In the absence of PAβN, C/T showed markedly higher activity against Non-CP-CRPA isolates than observed for CZA. These results were even more evident in isolates classified as extremely-drug resistant (XDR) or with difficult-to-treat resistance (DTR), where CZA decreased its activity up to 55.2% and 20.0%, respectively, whereas C/T did it up to 82.8% (XDR), and 73.3% (DTR). The presence of PAβN showed an increase in both CZA (37.6%) and C/T (44.6%) activity, and 25.5% of Non-CP-CRPA isolates increased their susceptibility to these two combined antibiotics. However, statistical analysis showed that only the C/T susceptibility of Non-CP-CRPA isolates was significantly increased. Although the contribution of RND activity to CZA and C/T baseline susceptibility was generally low (two-fold decrease of minimal inhibitory concentrations [MIC]), a more evident contribution was observed in a non-minor proportion of the Non-CP-CRPA isolates affected by PAβN [CZA: 25.4% (15/59); C/T: 30% (21/70)]. These isolates presented significantly higher MIC values for C/T. Therefore, we conclude that RND efflux pumps are participating in the phenomenon of baseline susceptibility to CZA and, even more, to C/T. However, the genomic diversity of clinical isolates is so great that deeper analyzes are necessary to determine which elements are directly involved in this phenomenon.
Collapse
Affiliation(s)
- María José Contreras-Gómez
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - José R. W. Martinez
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Lina Rivas
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
| | - Roberto Riquelme-Neira
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Núcleo de Investigaciones Aplicadas en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Santiago, Chile
| | - Juan A. Ugalde
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - Aniela Wozniak
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Laboratory of Microbiology, Department of Clinical Laboratories, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - Patricia García
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- Laboratory of Microbiology, Department of Clinical Laboratories, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
- Clinical Laboratories Network, Red de Salud UC-CHRISTUS, Santiago, Chile
| | - José M. Munita
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- *Correspondence: José M. Munita, ; Jorge Olivares-Pacheco, ; Manuel Alcalde-Rico,
| | - Jorge Olivares-Pacheco
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- *Correspondence: José M. Munita, ; Jorge Olivares-Pacheco, ; Manuel Alcalde-Rico,
| | - Manuel Alcalde-Rico
- Grupo de Resistencia Antimicrobiana en Bacterias Patógenas y Ambientales (GRABPA), Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
- Genomics and Resistant Microbes Group (GeRM), Instituto de Ciencias e Innovación en Medicina (ICIM), Facultad de Medicina, Clínica Alemana, Universidad Del Desarrollo, Santiago, Chile
- Millennium Initiative for Collaborative Research on Bacterial Resistance (MICROB-R), Santiago, Chile
- *Correspondence: José M. Munita, ; Jorge Olivares-Pacheco, ; Manuel Alcalde-Rico,
| |
Collapse
|
6
|
Ramos JF, Leite G, Martins RCR, Rizek C, Al Sanabani SS, Rossi F, Guimarães T, Levin AS, Rocha V, Costa SF. Clinical outcome from hematopoietic cell transplant patients with bloodstream infection caused by carbapenem-resistant P. aeruginosa and the impact of antimicrobial combination in vitro. Eur J Clin Microbiol Infect Dis 2021; 41:313-317. [PMID: 34651217 DOI: 10.1007/s10096-021-04361-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
Bloodstream infection (BSI) caused by carbapenem-resistant P. aeruginosa (CRPA) has high mortality in hematopoietic stem cell transplant (HSCT) recipients. We performed MIC, checkerboard, time-kill assay, PFGE, PCR, and whole genome sequence and described the clinical outcome through Epi Info comparing the antimicrobial combination in vitro. Mortality was higher in BSI caused by CRPA carrying the lasB virulence gene. The isolates were 97% resistant to meropenem displaying synergistic effect to 57% in combination with colistin. Seventy-three percent of the isolates harbored blaSPM-1 and Tn4371 and belonged to ST277. The synergistic effect in vitro with meropenem with colistin appeared to be a better therapeutic option.
Collapse
Affiliation(s)
- Jessica Fernandes Ramos
- Department of Infectious Diseases of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
- Department of Haematology, Hemotherapy and Cellular Therapy of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
| | - Gleice Leite
- Laboratory of Medical Investigation - LIM 49 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil.
| | | | - Camila Rizek
- Laboratory of Medical Investigation - LIM 49 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil
| | - Sabri Saeed Al Sanabani
- Laboratory of Medical Investigation - LIM 52 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil
| | - Flavia Rossi
- Laboratory of Clinical Microbiology of Hospital das Clínicas, Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
| | - Thais Guimarães
- Department of Infectious Diseases of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
- Laboratory of Medical Investigation - LIM 49 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil
| | - Anna Sara Levin
- Department of Infectious Diseases of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
- Laboratory of Medical Investigation - LIM 49 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil
| | - Vanderson Rocha
- Department of Haematology, Hemotherapy and Cellular Therapy of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
- Haematology Department, NHS BT, Oxford University, Oxford, UK
| | - Silvia Figueiredo Costa
- Department of Infectious Diseases of Faculdade de Medicina, University of Sao Paulo, São Paulo, Brazil
- Laboratory of Medical Investigation - LIM 49 - Medical Tropical Institute, University of Sao Paulo, São Paulo, Brazil
| |
Collapse
|
7
|
Yoon EJ, Jeong SH. Mobile Carbapenemase Genes in Pseudomonas aeruginosa. Front Microbiol 2021; 12:614058. [PMID: 33679638 PMCID: PMC7930500 DOI: 10.3389/fmicb.2021.614058] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is one of the major concerns in clinical settings impelling a great challenge to antimicrobial therapy for patients with infections caused by the pathogen. While membrane permeability, together with derepression of the intrinsic beta-lactamase gene, is the global prevailing mechanism of carbapenem resistance in P. aeruginosa, the acquired genes for carbapenemases need special attention because horizontal gene transfer through mobile genetic elements, such as integrons, transposons, plasmids, and integrative and conjugative elements, could accelerate the dissemination of the carbapenem-resistant P. aeruginosa. This review aimed to illustrate epidemiologically the carbapenem resistance in P. aeruginosa, including the resistance rates worldwide and the carbapenemase-encoding genes along with the mobile genetic elements responsible for the horizontal dissemination of the drug resistance determinants. Moreover, the modular mobile elements including the carbapenemase-encoding gene, also known as the P. aeruginosa resistance islands, are scrutinized mostly for their structures.
Collapse
Affiliation(s)
- Eun-Jeong Yoon
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok Hoon Jeong
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
8
|
García-Betancur JC, Appel TM, Esparza G, Gales AC, Levy-Hara G, Cornistein W, Vega S, Nuñez D, Cuellar L, Bavestrello L, Castañeda-Méndez PF, Villalobos-Vindas JM, Villegas MV. Update on the epidemiology of carbapenemases in Latin America and the Caribbean. Expert Rev Anti Infect Ther 2020; 19:197-213. [PMID: 32813566 DOI: 10.1080/14787210.2020.1813023] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Carbapenemases are β-lactamases able to hydrolyze a wide range of β-lactam antibiotics, including carbapenems. Carbapenemase production in Enterobacterales, Pseudomonas aeruginosa, and Acinetobacter spp., with and without the co-expression of other β-lactamases is a serious public health threat. Carbapenemases belong to three main classes according to the Ambler classification: class A, class B, and class D. AREAS COVERED Carbapenemase-bearing pathogens are endemic in Latin America. In this review, we update the status of carbapenemases in Latin America and the Caribbean. EXPERT OPINION Understanding the current epidemiology of carbapenemases in Latin America and the Caribbean is of critical importance to improve infection control policies limiting the dissemination of multi-drug-resistant pathogens and in implementing appropriate antimicrobial therapy.
Collapse
Affiliation(s)
| | - Tobias Manuel Appel
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque . Bogotá, Colombia
| | - German Esparza
- Programa de Aseguramiento de Calidad. PROASECAL SAS, Bogotá, Colombia
| | - Ana C Gales
- Division of Infectious Diseases, Department of Internal Medicine, Escola Paulista de Medicina/Universidade Federal de São Paulo - UNIFESP , São Paulo, Brazil
| | | | | | - Silvio Vega
- Complejo Hospitalario Metropolitano , Ciudad de Panamá, Panama
| | - Duilio Nuñez
- Infectious Diseases División, IPS Hospital Central , Asunción, Paraguay
| | - Luis Cuellar
- Servicio de Infectologia, Instituto Nacional de Enfermedades Neoplasicas , Lima, Peru
| | | | - Paulo F Castañeda-Méndez
- Department of Infectious Diseases, Hospital San Angel Inn Universidad , Ciudad de México, Mexico
| | | | - María Virginia Villegas
- Grupo de Resistencia Antimicrobiana y Epidemiología Hospitalaria, Universidad El Bosque . Bogotá, Colombia.,Centro Médico Imbanaco . Cali, Colombia
| |
Collapse
|
9
|
The Current Burden of Carbapenemases: Review of Significant Properties and Dissemination among Gram-Negative Bacteria. Antibiotics (Basel) 2020; 9:antibiotics9040186. [PMID: 32316342 PMCID: PMC7235769 DOI: 10.3390/antibiotics9040186] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/29/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022] Open
Abstract
Carbapenemases are β-lactamases belonging to different Ambler classes (A, B, D) and can be encoded by both chromosomal and plasmid-mediated genes. These enzymes represent the most potent β-lactamases, which hydrolyze a broad variety of β-lactams, including carbapenems, cephalosporins, penicillin, and aztreonam. The major issues associated with carbapenemase production are clinical due to compromising the activity of the last resort antibiotics used for treating serious infections, and epidemiological due to their dissemination into various bacteria across almost all geographic regions. Carbapenemase-producing Enterobacteriaceae have received more attention upon their first report in the early 1990s. Currently, there is increased awareness of the impact of nonfermenting bacteria, such as Acinetobacter baumannii and Pseudomonas aeruginosa, as well as other Gram-negative bacteria that are carbapenemase-producers. Outside the scope of clinical importance, carbapenemases are also detected in bacteria from environmental and zoonotic niches, which raises greater concerns over their prevalence, and the need for public health measures to control consequences of their propagation. The aims of the current review are to define and categorize the different families of carbapenemases, and to overview the main lines of their spread across different bacterial groups.
Collapse
|
10
|
Silveira MC, Rocha-de-Souza CM, Albano RM, de Oliveira Santos IC, Carvalho-Assef APD. Exploring the success of Brazilian endemic clone Pseudomonas aeruginosa ST277 and its association with the CRISPR-Cas system type I-C. BMC Genomics 2020; 21:255. [PMID: 32293244 PMCID: PMC7092672 DOI: 10.1186/s12864-020-6650-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/04/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The Brazilian endemic clone Pseudomonas aeruginosa ST277 carries important antibiotic resistance determinants, highlighting the gene coding for SPM-1 carbapenemase. However, the resistance and persistence of this clone is apparently restricted to the Brazilian territory. To understand the differences between Brazilian strains from those isolated in other countries, we performed a phylogenetic analysis of 47 P. aeruginosa ST277 genomes as well as analyzed the virulence and resistance gene profiles. Furthermore, we evaluated the distribution of genomic islands and assessed in detail the characteristics of the CRISPR-Cas immunity system in these isolates. RESULTS The Brazilian genomes presented a typical set of resistance and virulence determinants, genomic islands and a high frequency of the CRISPR-Cas system type I-C. Even though the ST277 genomes are closely related, the phylogenetic analysis showed that the Brazilian strains share a great number of exclusively SNPs when compared to other ST277 genomes. We also observed a standard CRISPR spacers content for P. aeruginosa ST277, confirming a strong link between sequence type and spacer acquisition. Most CRISPR spacer targets were phage sequences. CONCLUSIONS Based on our findings, P. aeruginosa ST277 strains circulating in Brazil characteristically acquired In163 and PAGI-25, which can distinguish them from strains that do not accumulate resistance mechanisms and can be found on the Asian, European and North American continents. The distinctive genetic elements accumulated in Brazilian samples can contribute to the resistance, pathogenicity and transmission success that characterize the ST277 in this country.
Collapse
Affiliation(s)
- Melise Chaves Silveira
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
| | - Cláudio Marcos Rocha-de-Souza
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
| | - Rodolpho Mattos Albano
- Departamento de Bioquímica, Universidade do Estado do Rio de Janeiro, Boulevard Vinte e Oito de Setembro, 87, fundos, andar 4, Vila Isabel, Rio de Janeiro, Rio de Janeiro, 20551-030, Brazil
| | - Ivson Cassiano de Oliveira Santos
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil
| | - Ana Paula D'Alincourt Carvalho-Assef
- Laboratório de Pesquisa em Infecção Hospitalar, Oswaldo Cruz Institute, Fiocruz, Avenida Brasil 4365, Manguinhos, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil.
| |
Collapse
|
11
|
Jaiswal SR, Bhakuni P, Bhagwati G, Joy A, Chakrabarti A, Chakrabarti S. Impact of Preemptive Granulocyte Infusions During Febrile Neutropenia in Patients Colonized with Carbapenem-Resistant Gram-Negative Bacteria Undergoing Haploidentical Transplantation. Biol Blood Marrow Transplant 2019; 25:1621-1628. [DOI: 10.1016/j.bbmt.2019.04.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022]
|
12
|
Neves PR, Perdigão Neto LV, Ruedas Martins RC, Ramos JF, Leite G, Rossi F, Sanabani SS, Rocha V, Batista MV, Guimaraes T, Levin AS, Costa SF. Carbapenem-resistant Pseudomonas aeruginosa carrying bla VIM-36 assigned to ST308: Indicated non-virulence in a Galleria mellonella model. J Glob Antimicrob Resist 2018; 16:92-97. [PMID: 30244038 DOI: 10.1016/j.jgar.2018.09.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 08/23/2018] [Accepted: 09/06/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVES Based on pulsed-field gel electrophoresis (PFGE) profile, whole-genome sequencing (WGS) of eight carbapenem-resistant Pseudomonas aeruginosa isolates from a bone marrow transplant unit in São Paulo, Brazil, was performed to investigate the presence of resistance and virulence genes as well as to determine the sequence type (ST) by multilocus sequence typing (MLST). METHODS The initial phenotypic susceptibility pattern of the isolates was determined by VITEK®2. Minimum inhibitory concentrations (MICs) were determined by the broth microdilution method for amikacin, meropenem and colistin. WGS was performed using an Illumina MiSeq system. A Galleria mellonella infection model was used to evaluate the virulence of the strains. RESULTS WGS demonstrated that mutations in genes encoding outer membrane proteins and efflux pumps in an isolate harbouring blaVIM-36 (ST308) differed from those in isolates harbouring blaSPM (ST277). The mexT gene harboured a mutation resulting in a frameshift in all isolates; in addition, the oprD gene of the blaVIM-36-carrying isolate had an insertion leading to a frameshift. Virulence genes did not differ between ST277 and ST308 strains. Moreover, only two isolates harbouring blaSPM showed virulence in the G. mellonella model, killing 100% of larvae after 18-24h. CONCLUSIONS P. aeruginosa carrying blaVIM-36 belonging to ST308 was identified for the first time in our hospital. Although the virulence gene profiles were similar in isolates carrying blaSPM and the isolate carrying blaVIM-36, only two isolates harbouring blaSPM showed virulence in the G. mellonella model.
Collapse
Affiliation(s)
- Patrícia R Neves
- Department of Infectious Diseases and LIM-54, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | | | - Roberta Cristina Ruedas Martins
- Department of Infectious Diseases and LIM-54, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Jéssica F Ramos
- Department of Infectious Diseases and LIM-54, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Gleice Leite
- Department of Infectious Diseases and LIM-54, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Flavia Rossi
- Laboratory of Microbiology, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Sabri Saeed Sanabani
- Laboratory of Medical Investigation 56 (LIM-56), Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Vanderson Rocha
- Bone Marrow Transplant Unit, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Marjorie Vieira Batista
- Department of Infectious Diseases and LIM-54, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil
| | - Thais Guimaraes
- Department of Infection Control, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Anna S Levin
- Department of Infectious Diseases and LIM-54, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil; Department of Infection Control, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil
| | - Sílvia F Costa
- Department of Infectious Diseases and LIM-54, Institute of Tropical Medicine of São Paulo, University of São Paulo, São Paulo, Brazil; Department of Infection Control, Hospital das Clínicas, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
13
|
Wastewater drains: epidemiology and interventions in 23 carbapenem-resistant organism outbreaks. Infect Control Hosp Epidemiol 2018; 39:972-979. [DOI: 10.1017/ice.2018.138] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractFor many years, patient-area wastewater drains (ie, sink and shower drains) have been considered a potential source of bacterial pathogens that can be transmitted to patients. Recently, evolving genomic epidemiology tools combined with new insights into the ecology of wastewater drain (WWD) biofilm have provided new perspectives on the clinical relevance and hospital-associated infection (HAI) transmission risks related to these fixtures. To further clarify the clinical relevance of WWD-associated pathogen transmission, reports of outbreaks attributed to WWDs were selected for review that (1) investigated the outbreak epidemiology of WWD-associated transmission of bacterial pathogens, (2) utilized advanced microbiologic methods to establish clonality of outbreak pathogens and/or resistance genes, or (3) described interventions implemented to mitigate transmission of the outbreak pathogens from WWDs. These reports were collated, compared, and analyzed, and the results are presented here.
Collapse
|