1
|
Farias BO, Montenegro KS, Nascimento APA, Magaldi M, Gonçalves-Brito AS, Flores C, Moreira TC, Neves FPG, Bianco K, Clementino MM. First Report of a Wastewater Treatment-Adapted Enterococcus faecalis ST21 Harboring vanA Gene in Brazil. Curr Microbiol 2023; 80:313. [PMID: 37542533 DOI: 10.1007/s00284-023-03418-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/14/2023] [Indexed: 08/07/2023]
Abstract
Enterococcus faecalis has emerged as an important opportunistic pathogen due to its increasing resistance to antimicrobials, mainly to vancomycin, which leads substantial cases of therapeutic failures. Wastewater treatment plants (WWTP), in turn, are considered hotpots in the spread of antimicrobial resistance according to One Health perspective. In this study, we present the first report of a vancomycin-resistant E. faecalis strain recovered from treated effluent in Brazil. For this purpose, the whole-genome sequencing (WGS) was carried out aiming to elucidate its molecular mechanisms of antimicrobial resistance and its phylogenetic relationships amongst strains from other sources and countries. According to Multilocus Sequence Typing (MLST) analysis this strain belongs to ST21. The WGS pointed the presence of vanA operon, multiple antibiotic resistance and virulence genes, and a significant pathogenic potential for humans. The phylogenomic analysis of E. faecalis 6805 was performed with ST21 representatives from the PubMLST database, including the E. faecalis IE81 strain from clinical sample in Brazil, which had its genome sequenced in this study. Our results demonstrated a strain showing resistance to vancomycin in treated effluent. To the best of our knowledge, this is an unprecedented report of vanA-carrying E. faecalis ST21. Furthermore, it is the first description of a vanA-harboring strain of this species from environmental sample in Brazil. Our data highlight the role of WWTP in the spread of AMR, since these environments are favorable for the selection of multidrug-resistant pathogens and the treated effluents, carrying antibiotic resistance genes, are directed to receiving water bodies.
Collapse
Affiliation(s)
- Beatriz O Farias
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, 4365, Brazil
| | - Kaylanne S Montenegro
- Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Ana Paula A Nascimento
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Mariana Magaldi
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Andressa S Gonçalves-Brito
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, 4365, Brazil
| | - Claudia Flores
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Thais C Moreira
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
| | - Felipe P G Neves
- Departamento de Microbiologia E Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Alameda Barros Terra, S/N. São Domingos, Niterói, RJ, 24020-150, Brazil
| | - Kayo Bianco
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil.
- Fiocruz Genomic Network, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, 4365, Brazil.
- COVID-19 Monitoring Network in Wastewater, São Paulo, Brazil.
| | - Maysa M Clementino
- Instituto Nacional de Controle de Qualidade Em Saúde, Fundação Oswaldo Cruz, Avenida Brasil, 4365, Manguinhos, Rio de Janeiro, RJ, Brazil
- Fiocruz Genomic Network, Oswaldo Cruz Foundation - FIOCRUZ, Rio de Janeiro, RJ, 4365, Brazil
- COVID-19 Monitoring Network in Wastewater, São Paulo, Brazil
| |
Collapse
|
2
|
Yao H, Jiang J, Wang H, Wei T, Sangeetha T, Sun P, Jia F, Liu F, Fang F, Guo J. An emerging unrated mobile reservoir for antibiotic resistant genes: Does transportation matter to the spread. ENVIRONMENTAL RESEARCH 2022; 213:113634. [PMID: 35697082 DOI: 10.1016/j.envres.2022.113634] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/22/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
The regional distribution of antibiotic resistance genes has been caused by the use and preference of antibiotics. Not only environmental factors, but also the population movement associated with transportation development might have had a great impact, but yet less is known regarding this issue. This research study has investigated and reported that the high-speed railway train was a possible mobile reservoir of bacteria with antibiotic resistance, based on the occurrence, diversity, and abundance of antibiotic resistant bacteria (ARB), antibiotic resistance genes (ARGs), and mobile gene elements (MGEs) in untreated train wastewater. High-throughput 16S rRNA sequencing analyses have indicated that opportunistic pathogens like Pseudomonas and Enterococcuss were the predominant bacteria in all samples, especially in cultivable multi-antibiotic resistant bacteria. The further isolated Enterococcus faecalis and Enterococcus faecium exhibited multi-antibiotic resistance ability, potentially being an indicator for disinfection proficiency. Positive correlations amongst ARGs and MGEs were observed, such as between intI1 and tetW, tetA, blaTEM, among Tn916/154 and mefA/F, qnrS, implying a broad dissemination of multi-ARGs during transportation. The study findings suggested that the high-speed railway train wastewater encompassed highly abundant antibiotic-resistant pathogens, and the wastewater discharge without effective treatment may pose severe hazards to human health and ecosystem safety.
Collapse
Affiliation(s)
- Hong Yao
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| | - Jie Jiang
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Hui Wang
- SINOPEC Research Institute of Petroleum Processing, Beijing, 100083, China
| | - Ting Wei
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Thangavel Sangeetha
- Research Center of Energy Conservation for New Generation of Residential, Commercial, and Industrial Sectors, Department of Energy and Refrigerating Air-Conditioning Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Peizhe Sun
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China; School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Fangxu Jia
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Fang Liu
- Beijing International Scientific and Technological Cooperation Base of Water Pollution Control Techniques for Antibiotics and Resistance Genes, Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Fang Fang
- College of Life Sciences and Bioengineering, Beijing Jiaotong University, Beijing, 100044, China
| | - Jianhua Guo
- Advanced Water Management Centre (AWMC), University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| |
Collapse
|
3
|
Torres-Betancourt JA, Hernandez-Delgadillo R, Flores-Treviño JJ, Solís-Soto JM, Pineda-Aguilar N, Nakagoshi-Cepeda MAA, Isela Sánchez-Nájera R, Chellam S, Cabral-Romero C. Antimicrobial potential of AH Plus supplemented with bismuth lipophilic nanoparticles on E. faecalis isolated from clinical isolates. J Appl Biomater Funct Mater 2022; 20:22808000211069221. [PMID: 35114826 DOI: 10.1177/22808000211069221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The objective of this study was to determine the antimicrobial potential of AH plus supplemented with bismuth lipophilic nanoparticles (BisBAL NPs) on the growth of Enterococcus faecalis isolated from patients with endodontic infections. BisBAL NPs, synthesized with the colloidal method, were characterized, in its pure form or AH Plus-absorbed, by energy-dispersive X-ray spectroscopy and scanning electron microscopy (EDS-SEM). Antimicrobial activity was evaluated with disc diffusion assays, and antibiofilm activity with fluorescence microscopy. BisBAL NP-supplemented AH Plus had a 4.9 times higher antimicrobial activity than AH Plus alone (p = 0.0001). In contrast to AH Plus alone, AH Plus supplemented with BisBAL NP inhibited E. faecalis biofilm formation. The sealing properties of AH plus were not modified by the incorporation of BisBAL NPs, which was demonstrated by a 12-day split-chamber leakage assay with daily inoculation, which was used to evaluate the possible filtration of E. faecalis. Finally, BisBAL NP-supplemented AH plus-BisBAL NPs was not cytotoxic for cultured human gingival fibroblasts. Their viability was 83.7% to 89.9% after a 24-h exposure to AH Plus containing 50 and 10 µM BisBAL NP, respectively. In conclusion, BisBAL NP-supplemented AH Plus constitutes an innovative nanomaterial to prevent re-infection in endodontic patients without cytotoxic effects.
Collapse
Affiliation(s)
| | - Rene Hernandez-Delgadillo
- Universidad Autónoma de Nuevo león, UANL, Facultad de Odontología, Laboratorio de Biología Molecular, Monterrey, Nuevo León, México
| | - Jorge Jaime Flores-Treviño
- Universidad Autónoma de Nuevo león, UANL, Facultad de Odontología, Laboratorio de Biología Molecular, Monterrey, Nuevo León, México
| | - Juan Manuel Solís-Soto
- Universidad Autónoma de Nuevo león, UANL, Facultad de Odontología, Laboratorio de Biología Molecular, Monterrey, Nuevo León, México
| | - Nayely Pineda-Aguilar
- Centro de Investigaciones en Materiales Avanzados, CIMAV Unidad Monterrey, Nuevo León, México
| | | | - Rosa Isela Sánchez-Nájera
- Universidad Autónoma de Nuevo león, UANL, Facultad de Odontología, Laboratorio de Biología Molecular, Monterrey, Nuevo León, México
| | | | - Claudio Cabral-Romero
- Universidad Autónoma de Nuevo león, UANL, Facultad de Odontología, Laboratorio de Biología Molecular, Monterrey, Nuevo León, México
| |
Collapse
|
4
|
Ayobami O, Willrich N, Reuss A, Eckmanns T, Markwart R. The ongoing challenge of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in Europe: an epidemiological analysis of bloodstream infections. Emerg Microbes Infect 2020; 9:1180-1193. [PMID: 32498615 PMCID: PMC7448851 DOI: 10.1080/22221751.2020.1769500] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 05/11/2020] [Indexed: 12/29/2022]
Abstract
Vancomycin-resistant enterococci infections are of great public health significance due to limited therapeutic options. We investigated epidemiological trends and risk factors of vancomycin resistance in enterococci isolates from patients with bloodstream infections in the EU/EEA from 2012 to 2018. Routine vancomycin susceptibility data of clinical E. faecium (n = 67,022) and E. faecalis (n = 103,112) blood isolates from the European Antimicrobial Resistance Surveillance Network were analysed using descriptive statistics and multivariable regression analyses. In Europe, proportions of vancomycin-resistant E. faecium (VREFm) increased from 8.1% (95%CI 6.7-9.7%) in 2012 to 19.0% (95%CI 16.8-21.5%) in 2018. Rising VREFm proportions were observed across all European regions, both genders and all age groups except children and adolescents (1-19 years). Adults (20-59 years) and elderly (≥60 years) had an increased likelihood of VREFm compared to children and adolescents (1-19 years) (OR: 1.99 [95%CI 1.42-2.79, p < 0.001] and OR: 1.56 [95%CI 1.09-2.23, p = 0.014], respectively). Inpatients hospital units, including internal medicine and ICUs, were associated with an increased likelihood of VREFm (OR: 2.29 (95%CI 1.58-3.32, p < 0.001) compared to the emergency department which reflects patients with community origin of E. faecium infections. The mean proportion of vancomycin-resistant E. faecalis in Europe was found to be low (1.1% [95%CI 0.9-1.4%]). Local and regional authorities should intensify efforts directed at diagnostic and antimicrobial stewardship for vancomycin and all last resort drugs for the management of VREFm, particularly for hospitalized elderly patients.
Collapse
Affiliation(s)
- Olaniyi Ayobami
- Unit 37: Nosocomial Infections, Surveillance of Antimicrobial Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| | - Niklas Willrich
- Unit 37: Nosocomial Infections, Surveillance of Antimicrobial Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| | - Annicka Reuss
- Unit 37: Nosocomial Infections, Surveillance of Antimicrobial Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| | - Tim Eckmanns
- Unit 37: Nosocomial Infections, Surveillance of Antimicrobial Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| | - Robby Markwart
- Unit 37: Nosocomial Infections, Surveillance of Antimicrobial Resistance and Consumption, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
5
|
Dezhurko-Korol VA, Novozhilova NE, Makeeva IM, Arkhipova AY, Moisenovich MM, Akhmadishina LV, Lukashev AN, Semenov AM, Leontieva MR, Byakova SF. The influence of centrifugation and inoculation time on the number, distribution, and viability of intratubular bacteria and surface biofilm in deciduous and permanent bovine dentin. Arch Oral Biol 2020; 114:104716. [PMID: 32325265 DOI: 10.1016/j.archoralbio.2020.104716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/11/2020] [Accepted: 03/27/2020] [Indexed: 11/27/2022]
Abstract
The present study aimed to assess the influence of centrifugation and inoculation time on the number, distribution, and viability of intratubular bacteria and surface monospecies E. faecalis biofilm. MATERIALS AND METHODS Forty-four semicylindrical specimens cut from primary (n = 22) and permanent (n = 22) bovine teeth were randomly assigned to the experimental groups. Teeth of each type were inoculated with E. faecalis with and without centrifugation for 1 and 14 days. The number, localization, viability of bacteria and depth of their penetration were assessed with bacterial culturing of dentin shavings, scanning electron microscopy (SEM) and confocal laser electron microscopy (CLSM). Three-way ANOVA with post-hoc Tukey test were used to assess the influence of different experimental setups on dentin infection. RESULTS Severe dentin infection was observed in permanent and deciduous teeth after centrifugation and 1-day incubation: bacteria reached the full length of dentinal tubules and colony-forming units were too numerous to count. The volume of green fluorescence didn't differ significantly in permanent teeth compared with deciduous (p = 1.0). After 1-day stationary inoculation, small number of cultivable bacteria and few viable bacteria in dentinal tubules were found in both groups. After 14-day stationary inoculation, the dentin infection according to CLSM was deeper in deciduous teeth compared with permanent (p = 0.006 and p = 0.019 for centrifugation and stationary inoculation, respectively). CONCLUSION The most even and dense dentin infection was observed in primary and permanent bovine teeth after centrifugation and 1-day inoculation, and in deciduous teeth after 14-day stationary inoculation.
Collapse
Affiliation(s)
- Viktoria A Dezhurko-Korol
- Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Mojaiskii val str., 11, 121059б, Moscow, Russia
| | - Nina E Novozhilova
- Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Mojaiskii val str., 11, 121059б, Moscow, Russia.
| | - Irina M Makeeva
- Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Mojaiskii val str., 11, 121059б, Moscow, Russia
| | - Anastasia Yu Arkhipova
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1-12, 119991, Moscow, Russia
| | - Mihail M Moisenovich
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1-12, 119991, Moscow, Russia
| | - Ludmila V Akhmadishina
- E.I. Martsinovsky Institute of Medical Parasitology and Tropical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), M. Pirogovskaya str., 20-1, 119435, Moscow, Russia
| | - Alexander N Lukashev
- E.I. Martsinovsky Institute of Medical Parasitology and Tropical Medicine, I.M. Sechenov First Moscow State Medical University (Sechenov University), M. Pirogovskaya str., 20-1, 119435, Moscow, Russia
| | - Alexander M Semenov
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1-12, 119991, Moscow, Russia
| | - Maria R Leontieva
- Department of Biology, Lomonosov Moscow State University, Leninskie Gory, 1-12, 119991, Moscow, Russia
| | - Svetlana F Byakova
- Institute of Dentistry, I.M. Sechenov First Moscow State Medical University (Sechenov University), Mojaiskii val str., 11, 121059б, Moscow, Russia
| |
Collapse
|