1
|
Vanzolini T, Magnani M. Old and new strategies in therapy and diagnosis against fungal infections. Appl Microbiol Biotechnol 2024; 108:147. [PMID: 38240822 PMCID: PMC10799149 DOI: 10.1007/s00253-023-12884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/05/2023] [Accepted: 12/05/2023] [Indexed: 01/22/2024]
Abstract
Fungal infections represent a serious global health threat. The new emerging pathogens and the spread of different forms of resistance are now hardly challenging the tools available in therapy and diagnostics. With the commonly used diagnoses, fungal identification is often slow and inaccurate, and, on the other hand, some drugs currently used as treatments are significantly affected by the decrease in susceptibility. Herein, the antifungal arsenal is critically summarized. Besides describing the old approaches and their mechanisms, advantages, and limitations, the focus is dedicated to innovative strategies which are designed, identified, and developed to take advantage of the discrepancies between fungal and host cells. Relevant pathways and their role in survival and virulence are discussed as their suitability as sources of antifungal targets. In a similar way, molecules with antifungal activity are reported as potential agents/precursors of the next generation of antimycotics. Particular attention was devoted to biotechnological entities, to their novelty and reliability, to drug repurposing and restoration, and to combinatorial applications yielding significant improvements in efficacy. KEY POINTS: • New antifungal agents and targets are needed to limit fungal morbidity and mortality. • Therapeutics and diagnostics suffer of delays in innovation and lack of targets. • Biologics, drug repurposing and combinations are the future of antifungal treatments.
Collapse
Affiliation(s)
- Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy.
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029, Urbino, PU, Italy
| |
Collapse
|
2
|
Cen YK, He NY, Zhou WY, Liu ZQ, Zheng YG. Development of a yeast cell based method for efficient screening of high yield tacrolimus production strain. 3 Biotech 2024; 14:26. [PMID: 38169568 PMCID: PMC10757991 DOI: 10.1007/s13205-023-03870-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024] Open
Abstract
Tacrolimus (FK506) is a widely used and clinically important immunosuppressant drug that can be produced by fermentation of Streptomyces tsukubaensis. The industrial strains are typically obtained through multiple rounds of mutagenesis and screening, a labor-intensive process. We have established an efficient yeast cell based screening method for the evolutionary process of high-FK506-yielding strain. The S. tsukubaensis strains of different FK506 yields were tested for zone of growth inhibition of the wild type and calcineurin mutant (cnb1∆) yeast strains. We found that different FK506 yields correspond well to altered yeast growth inhibitions. Based on the combinational inhibition effects of FK506 with different antifungals that have been frequently reported, we also tested the zone of inhibition by addition of fluconazole, amphotericin B and caspofungin to the medium. In the end, for the best screening performance, we systemically evaluated the strategy when different yeast strains and different antifungals were used according to the clarity, size, and divergence of the inhibition circles. Using different yeast strains and antifungals, we successfully broadened the screening spectrum. An efficient high-FK506-yield S. tsukubaensis screening method has been established and optimized. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03870-y.
Collapse
Affiliation(s)
- Yu-Ke Cen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
- Engineering Research Center of Bioconversion and Bio Purification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Nai-Ying He
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
- Engineering Research Center of Bioconversion and Bio Purification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Wan-Ying Zhou
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
- Engineering Research Center of Bioconversion and Bio Purification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
- Engineering Research Center of Bioconversion and Bio Purification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 China
- Engineering Research Center of Bioconversion and Bio Purification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014 China
| |
Collapse
|
3
|
Tsai CS, Lee SSJ, Chen WC, Tseng CH, Lee NY, Chen PL, Li MC, Syue LS, Lo CL, Ko WC, Hung YP. COVID-19-associated candidiasis and the emerging concern of Candida auris infections. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2023; 56:672-679. [PMID: 36543722 PMCID: PMC9747227 DOI: 10.1016/j.jmii.2022.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 09/28/2022] [Accepted: 12/04/2022] [Indexed: 12/15/2022]
Abstract
The incidence of COVID-19-associated candidiasis (CAC) is increasing, resulting in a grave outcome among hospitalized patients with COVID-19. The most alarming condition is the increasing incidence of multi-drug resistant Candida auris infections among patients with COVID-19 worldwide. The therapeutic strategy towards CAC caused by common Candida species, such as Candida albicans, Candida tropicalis, and Candida glabrata, is similar to the pre-pandemic era. For non-critically ill patients or those with a low risk of azole resistance, fluconazole remains the drug of choice for candidemia. For critically ill patients, those with a history of recent azole exposure or with a high risk of fluconazole resistance, echinocandins are recommended as the first-line therapy. Several novel therapeutic agents alone or in combination with traditional antifungal agents for candidiasis are potential options in the future. However, for multidrug-resistant C. auris infection, only echinocandins are effective. Infection prevention and control policies, including strict isolation of the patients carrying C. auris and regular screening of non-affected patients, are suggested to prevent the spread of C. auris among patients with COVID-19. Whole-genome sequencing may be used to understand the epidemiology of healthcare-associated candidiasis and to better control and prevent these infections.
Collapse
Affiliation(s)
- Chin-Shiang Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin, Taiwan; Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Susan Shin-Jung Lee
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wan-Chen Chen
- Department of Pediatrics, Changhua Christian Children's Hospital, Changhua City, Taiwan
| | - Chien-Hao Tseng
- Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Nan-Yao Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Lin Chen
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Chi Li
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Shan Syue
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Lung Lo
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Center for Infection Control, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Yuan-Pin Hung
- Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan; Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|