1
|
Koeffer J, Kolb M, Sorel O, Ulekleiv C, Feenstra JDM, Eigner U. Clinical performance evaluation of TAQPATH Enteric Bacterial Select Panel for the detection of common enteric bacterial pathogens in comparison to routine stool culture and other qPCR-based diagnostic tests. Microbiol Spectr 2024; 12:e0317223. [PMID: 38054723 PMCID: PMC10783074 DOI: 10.1128/spectrum.03172-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/01/2023] [Indexed: 12/07/2023] Open
Abstract
IMPORTANCE Enteric bacterial infections caused by Salmonella, Shigella, pathogenic Escherichia coli, and Campylobacter represent one of the most common causes of infectious enteritis worldwide. The timely and accurate diagnosis of pathogens causing gastroenteritis is crucial for patient care, public health, and disease surveillance. While stool culture has long been the standard and highly specific method for detecting enteric pathogens, it is labor-intensive and time-consuming with limited sensitivity. To improve patient outcomes, there is a need to implement new cost-effective approaches for the detection of bacterial enteric pathogens with higher sensitivity and faster time to result. This study shows that multiplex real-time polymerase chain reaction-based tests, such as the TAQPATH Enteric Bacterial Select Panel, are accurate and cost-effective diagnostic alternatives for the detection and differentiation of the most common enteric bacterial pathogens, offering quicker time to result and higher sensitivity compared to routine stool culture.
Collapse
Affiliation(s)
- Jasmin Koeffer
- Department of Infectious Diseases, MVZ Labor Dr. Limbach & Kollegen GbR, Heidelberg, Germany
| | - Melissa Kolb
- Department of Infectious Diseases, MVZ Labor Dr. Limbach & Kollegen GbR, Heidelberg, Germany
| | - Oceane Sorel
- Thermo Fisher Scientific, South San Francisco, California, USA
| | | | | | - Ulrich Eigner
- Department of Infectious Diseases, MVZ Labor Dr. Limbach & Kollegen GbR, Heidelberg, Germany
| |
Collapse
|
2
|
Toriro R, Pallett S, Woolley S, Bennett C, Hale I, Heylings J, Wilkins D, Connelly T, Muia K, Avery P, Stuart A, Morgan L, Davies M, Nevin W, Quantick O, Robinson G, Elwin K, Chalmers R, Burns D, Beeching N, Fletcher T, O’Shea M. Outbreak of Diarrhea Caused by a Novel Cryptosporidium hominis Subtype During British Military Training in Kenya. Open Forum Infect Dis 2024; 11:ofae001. [PMID: 38250201 PMCID: PMC10798851 DOI: 10.1093/ofid/ofae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Background We report clinical, epidemiological, and laboratory features of a large diarrhea outbreak caused by a novel Cryptosporidium hominis subtype during British military training in Kenya between February and April 2022. Methods Data were collated from diarrhea cases, and fecal samples were analyzed on site using the multiplex polymerase chain reaction (PCR) BioFire FilmArray. Water was tested using Colilert kits (IDEXX, UK). DNA was extracted from feces for molecular characterization of Cryptosporidium A135, Lib13, ssu rRNA, and gp60 genes. Results One hundred seventy-two of 1200 (14.3%) personnel at risk developed diarrhea over 69 days. One hundred six primary fecal samples were tested, and 63/106 (59.4%; 95% CI, 0.49%-0.69%) were positive for Cryptosporidium spp. Thirty-eight had Cryptosporidium spp. alone, and 25 had Cryptosporidium spp. with ≥1 other pathogen. A further 27/106 (25.5%; 95% CI, 0.18%-0.35%) had non-Cryptosporidium pathogens only, and 16/106 (15.1%; 95% CI, 0.09%-0.23%) were negative. C. hominis was detected in 58/63 (92.1%) Cryptosporidium spp.-positive primary samples, but the others were not genotypable. Twenty-seven C. hominis specimens were subtypable; 1 was gp60 subtype IeA11G3T3, and 26 were an unusual subtype, ImA13G1 (GenBank accession OP699729), supporting epidemiological evidence suggesting a point source outbreak from contaminated swimming water. Diarrhea persisted for a mean (SD) of 7.6 (4.6) days in Cryptosporidium spp. cases compared with 2.3 (0.9) days in non-Cryptosporidium cases (P = .001). Conclusions Real-time multiplex PCR fecal testing was vital in managing this large cryptosporidiosis outbreak. The etiology of a rare C. hominis gp60 subtype emphasizes the need for more genotypic surveillance to identify widening host and geographic ranges of novel C. hominis subtypes.
Collapse
Affiliation(s)
- Romeo Toriro
- Army Medical Services, Robertson House, Royal Military Academy Sandhurst, Camberley, Surrey, UK
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| | - Scott Pallett
- Centre of Defence Pathology, Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Stephen Woolley
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
- Centre of Defence Pathology, Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Charlie Bennett
- Centre of Defence Pathology, Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Isra Hale
- 3 Medical Regiment, Fulwood Barracks, Preston, Lancashire, UK
| | - Jennifer Heylings
- 28 (C-CBRN) Engineer Regiment, Rock Barracks, Woodbridge, Suffolk, UK
| | - Daniel Wilkins
- 2nd Battalion the Rifles, Thiepval Barracks, Lisburn, UK
| | - Thomas Connelly
- 29 Public Health Division Medical Group, HQ 3 (UK) Division, Bulford, Wiltshire, UK
| | - Kennedy Muia
- British Army Training Unit (Kenya), Nanyuki, Kenya
| | - Patrick Avery
- Defence Primary Healthcare, Medical Centre, Nanyuki, Kenya
| | - Andrew Stuart
- Defence Primary Healthcare, Medical Centre, Nanyuki, Kenya
| | - Laura Morgan
- HQ 1st (UK) Division, Imphal Barracks, York, Yorkshire, UK
| | - Mark Davies
- British Army Training Unit (Kenya), Nanyuki, Kenya
| | - William Nevin
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| | | | - Guy Robinson
- CryptosporidiumReference Unit, Public Health Wales Microbiology, Singleton Hospital, Sketty, Swansea, Wales, UK
- Swansea University Medical School, Swansea, Wales, UK
| | - Kristin Elwin
- CryptosporidiumReference Unit, Public Health Wales Microbiology, Singleton Hospital, Sketty, Swansea, Wales, UK
| | - Rachel Chalmers
- CryptosporidiumReference Unit, Public Health Wales Microbiology, Singleton Hospital, Sketty, Swansea, Wales, UK
- Swansea University Medical School, Swansea, Wales, UK
| | - Daniel Burns
- Royal Centre for Defence Medicine, Birmingham, UK
| | - Nicholas Beeching
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
| | - Thomas Fletcher
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, Merseyside, UK
- Royal Centre for Defence Medicine, Birmingham, UK
| | - Matthew O’Shea
- Centre of Defence Pathology, Royal Centre for Defence Medicine, Queen Elizabeth Hospital Birmingham, Birmingham, UK
- Institute of Immunology and Immunotherapy, College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
4
|
Abstract
PURPOSE OF REVIEW Although Cryptosporidium detection and typing techniques have improved dramatically in recent years, relatively little research has been conducted on point of care (POC) detection and typing tools. Therefore, the main purpose of the present review is to summarize and evaluate recent and emerging POC diagnostic methods for Cryptosporidium spp. RECENT FINDINGS Microscopy techniques such as light-emitting diode fluorescence microscopy with auramine-phenol staining (LED-AP), still have utility for (POC) diagnostics but require fluorescent microscopes and along with immunological-based techniques, suffer from lack of specificity and sensitivity. Molecular detection and typing tools offer higher sensitivity, specificity and speciation, but are currently too expensive for routine POC diagnostics. Isothermal amplification methods such as loop-mediated isothermal amplification (LAMP) or recombinase polymerase amplification (RPA) including a commercially available LAMP kit have been developed for Cryptosporidium but are prone to false positives. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas diagnostic technologies (CRISPRDx) have recently been combined with isothermal amplification to increase its specificity and sensitivity for detection and typing. Other emerging technologies including amplification-free CRISPR detection methods are currently being developed for Cryptosporidium using a smartphone to read the results. SUMMARY Many challenges are still exist in the development of POC diagnostics for Cryptosporidium. The ideal POC tool would be able to concentrate the pathogen prior to detection and typing, which is complicated and research in this area is still very limited. In the short-term, CRISPR-powered isothermal amplification lateral flow tools offer the best opportunity for POC Cryptosporidium species and subtype detection, with a fully integrated autonomous biosensor for the long-term goal.
Collapse
|