1
|
Rakovitsky N, Lurie-Weinberger MN, Temkin E, Hameir A, Efrati-Epchtien R, Wulffhart L, Keren Paz A, Schwartz D, Carmeli Y. Evaluation of the CARBA PAcE test, a colorimetric imipenem hydrolysis test for rapid detection of carbapenemase activity. Microbiol Spectr 2024; 12:e0089124. [PMID: 39440983 PMCID: PMC11619416 DOI: 10.1128/spectrum.00891-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/22/2024] [Indexed: 10/25/2024] Open
Abstract
There is an urgent need for accurate and fast diagnostic tests to identify carbapenemase-producing bacteria. Here, we evaluated a colorimetric imipenem hydrolysis test, called the CARBA PAcE test, to detect carbapenemase-producing Gram-negative bacteria (GNB). We tested a collection of 270 GNB isolates with a characterized carbapenemase content. Our testing set included 205 carbapenemase-producing, carbapenemase-resistant Enterobacterales (CP CRE) with 40 Klebsiella pneumoniae carbapenemase (KPC), 49 New Delhi metallo beta lactamase (NDM), 49 OXA-48-like, 15 Verona integron-mediated metallo-β-lactamase (VIM), three IMP, 43 IMI, six isolates producing more than one carbapenemase, and 65 non-carbapenemase-producing Enterobacterales (20 ESBL producers, 35 non-carbapenemase-producing, carbapenem-resistant [non-CP CRE], and 10 carbapenem-susceptible Enterobacterales [non-CP, non-CSE, third-generation cephalosporin and carbapenem susceptible]). We compared the performances of the CARBA PAcE test, the qualitative colorimetric β-CARBA test, and the modified CarbaNP test to a gold standard of carbapenemase gene detection by PCR. Specificities of all tests were high: 95.4% (62/65) for CARBA PAcE test, 98.5% (64/65) for β-CARBA test, and 100% (65/65) for the modified CarbaNP test. Sensitivity varied by carbapenemase: all three tests had a sensitivity of 100% for NDM, VIM, and IMP and 97.5% for KPC. Sensitivity to detect IMI was 0% for the CARBA PAcE and β-CARBA tests and 11.6% for the modified CarbaNP test. Sensitivity to detect OXA-48-like was 89.7% for the CARBA PAcE test, 87.7% for the β-CARBA test, and 14.2% for the modified CarbaNP test. Reading the results of the CARBA PAcE assay was difficult. The CARBA PAcE assay is highly sensitive for detecting NDM, VIM, IMP, and KPC, but slightly less sensitive for OXA-48-like. It does not detect IMI. It is highly specific, and its overall diagnostic accuracy is similar to that of β-CARBA. Its operational advantages are rapid turnaround time, ease of use, and long shelf life, but reading of results is subjective.IMPORTANCEWe evaluated the ability of the CARBA PAcE test to detect carbapenemases in 274 Gram-negative isolates with a known carbapenemase content. Specificity was high for all carbapenemases tested (96.9%). Sensitivity was high for KPC, NDM, VIM, and IMP (97.5-100%); but lower for OXA-48-like (89.7%). Activity of IMI could not be detected. Taken together, our results indicate that CARBA PAcE is a useful alternative in regions where NDM and KPC are predominant. The limitations of the test are difficulty in reading results and incompatibility with mSuperCARBA.
Collapse
Affiliation(s)
- Nadya Rakovitsky
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Mor N. Lurie-Weinberger
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Elizabeth Temkin
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Amichay Hameir
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Reut Efrati-Epchtien
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Liat Wulffhart
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Alona Keren Paz
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - David Schwartz
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
| | - Yehuda Carmeli
- National Institute for Antibiotic Resistance and Infection Control, Israel Ministry of Health, Tel Aviv, Israel
- School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
2
|
Li F, Zheng Y, Liu Y, Zhao C, Zhu J, Hang Y, Fang Y, Hu L. Gas Chromatography-Ion Mobility Spectrometry Reveals Acetoin as a Biomarker for Carbapenemase-Producing Klebsiella pneumoniae. Med Sci Monit 2024; 30:e944507. [PMID: 39080926 DOI: 10.12659/msm.944507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024] Open
Abstract
BACKGROUND This study aimed to detect the volatile organic compound (VOC), 3-hydroxy-2-butanone (acetoin) using gas chromatography-ion mobility spectrometry (GC-IMS) in antimicrobial-resistant Klebsiella pneumoniae (K. pneumoniae) carbapenemase (KPC)-producing bacteria. MATERIAL AND METHODS Using stromal fluid of blood culture bottles (BacT/ALERT® SA) as the medium, 3-hydroxy-2-butanone (acetoin) released by K. pneumoniae during growth was detected using GC-IMS. The impact of imipenem (IPM) and carbapenemase inhibitors [avibactam sodium or pyridine-2,6-dicarboxylic acid (DPA)] on the emission of 3-hydroxy-2-butanone (acetoin) from various carbapenemase-producing K. pneumoniae was further investigated. Subsequently, VOCal software was used to generate a pseudo-3D plot of 3-hydroxy-2-butanone (acetoin), and the relative peak volumes were exported for data analysis. Standard strains served as references, and the findings were validated with clinical isolates. RESULTS The pattern of temporal changes in the 3-hydroxy-2-butanone (acetoin) release from K. pneumoniae in the absence of IPM was consistent with the growth curve. After the IPM addition, carbapenemase-positive strains released significantly higher contents of 3-hydroxy-2-butanone (acetoin) than carbapenemase-negative strains at the late exponential growth phase (T2). Notably, adding avibactam sodium significantly decreased the 3-hydroxy-2-butanone (acetoin) content released from the class A carbapenemase-producing strains as compared to the absence of the carbapenemase inhibitor. Conversely, adding DPA significantly decreased the 3-hydroxy-2-butanone (acetoin) content released from the class B carbapenemase-producing strains (both standard and clinical strains, all P<0.05). CONCLUSIONS This study demonstrated the potential of 3-hydroxy-2-butanone (acetoin) as a VOC biomarker for detecting carbapenemase-producing K. pneumoniae, as revealed by GC-IMS analysis.
Collapse
Affiliation(s)
- Fuxing Li
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yunwei Zheng
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yanhua Liu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chuwen Zhao
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Junqi Zhu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Yaping Hang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Youling Fang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- School of Public Health, Nanchang University, Nanchang, Jiangxi, China
| | - Longhua Hu
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
3
|
Studentova V, Sudova V, Bitar I, Paskova V, Moravec J, Pompach P, Volny M, Novak P, Hrabak J. Preferred β-lactone synthesis can explain high rate of false-negative results in the detection of OXA-48-like carbapenemases. Sci Rep 2022; 12:22235. [PMID: 36564543 PMCID: PMC9789108 DOI: 10.1038/s41598-022-26735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The resistance to carbapenems is usually mediated by enzymes hydrolyzing β-lactam ring. Recently, an alternative way of the modification of the antibiotic, a β-lactone formation by OXA-48-like enzymes, in some carbapenems was identified. We focused our study on a deep analysis of OXA-48-like-producing Enterobacterales, especially strains showing poor hydrolytic activity. In this study, well characterized 74 isolates of Enterobacterales resistant to carbapenems were used. Carbapenemase activity was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), liquid chromatography/mass spectrometry (LC-MS), Carba-NP test and modified Carbapenem Inactivation Method (mCIM). As meropenem-derived β-lactone possesses the same molecular weight as native meropenem (MW 383.46 g/mol), β-lactonization cannot be directly detected by MALDI-TOF MS. In the spectra, however, the peaks of m/z = 340.5 and 362.5 representing decarboxylated β-lactone and its sodium adduct were detected in 25 out of 35 OXA-48-like producers. In the rest 10 isolates, decarboxylated hydrolytic product (m/z = 358.5) and its sodium adduct (m/z = 380.5) have been detected. The peak of m/z = 362.5 was detected in 3 strains co-producing OXA-48-like and NDM-1 carbapenemases. The respective signal was identified in no strain producing class A or class B carbapenemase alone showing its specificity for OXA-48-like carbapenemases. Using LC-MS, we were able to identify meropenem-derived β-lactone directly according to the different retention time. All strains with a predominant β-lactone production showed negative results of Carba NP test. In this study, we have demonstrated that the strains producing OXA-48-like carbapenemases showing false-negative results using Carba NP test and MALDI-TOF MS preferentially produced meropenem-derived β-lactone. We also identified β-lactone-specific peak in MALDI-TOF MS spectra and demonstrated the ability of LC-MS to detect meropenem-derived β-lactone.
Collapse
Affiliation(s)
- Vendula Studentova
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Microbiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Vendula Sudova
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Clinical Biochemistry and Haematology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Ibrahim Bitar
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Microbiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Veronika Paskova
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Microbiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Jiri Moravec
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Petr Pompach
- grid.418800.50000 0004 0555 4846Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Michael Volny
- grid.418800.50000 0004 0555 4846Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Petr Novak
- grid.418800.50000 0004 0555 4846Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jaroslav Hrabak
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Microbiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| |
Collapse
|
4
|
Abstract
The World Health Organization describes antimicrobial resistance as one of the biggest threats to global health, food security, and development with indiscriminate use of antimicrobials globally driving the emergence of multidrug-resistant bacteria, resistant to 60% of antimicrobials in some countries. Infections with multidrug-resistant organisms (MDROs) have increased in recent decades in patients with cirrhosis, who are frequently prescribed antibiotics, regularly undergo invasive procedures such as large volume paracentesis, and have recurrent hospitalizations, posing a particular risk in this already immunocompromised cohort of patients. In this review, we explore mechanisms underlying this vulnerability to MDRO infection; the effect of bacterial infections on disease course in cirrhosis; prevalence of MDROs in patients with cirrhosis; outcomes following MDRO infection; fungal infections; antibiotics and their efficacy; and management of MDRO infections in terms of detection, antimicrobial and nonantimicrobial treatments, prophylaxis, antibiotic stewardship, the gut microbiome, and technological interventions.
Collapse
Affiliation(s)
- Charles E Gallaher
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Debbie L Shawcross
- Institute of Liver Studies, King's College Hospital NHS Foundation Trust, London, United Kingdom.,Institute of Liver Studies, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
5
|
Detection of Multidrug-Resistant Enterobacterales-From ESBLs to Carbapenemases. Antibiotics (Basel) 2021; 10:antibiotics10091140. [PMID: 34572722 PMCID: PMC8465816 DOI: 10.3390/antibiotics10091140] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 12/16/2022] Open
Abstract
Multidrug-resistant Enterobacterales (MDRE) are an emerging threat to global health, leading to rising health care costs, morbidity and mortality. Multidrug-resistance is commonly caused by different β-lactamases (e.g., ESBLs and carbapenemases), sometimes in combination with other resistance mechanisms (e.g., porin loss, efflux). The continuous spread of MDRE among patients in hospital settings and the healthy population require adjustments in healthcare management and routine diagnostics. Rapid and reliable detection of MDRE infections as well as gastrointestinal colonization is key to guide therapy and infection control measures. However, proper implementation of these strategies requires diagnostic methods with short time-to-result, high sensitivity and specificity. Therefore, research on new techniques and improvement of already established protocols is inevitable. In this review, current methods for detection of MDRE are summarized with focus on culture based and molecular techniques, which are useful for the clinical microbiology laboratory.
Collapse
|