1
|
Yihunie FB, Belete MA, Fentahun G, Dubie T. Molecular detection and antibiogram of Shiga toxin-producing Escherichia coli (STEC) from raw milk in and around Bahir Dar town dairy farms, Ethiopia. Heliyon 2024; 10:e28839. [PMID: 38601628 PMCID: PMC11004750 DOI: 10.1016/j.heliyon.2024.e28839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 03/16/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Illnesses associated with consuming infected milk and milk products are a widespread problem in low and middle-income countries. Shiga toxin-producing Escherichia coli (STEC) is a bacterium commonly found in raw milk and causes foodborne diseases ranging from mild diarrhea to severe hemorrhagic colitis and hemolytic uremic syndrome. This study aimed to investigate the virulence gene and antimicrobial resistance profiles of Shiga toxin-producing E. coli strains isolated from raw milk in dairy farms in and around Bahir Dar town. Raw milk samples (n = 128) collected from December 2021 to July 2022 were cultured, and E. coli strains were isolated using standard methods. Shiga toxin-producing E. coli strains were identified genotypically by the presence of the virulence markers using a single-plex polymerase chain reaction. The antibiotic susceptibility testing of Shiga toxin-producing E. coli isolates was done by the agar disk diffusion method. In total, 32 E. coli isolates were recovered from milk samples from lactating animals. PCR screening of these isolates resulted in 19 (59.3%) positives for Shiga toxin-producing E. coli. The stx2 gene was detected in 53% of cases, followed by stx1 (31%) and eae (16%. The STEC isolates were highly sensitive to ciprofloxacin (94.7%) and kanamycin (89.5%), while exhibiting significant resistance to amoxicillin (89.5%) and streptomycin (73.7%). The present study points out the occurrence of virulent and antibiotic-resistant Shiga toxin-producing E. coli strains in raw milk that could pose a potential risk to public health. Further analysis by whole genome sequencing is necessary for an in-depth assessment and understanding of their virulence and resistance factors. Moreover, large-scale studies are needed to identify the prevalence and potential risk factors and to prevent the spread of antibiotic-resistant STEC strains in the milk production chain.
Collapse
Affiliation(s)
| | - Mequanint Addisu Belete
- Department of Veterinary Laboratory Technology, College of Agriculture and Natural Resource, Debre Markos University, Debre Markos, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Gizachew Fentahun
- College of Veterinary Medicine and Animal Science, Samara University, Semera, Ethiopia
| | - Teshager Dubie
- College of Veterinary Medicine and Animal Science, Samara University, Semera, Ethiopia
| |
Collapse
|
2
|
Moinet M, Rogers L, Biggs P, Marshall J, Muirhead R, Devane M, Stott R, Cookson A. High-resolution genomic analysis to investigate the impact of the invasive brushtail possum (Trichosurus vulpecula) and other wildlife on microbial water quality assessments. PLoS One 2024; 19:e0295529. [PMID: 38236841 PMCID: PMC10796070 DOI: 10.1371/journal.pone.0295529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/21/2023] [Indexed: 01/22/2024] Open
Abstract
Escherichia coli are routine indicators of fecal contamination in water quality assessments. Contrary to livestock and human activities, brushtail possums (Trichosurus vulpecula), common invasive marsupials in Aotearoa/New Zealand, have not been thoroughly studied as a source of fecal contamination in freshwater. To investigate their potential role, Escherichia spp. isolates (n = 420) were recovered from possum gut contents and feces and were compared to those from water, soil, sediment, and periphyton samples, and from birds and other introduced mammals collected within the Mākirikiri Reserve, Dannevirke. Isolates were characterized using E. coli-specific real-time PCR targeting the uidA gene, Sanger sequencing of a partial gnd PCR product to generate a gnd sequence type (gST), and for 101 isolates, whole genome sequencing. Escherichia populations from 106 animal and environmental sample enrichments were analyzed using gnd metabarcoding. The alpha diversity of Escherichia gSTs was significantly lower in possums and animals compared with aquatic environmental samples, and some gSTs were shared between sample types, e.g., gST535 (in 85% of samples) and gST258 (71%). Forty percent of isolates gnd-typed and 75% of reads obtained by metabarcoding had gSTs shared between possums, other animals, and the environment. Core-genome single nucleotide polymorphism (SNP) analysis showed limited variation between several animal and environmental isolates (<10 SNPs). Our data show at an unprecedented scale that Escherichia clones are shared between possums, other wildlife, water, and the wider environment. These findings support the potential role of possums as contributors to fecal contamination in Aotearoa/New Zealand freshwater. Our study deepens the current knowledge of Escherichia populations in under-sampled wildlife. It presents a successful application of high-resolution genomic methods for fecal source tracking, thereby broadening the analytical toolbox available to water quality managers. Phylogenetic analysis of isolates and profiling of Escherichia populations provided useful information on the source(s) of fecal contamination and suggest that comprehensive invasive species management strategies may assist in restoring not only ecosystem health but also water health where microbial water quality is compromised.
Collapse
Affiliation(s)
- Marie Moinet
- Hopkirk Research Institute, AgResearch, Palmerston North, New Zealand
| | - Lynn Rogers
- Hopkirk Research Institute, AgResearch, Palmerston North, New Zealand
| | - Patrick Biggs
- mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Jonathan Marshall
- School of Mathematical and Computational Sciences, Massey University, Palmerston North, New Zealand
| | | | - Megan Devane
- Institute of Environmental Science and Research Ltd. (ESR), Christchurch, New Zealand
| | - Rebecca Stott
- National Institute of Water and Atmospheric Research (NIWA), Hamilton, New Zealand
| | - Adrian Cookson
- Hopkirk Research Institute, AgResearch, Palmerston North, New Zealand
- mEpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
3
|
Comprehensive study of common Enterogenic E. coli in Iran during 2010–2020: A systematic review. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Im SB, Gupta S, Jain M, Chande AT, Carleton HA, Jordan IK, Rishishwar L. Genome-Enabled Molecular Subtyping and Serotyping for Shiga Toxin-Producing Escherichia coli. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.752873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Foodborne pathogens are a major public health burden in the United States, leading to 9.4 million illnesses annually. Since 1996, a national laboratory-based surveillance program, PulseNet, has used molecular subtyping and serotyping methods with the aim to reduce the burden of foodborne illness through early detection of emerging outbreaks. PulseNet affiliated laboratories have used pulsed-field gel electrophoresis (PFGE) and immunoassays to subtype and serotype bacterial isolates. Widespread use of serotyping and PFGE for foodborne illness surveillance over the years has resulted in the accumulation of a wealth of routine surveillance and outbreak epidemiological data. This valuable source of data has been used to understand seasonal frequency, geographic distribution, demographic information, exposure information, disease severity, and source of foodborne isolates. In 2019, PulseNet adopted whole genome sequencing (WGS) at a national scale to replace PFGE with higher-resolution methods such as the core genome multilocus sequence typing. Consequently, PulseNet's recent shift to genome-based subtyping methods has rendered the vast collection of historic surveillance data associated with serogroups and PFGE patterns potentially unusable. The goal of this study was to develop a bioinformatics method to associate the WGS data that are currently used by PulseNet for bacterial pathogen subtyping to previously characterized serogroup and PFGE patterns. Previous efforts to associate WGS to PFGE patterns relied on predicting DNA molecular weight based on restriction site analysis. However, these approaches failed owing to the non-uniform usage of genomic restriction sites by PFGE restriction enzymes. We developed a machine learning approach to classify isolates to their most probable serogroup and PFGE pattern, based on comparisons of genomic k-mer signatures. We applied our WGS classification method to 5,970 Shiga toxin-producing Escherichia coli (STEC) isolates collected as part of PulseNet's routine foodborne surveillance activities between 2003 and 2018. Our machine learning classifier is able to associate STEC WGS to higher-level serogroups with very high accuracy and lower-level PFGE patterns with somewhat lower accuracy. Taken together, these classifications support the ability of public health investigators to associate currently generated WGS data with historical epidemiological knowledge linked to serogroups and PFGE patterns in support of outbreak surveillance for food safety and public health.
Collapse
|
5
|
Tarr GAM, Lin CY, Vandermeer B, Lorenzetti DL, Tarr PI, Chui L, Hartling L, Freedman SB. Diagnostic Test Accuracy of Commercial Tests for Detection of Shiga Toxin-Producing Escherichia coli: A Systematic Review and Meta-Analysis. Clin Chem 2020; 66:302-315. [PMID: 32040589 DOI: 10.1093/clinchem/hvz006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/07/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Rapid detection of Shiga toxin-producing Escherichia coli (STEC) enables appropriate monitoring and treatment. We synthesized available evidence to compare the performance of enzyme immunoassay (EIA) and PCR tests for the detection of STEC. METHODS We searched published and gray literature for studies of STEC EIA and/or PCR diagnostic test accuracy relative to reference standards including at least one nucleic acid amplification test. Two reviewers independently screened studies, extracted data, and assessed quality with the second version of the Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) tool. Bivariate random effects models were used to meta-analyze the clinical sensitivity and specificity of commercial EIA and PCR STEC diagnostic tests, and summary receiver operator characteristic curves were constructed. We evaluated the certainty of evidence with the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. RESULTS We identified 43 articles reflecting 25 260 specimens. Meta-analysis of EIA and PCR accuracy included 25 and 22 articles, respectively. STEC EIA pooled sensitivity and specificity were 0.681 (95% CI, 0.571-0.773; very low certainty of evidence) and 1.00 (95% CI, 0.998-1.00; moderate certainty of evidence), respectively. STEC PCR pooled sensitivity and specificity were 1.00 (95% CI, 0.904-1.00; low certainty of evidence) and 0.999 (95% CI, 0.997-0.999; low certainty of evidence), respectively. Certainty of evidence was downgraded because of high risk of bias. CONCLUSIONS PCR tests to identify the presence of STEC are more sensitive than EIA tests, with no meaningful loss of specificity. However, given the low certainty of evidence, our results may overestimate the difference in performance.
Collapse
Affiliation(s)
- Gillian A M Tarr
- Department of Pediatrics, University of Calgary, Calgary, AB, Canada
| | - Chu Yang Lin
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Ben Vandermeer
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | | | - Phillip I Tarr
- Department of Pediatrics, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Linda Chui
- Department of Laboratory Medicine and Pathology, University of Alberta and Alberta Precision Laboratories-ProvLab, Edmonton, AB, Canada
| | - Lisa Hartling
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Stephen B Freedman
- Sections of Pediatric Emergency Medicine and Gastroenterology, Department of Pediatrics, Alberta Children's Hospital and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
6
|
Kundu M, Gucchait A, Misra AK. Convergent synthesis of a pentasaccharide corresponding to the cell wall O-polysaccharide of enteropathogenic Escherichia coli O115. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.130952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
7
|
Cookson AL, Biggs PJ, Marshall JC, Reynolds A, Collis RM, French NP, Brightwell G. Culture independent analysis using gnd as a target gene to assess Escherichia coli diversity and community structure. Sci Rep 2017; 7:841. [PMID: 28404985 PMCID: PMC5429811 DOI: 10.1038/s41598-017-00890-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/16/2017] [Indexed: 01/09/2023] Open
Abstract
Current culture methods to investigate changes in Escherichia coli community structure are often slow and laborious. Genes such as gnd (6-phosphogluconate dehydrogenase) have a highly variable nucleotide sequence and may provide a target for E. coli microbiome analysis using culture-independent methods. Metabarcoded PCR primers were used to generate separate libraries from calf faecal samples for high throughput sequencing. Although a total of 348 separate gnd sequence types (gSTs) were identified, 188 were likely to be due to sequencing errors. Of the remaining 160 gSTs, 92 did not match those in a database of 319 separate gnd sequences. ‘Animal’ was the main determinant of E. coli diversity with limited impact of sample type or DNA extraction method on intra-host E. coli community variation from faeces and recto-anal mucosal swab samples. This culture-independent study has addressed the difficulties of quantifying bacterial intra-species diversity and revealed that, whilst individual animals may harbour >50 separate E. coli strains, communities are dominated by <10 strains alongside a large pool of subdominant strains present at low abundances. This method will be useful for characterising the diversity and population structure of E. coli in experimental studies designed to assess the impact of interventions on the gut microbiome.
Collapse
Affiliation(s)
- Adrian L Cookson
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand. .,mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand.
| | - Patrick J Biggs
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand.,Massey Genome Service, New Zealand Genomics Limited, Massey University, Palmerston North, New Zealand
| | - Jonathan C Marshall
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand.,Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Angela Reynolds
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Rose M Collis
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| | - Nigel P French
- mEpiLab, Hopkirk Research Institute, Massey University, Palmerston North, New Zealand
| | - Gale Brightwell
- AgResearch Limited, Hopkirk Research Institute, Palmerston North, New Zealand
| |
Collapse
|
8
|
Zweifel C, Fierz L, Cernela N, Laaksonen S, Fredriksson-Ahomaa M, Stephan R. Characteristics of Shiga Toxin-Producing Escherichia coli O157 in Slaughtered Reindeer from Northern Finland. J Food Prot 2017; 80:454-458. [PMID: 28207302 DOI: 10.4315/0362-028x.jfp-16-457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fecal samples collected from 470 slaughtered reindeer 6 to 7 months of age were screened by real-time PCR (after enrichment) for Shiga toxin genes (stx) and then for Escherichia coli serogroup O157. Shiga toxin genes were found frequently (>30% of samples), and serogroup O157 was detected in 20% of the stx-positive samples. From these samples, a total of 25 E. coli O157:H- isolates (nonmotile but PCR positive for fliCH7) were obtained. Twenty-four of these E. coli O157:H- isolates did not ferment sorbitol and originated from one geographic area. These 24 isolates belonged to the multilocus sequence type 11, typical for Shiga toxin-producing E. coli (STEC) O157:H7 and O157:H-, and harbored genes stx1a, stx2c, eae, and hlyA; the stx2c subtype has been associated with high virulence. In contrast, one E. coli O157:H- isolate (multilocus sequence type 11) did ferment sorbitol, lacked Shiga toxin genes, but was positive for eae, hlyA, and sfpA. This isolate closely resembled an STEC that has lost its Shiga toxin genes. Additional examination revealed that reindeer can be colonized by various other STEC isolates; 21 non-O157 STEC isolates belonged to four multilocus sequence types, harbored stx1a (8 isolates) or stx2b (13 isolates), and in the stx2b-positive isolates the recently described new allelic variants (subAB2-2 and subAB2-3) for subtilase cytotoxin were identified. Hence, slaughtered semidomesticated Finnish reindeer might constitute a little known reservoir for STEC O157:H7/H- and other serogroups, and the risk of direct or indirect transmission of these pathogens from reindeer to humans and domestic livestock must not be overlooked.
Collapse
Affiliation(s)
- Claudio Zweifel
- 1 Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Lisa Fierz
- 1 Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Nicole Cernela
- 1 Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | - Sauli Laaksonen
- 2 Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Maria Fredriksson-Ahomaa
- 3 Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Roger Stephan
- 1 Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
A Rapid Immunoassay for Detection of Shiga Toxin-Producing Escherichia coli Directly from Human Fecal Samples and Its Performance in Detection of Toxin Subtypes. J Clin Microbiol 2016; 54:3056-3063. [PMID: 27733635 PMCID: PMC5121400 DOI: 10.1128/jcm.01785-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 10/05/2016] [Indexed: 12/04/2022] Open
Abstract
Fecal samples (n = 531) submitted to a regional clinical laboratory during a 6-month period were tested for the presence of Shiga toxin using both a Vero cell cytotoxicity assay and the Shiga Toxin Quik Chek test (STQC), a rapid membrane immunoassay. Testing the samples directly (without culture), 9 positives were identified by the Vero cell assay, all of which were also detected by the STQC. The correlation between the two assays was 100%. Not all of the identified positive samples were detected when fecal broth cultures were tested. By testing broth cultures of characterized isolates representing all described Shiga toxin subtypes, the STQC detected all subtypes. Levels of induction of toxin production by ciprofloxacin differed among the strains tested, with more toxin induction seen in strains harboring Stx2 phages than in those harboring Stx1 phages.
Collapse
|
10
|
Ross S, O'Callaghan I, Jermy R, Blake L, Corcoran D, Sleator RD, Lucey B. Stool consistency: no hard and fast rules for the diagnosis of VTEC infection. J Clin Pathol 2016; 69:837. [PMID: 27147700 DOI: 10.1136/jclinpath-2016-203792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 04/17/2016] [Indexed: 11/03/2022]
Affiliation(s)
- Shirley Ross
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland Department of Clinical Microbiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Isabelle O'Callaghan
- Department of Clinical Microbiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Rachel Jermy
- Department of Clinical Microbiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Liam Blake
- Department of Clinical Microbiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Daniel Corcoran
- Department of Clinical Microbiology, Cork University Hospital, Wilton, Cork, Ireland
| | - Roy D Sleator
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| |
Collapse
|
11
|
Zelyas N, Poon A, Patterson-Fortin L, Johnson RP, Lee W, Chui L. Assessment of commercial chromogenic solid media for the detection of non-O157 Shiga toxin-producing Escherichia coli (STEC). Diagn Microbiol Infect Dis 2016; 85:302-308. [PMID: 27157987 DOI: 10.1016/j.diagmicrobio.2016.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 11/30/2022]
Abstract
Detection of Shiga toxin-producing Escherichia coli (STEC) has evolved significantly since the introduction of sorbitol-MacConkey agar. This study compares four chromogenic media (CHROMagar™ STEC, Rainbow® O157 agar, CHROMagar™ O157, and Colorex® O157) in their identification of non-O157 STEC. When 161 non-O157 STEC were directly inoculated onto each medium, detection rates on CHROMagar™ STEC, Rainbow® O157 agar, CHROMagar™ O157 and Colorex® O157 were 90%, 70%, 3.7% and 6.8%, respectively. Tellurite minimal inhibitory concentrations (MICs) correlated with growth on CHROMagar™ STEC as 20 of 22 isolates with poor or no growth had MICs ≤1μg/mL. Stool spiking experiments revealed that CHROMagar™ STEC had the highest recovery of the six most common non-O157 STEC, ranging from 30% (in mucoid stool) to 98% (in watery stool). When using clinical stool samples, CHROMagar™ STEC had a sensitivity, specificity, positive predictive value, and negative predictive value of 84.6%, 87%, 13.9%, and 99.6%, respectively.
Collapse
Affiliation(s)
- Nathan Zelyas
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB, Canada
| | - Alan Poon
- Alberta Provincial Laboratory for Public Health, Edmonton, AB, Canada
| | | | - Roger P Johnson
- Public Health Agency of Canada, National Microbiology Laboratory@Guelph, Guelph, ON, Canada
| | - Winki Lee
- Alberta Provincial Laboratory for Public Health, Edmonton, AB, Canada
| | - Linda Chui
- Alberta Provincial Laboratory for Public Health, Edmonton, AB, Canada; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
12
|
Wijnsma KL, van Bommel SAM, van der Velden T, Volokhina E, Schreuder MF, van den Heuvel LP, van de Kar NCAJ. Fecal diagnostics in combination with serology: best test to establish STEC-HUS. Pediatr Nephrol 2016; 31:2163-70. [PMID: 27240858 PMCID: PMC5039220 DOI: 10.1007/s00467-016-3420-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND In the majority of pediatric patients, the hemolytic-uremic syndrome (HUS) is caused by an infection with Shiga toxin-producing Escherichia coli (STEC), mostly serotype O157. It is important to discriminate between HUS caused by STEC and complement-mediated HUS (atypical HUS) due to differences in treatment and outcome. As STEC and its toxins can only be detected in the patient's stool for a short period of time after disease onset, the infectious agent may go undetected using only fecal diagnostic tests. Serum antibodies to lipopolysaccharide (LPS) of STEC persist for several weeks and may therefore be of added value in the diagnosis of STEC. METHODS All patients with clinical STEC-HUS who were treated at Radboud University Medical Center between 1990 and 2014 were included in this retrospective single-center study. Clinical and diagnostic microbiological data were collected. Immunoglobulin M (IgM) antibodies against LPS of STEC serotype O157 were detected by a serological assay (ELISA). RESULTS Data from 65 patients weres available for analysis. Fecal diagnostic testing found evidence of an STEC infection in 34/63 patients (54 %). Serological evidence of STEC O157 was obtained in an additional 16 patients. This is an added value of 23 % (p < 0.0001) when the serological antibody assay is used in addition to standard fecal diagnostic tests to confirm the diagnosis STEC-HUS. This added value becomes especially apparent when the tests are performed more than 7 days after the initial manifestation of the gastrointestinal symptoms. CONCLUSIONS The serological anti-O157 LPS assay clearly makes a positive contribution when used in combination with standard fecal diagnostic tests to diagnose STEC-HUS and should be incorporated in clinical practice.
Collapse
Affiliation(s)
- Kioa L Wijnsma
- Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, P.O. Box 1901, 6500 HB, Nijmegen, Netherlands.
| | - Sheila A M van Bommel
- Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, P.O. Box 1901, 6500 HB, Nijmegen, Netherlands
| | - Thea van der Velden
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elena Volokhina
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Michiel F Schreuder
- Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, P.O. Box 1901, 6500 HB, Nijmegen, Netherlands
| | - Lambertus P van den Heuvel
- Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, P.O. Box 1901, 6500 HB, Nijmegen, Netherlands
- Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
- Department of Pediatrics, University Hospital Leuven, Leuven, Belgium
| | - Nicole C A J van de Kar
- Department of Pediatric Nephrology, Radboudumc Amalia Children's Hospital, Radboud University Medical Center, P.O. Box 1901, 6500 HB, Nijmegen, Netherlands
| |
Collapse
|
13
|
Gulesen R, Levent B, Demir T, Akgeyik M, Kuran S. Characterization of Shiga Toxin-Producing Escherichia coli Isolated from Humans between 2011 and 2014. Jpn J Infect Dis 2016; 69:390-4. [DOI: 10.7883/yoken.jjid.2015.346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Revasiye Gulesen
- Public Health Institution of Turkey. National Reference Laboratory
| | - Belkis Levent
- Public Health Institution of Turkey. National Reference Laboratory
| | - Tulin Demir
- Public Health Institution of Turkey. National Reference Laboratory
- Ahi Evran University, Research and Training Hospital, Microbiology Department
| | - Mesut Akgeyik
- Public Health Institution of Turkey. National Reference Laboratory
| | - Sibel Kuran
- Public Health Institution of Turkey. National Reference Laboratory
| |
Collapse
|
14
|
Morinaga Y, Yamano S, Akamatsu N, Kaku N, Nagaoka K, Migiyama Y, Harada Y, Hosogaya N, Yamamoto Y, Tasaki O, Yanagihara K, Kohno S. Active Surveillance of Methicillin-Resistant Staphylococcus aureus Using a Fully Automated Molecular Test in an Emergency Medical Center. Jpn J Infect Dis 2015; 68:376-80. [PMID: 25766607 DOI: 10.7883/yoken.jjid.2014.352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The prevention and control of methicillin-resistant Staphylococcus aureus (MRSA) are important, particularly in emergency units. The active surveillance of MRSA was prospectively performed at the emergency medical center of Nagasaki University Hospital. After obtaining nasal swab specimens, a fully automated molecular test (FAMT) and a culture-screening method were utilized for MRSA detection. A total of 150 patients were enrolled in the study, and 366 nasal swab specimens were obtained. MRSA was detected by culture in 11 (7.3%) patients including one new acquisition and by the FAMT in 34 (22.7%) patients including 13 new acquisitions. The sensitivity, specificity, positive predictive value, and negative predictive value of the FAMT at the patient level were 86.7, 85.2, 39.4, and 98.3%, respectively, when compared with the culture-based results. An FAMT can effectively detect MRSA colonization, which may remain undetected with the conventional method, and it may be useful in detecting newly acquired MRSAs.
Collapse
Affiliation(s)
- Yoshitomo Morinaga
- Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pérez LM, Soazo MDV, Balagué CE, Rubiolo AC, Verdini RA. Effect of pH on the effectiveness of whey protein/glycerol edible films containing potassium sorbate to control non-O157 shiga toxin-producing Escherichia coli in ready-to-eat foods. Food Control 2014. [DOI: 10.1016/j.foodcont.2013.09.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
A sensitive multiplex, real-time PCR assay for prospective detection of Shiga toxin-producing Escherichia coli from stool samples reveals similar incidences but variable severities of non-O157 and O157 infections in northern California. J Clin Microbiol 2013; 51:3000-5. [PMID: 23843484 DOI: 10.1128/jcm.00991-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rapid and accurate detection of Shiga toxin-producing Escherichia coli (STEC) of all serotypes from patients with diarrhea is critical for medical management and for the prevention of ongoing transmission. In this prospective study, we assessed the performance of a multiplex, real-time PCR assay targeting stx1 and stx2 for the detection of O157 and non-O157 STEC in diarrheal stool samples enriched in Gram-negative broth. We show that the assay is 100% sensitive (95% confidence interval [CI], 89.1% to 100%) and 98.5% specific (95% CI, 90.6% to 99.9%) based on a panel of 40 known STEC-positive specimens and 65 known negative specimens. During a 2-year postvalidation period, the assay detected more positive samples from patients in northern California than did culture and PCR testing performed at a public health reference laboratory, with a positive predictive value of 95.6% (95% CI, 87.6% to 99.1%). Serotyping data showed an incidence rate of 51.2% for non-O157 STEC strains, with 5.8% of patients (1/17) with non-O157 strains and 42.9% (6/14) with O157 strains (P = 0.03) developing hemolytic-uremic syndrome. The findings from this study underscore the recommendations of the CDC for laboratories to test all diarrheal stool samples from patients with acute community-acquired diarrhea for non-O157 STEC in addition to the O157 serotype by using a sensitive assay. Additionally, a survey of 17 clinical laboratories in northern California demonstrated that nearly 50% did not screen all stool specimens for the presence of Shiga toxins, indicating that many clinical microbiology laboratories still do not routinely screen all stool specimens for the presence of Shiga toxins as recommended in the 2009 CDC guidelines.
Collapse
|
17
|
Improved detection of bacterial pathogens in patients presenting with gastroenteritis by use of the EntericBio real-time Gastro Panel I assay. J Clin Microbiol 2013; 51:2679-85. [PMID: 23761157 DOI: 10.1128/jcm.00809-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we evaluated the use of EntericBio real-time Gastro Panel I (Serosep, Limerick, Ireland) for routine use in a clinical microbiology laboratory for simultaneous detection of Campylobacter jejuni, coli, and lari, Shiga toxin-producing Escherichia coli (STEC), Salmonella spp., and Shigella spp. in feces. This system differs from its predecessor (the EntericBio Panel II system, Serosep) in that it allows real-time detection of pathogens directly from feces, without pre-enrichment. It also specifically detects Campylobacter jejuni, coli, and lari rather than all Campylobacter species, as is the case with the previous system. A total of 528 samples from patients presenting with acute gastroenteritis were screened prospectively with this assay, and results were compared with those of the current method, which combines screening the samples with a molecular assay (the EntericBio Panel II assay) and retrospective culture of the specimens in which the target was detected. Discrepancy analysis was conducted using culture and molecular methods. The real-time assay produced 84 positive results, specifically, Campylobacter spp. (n=44); Stx1 and/or Stx2 (n=35); Shigella spp. (n=3); and Salmonella spp. (n=6). Of these, 4 samples represented coinfections with Campylobacter spp. and STEC. The real-time assay showed an increased detection rate for pathogens, apart from Salmonella spp. Four Campylobacter-positive and 6 Stx-positive results remained unconfirmed by any other method used. The isolation rates for PCR-positive samples were as follows: Campylobacter spp., 80%; STEC, 45.7%; Salmonella spp., 100%; and Shigella spp., 66.7%. The sensitivity, specificity, positive predictive value, negative predictive value, and efficiency were 100%, 97.8%, 88.1%, 100%, and 98.1%, respectively.
Collapse
|
18
|
Taylor EV, Nguyen TA, Machesky KD, Koch E, Sotir MJ, Bohm SR, Folster JP, Bokanyi R, Kupper A, Bidol SA, Emanuel A, Arends KD, Johnson SA, Dunn J, Stroika S, Patel MK, Williams I. Multistate outbreak of Escherichia coli O145 infections associated with romaine lettuce consumption, 2010. J Food Prot 2013; 76:939-44. [PMID: 23726187 DOI: 10.4315/0362-028x.jfp-12-503] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Non-O157 Shiga toxin-producing Escherichia coli (STEC) can cause severe illness, including hemolytic uremic syndrome (HUS). STEC O145 is the sixth most commonly reported non-O157 STEC in the United States, although outbreaks have been infrequent. In April and May 2010, we investigated a multistate outbreak of STEC O145 infection. Confirmed cases were STEC O145 infections with isolate pulsed-field gel electrophoresis patterns indistinguishable from those of the outbreak strain. Probable cases were STEC O145 infections or HUS in persons who were epidemiologically linked. Case-control studies were conducted in Michigan and Ohio; food exposures were analyzed at the restaurant, menu, and ingredient level. Environmental inspections were conducted in implicated food establishments, and food samples were collected and tested. To characterize clinical findings associated with infections, we conducted a chart review for case patients who sought medical care. We identified 27 confirmed and 4 probable cases from five states. Of these, 14 (45%) were hospitalized, 3 (10%) developed HUS, and none died. Among two case-control studies conducted, illness was significantly associated with consumption of shredded romaine lettuce in Michigan (odds ratio [OR] = undefined; 95% confidence interval [CI] = 1.6 to undefined) and Ohio (OR = 10.9; 95% CI = 3.1 to 40.5). Samples from an unopened bag of shredded romaine lettuce yielded the predominant outbreak strain. Of 15 case patients included in the chart review, 14 (93%) had diarrhea and abdominal cramps and 11 (73%) developed bloody diarrhea. This report documents the first foodborne outbreak of STEC O145 infections in the United States. Current surveillance efforts focus primarily on E. coli O157 infections; however, non-O157 STEC can cause similar disease and outbreaks, and efforts should be made to identify both O157 and non-O157 STEC infections. Providers should test all patients with bloody diarrhea for both non-O157 and O157 STEC.
Collapse
Affiliation(s)
- E V Taylor
- Epidemic Intelligence Service, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
In recent years, quantitative real-time PCR tests have been extensively developed in clinical microbiology laboratories for routine diagnosis of infectious diseases, particularly bacterial diseases. This molecular tool is well-suited for the rapid detection of bacteria directly in clinical specimens, allowing early, sensitive and specific laboratory confirmation of related diseases. It is particularly suitable for the diagnosis of infections caused by fastidious growth species, and the number of these pathogens has increased recently. This method also allows a rapid assessment of the presence of antibiotic resistance genes or gene mutations. Although this genetic approach is not always predictive of phenotypic resistances, in specific situations it may help to optimize the therapeutic management of patients. Finally, an approach combining the detection of pathogens, their mechanisms of antibiotic resistance, their virulence factors and bacterial load in clinical samples could lead to profound changes in the care of these infected patients.
Collapse
Affiliation(s)
- Max Maurin
- Laboratoire de Bactériologie, Département des Agents Infectieux, Institut de Biologie et Pathologie, CHU de Grenoble, Université Joseph Fourier Grenoble 1, France.
| |
Collapse
|
20
|
Lemaignen A, Ridel C, Hertig A, Rondeau E. [Escherichia coli associated hemolytic and uremic syndrome: what lessons can be learned after the European epidemic of 2011?]. Nephrol Ther 2012; 9:129-36. [PMID: 23266201 DOI: 10.1016/j.nephro.2012.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/09/2012] [Accepted: 10/21/2012] [Indexed: 11/28/2022]
Abstract
Hemolytic and uremic syndrome (HUS) is the most feared complication of infections with enterohemorrhagic Escherichia coli. During summer 2011, Europe was the scene of a large outbreak of shiga-toxin producing E. coli gastroenteritis, occasioning more than 800 cases of HUS, highlighting this public health problem. Last years, many advances have occurred, on the physiopathology, microbiology or therapeutics. We review here these different aspects, from molecular identification of the German bacteria, to the use of targeted therapies as eculizumab in severe forms, or even the major role of complement activation in the physiopathology of HUS.
Collapse
Affiliation(s)
- Adrien Lemaignen
- Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Assistance Publique des Hôpitaux de Paris, 4, rue de la Chine, 75020 Paris, France.
| | | | | | | |
Collapse
|
21
|
Fontana C, Ramström K, Weintraub A, Widmalm G. Structural studies of the O-antigen polysaccharide from Escherichia coli O115 and biosynthetic aspects thereof. Glycobiology 2012. [PMID: 23193180 DOI: 10.1093/glycob/cws161] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The structure of the O-antigen polysaccharide (PS) of Escherichia coli O115 has been investigated using a combination of component analysis and 1D and 2D nuclear magnetic resonance (NMR) spectroscopy experiments. The repeating unit of the O-antigen was elucidated using the O-deacetylated PS and has the following branched pentasaccharide structure: →3)[β-L-Rhap-(1 → 4)]-β-D-GlcpNAc-(1 → 4)-α-D-GalpA-(1 → 3)-α-D-Manp-(1 → 3)-β-D-GlcpNAc-(1→. Cross-peaks of low intensity, corresponding to a β-L-Rhap-(1 → 4)-β-D-GlcpNAc-(1→ structural element, were present in the NMR spectra and attributed to the terminal part of the PS; this information defines the biological repeating unit of the O-antigen by having a 3-substituted N-acetyl-D-glucosamine (GlcNAc) residue at its reducing end. Analysis of the NMR spectra of the native PS revealed O-acetyl groups distributed over different positions of the l-Rhap residue (∼0.70 per repeating unit) as well as at O-2 and O-3 of the D-GalpA residue (∼0.03 and ∼0.25 per repeating unit, respectively), which is in agreement with the presence of two acetyltransferases previously identified in the O-antigen gene cluster (Wang Q, Ruan X, Wei D, Hu Z, Wu L, Yu T, Feng L, Wang L. 2010. Mol Cell Probes. 24:286-290.). In addition, the four glycosyltransferases initially identified in the O-antigen gene cluster of E. coli O115 were analyzed using BLAST, and the function of two of them predicted on the basis of similarities with glycosyltransferases from Shigella dysenteriae type 5 and 12, as well as E. coli O58 and O152.
Collapse
Affiliation(s)
- Carolina Fontana
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden
| | | | | | | |
Collapse
|
22
|
Usability and performance of CHROMagar STEC medium in detection of Shiga toxin-producing Escherichia coli strains. J Clin Microbiol 2012; 50:3586-90. [PMID: 22933601 DOI: 10.1128/jcm.01754-12] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The performance and usability of CHROMagar STEC medium (CHROMagar Microbiology, Paris, France) for routine detection of Shiga toxin-producing Escherichia coli (STEC) strains were examined. The ability of the medium to selectively propagate STEC strains differing by their serotypes and virulence genes was studied with a collection of diarrheagenic E. coli isolates (n = 365) consisting of 49 different serotypes and with non-STEC and other bacterial isolates (n = 264). A total of 272 diarrheagenic E. coli (75.0%) isolates covering 24 different serotypes grew on CHROMagar STEC. The highest detection sensitivities were observed within the STEC serogroups O26 (90.0%), O111 (100.0%), O121 (100.0%), O145 (100.0%), and O157 (84.9%), and growth on CHROMagar STEC was highly associated with the presence of the tellurite resistance gene (terD). The specificity of the medium was 98.9%. In addition, CHROMagar STEC was used in parallel with a Shiga toxin-detecting immunoassay (Ridaquick Verotoxin/O157 Combi; R-biopharm, Darmstadt, Germany) to screen fecal specimens (n = 47) collected from patients suffering from hemorrhagic diarrhea. Positive growth on CHROMagar STEC was confirmed by the Premier EHEC enzyme immunoassay (Meridian Bioscience, Inc., Cincinnati, OH), and discrepant results between the two screening methods were confirmed by stx gene-detecting PCR. All 16 of the 47 stool samples that showed positive growth on CHROMagar STEC were also positive in the confirmatory tests. CHROMagar STEC proved to be an interesting option for STEC screening, allowing good detection sensitivity and specificity and permitting strain isolation for further outbreak investigations when required.
Collapse
|
23
|
Staples M, Graham R, Doyle C, Smith H, Jennison A. Prolonged and mixed non-O157 Escherichia coli infection in an Australian household. Clin Microbiol Infect 2012; 18:E140-3. [DOI: 10.1111/j.1469-0691.2012.03790.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
24
|
Xing JZ, Zhu L, Huang B, Chen J, Gabos S. Microelectronic-sensing assay to detect presence of Verotoxins in human faecal samples. J Appl Microbiol 2012; 113:429-37. [PMID: 22531010 DOI: 10.1111/j.1365-2672.2012.05321.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To develop a novel Vero cell assay that implements a real-time cell electronic sensing (RT-CES) system for the determination of the presence of verotoxin-producing Escherichia coli (VTEC). The assay overcomes the major drawbacks in conventional Vero cell assay, for example, labour-intensive and time-consuming. METHODS AND RESULTS Cells were grown onto the surfaces of microelectronic sensors that are integrated into the bottom surfaces of the microtiter plate. Cellular viability was monitored in real-time and quantified based on changes in the sensor's electrical impedance. For cell viability measurement, the data generated on the RT-CES system correlated well with those obtained by the Vero cell assay for Verotoxins. To assess cytotoxicity, test cells growing on microelectronic sensors were treated with either supernatant from pure cultures, or stool samples. The specific neutralizing antibodies of VT1 and VT2 were used to identify specific toxins in the samples. CONCLUSIONS The RT-CES assay provides a sensitive measurement comparable to conventional crystal violet assay. The assay has been successfully and specifically used to identify VTEC in human faecal samples. SIGNIFICANCE AND IMPACT OF THE STUDY The RT-CES assay significantly shortens the testing time from 48 to 72 h required by the crystal violet assay to only 15 h with automated operation.
Collapse
Affiliation(s)
- J Z Xing
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB T6G 2S2, Canada.
| | | | | | | | | |
Collapse
|
25
|
Hofer E, Stephan R, Reist M, Zweifel C. Application of a real-time PCR-based system for monitoring of O26, O103, O111, O145 and O157 Shiga toxin-producing Escherichia coli in cattle at slaughter. Zoonoses Public Health 2012; 59:408-15. [PMID: 22348425 DOI: 10.1111/j.1863-2378.2012.01468.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Faecal samples were collected from 573 slaughtered cattle aged between three and 24 months in seven abattoirs. After enrichment (mTSB with novobiocin), samples were screened by real-time PCR first for stx and if positive, tested for the top-five Shiga toxin-producing Escherichia coli (STEC) serogroups using PCR assays targeting genes specific for serogroups O26, O103, O111, O145 and O157. Of 563 samples with available results, 74.1% tested positive for stx genes. Amongst them, the serogroups O145, O103, O26, O157 and O111 were detected in 41.9%, 25.9%, 23.9%, 7.8% and 0.8%, respectively. From 95 O26, 166 O145 and 30 O157 PCR-positive samples, 17 O26, 28 O145 and 12 O157 strains were isolated by colony hybridization after immunomagnetic separation. The 17 O26 strains were eae-positive, but only nine strains harboured stx (eight possessing stx1 and one stx2). Of the 28 O145 strains, ten were eae-positive including four harbouring stx1 or stx2, whereas 18 were negative for stx and eae. Five of the 12 O157 strains harboured stx2 and eae, did not ferment sorbitol, and were identified as STEC O157:H7/H⁻. The other seven O157 strains were negative for stx and eae or positive only for eae. Shiga toxin genes and the top-five STEC serogroups were frequently found in young Swiss cattle at slaughter, but success rates for strain isolation were low and only few strains showed a virulence pattern of human pathogenic STEC.
Collapse
Affiliation(s)
- E Hofer
- Institute for Food Safety and Hygiene, Vetsuisse Faculty University of Zurich, Zurich, Switzerland
| | | | | | | |
Collapse
|
26
|
Lin A, Sultan O, Lau HK, Wong E, Hartman G, Lauzon CR. O serogroup specific real time PCR assays for the detection and identification of nine clinically relevant non-O157 STECs. Food Microbiol 2011; 28:478-83. [DOI: 10.1016/j.fm.2010.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 10/14/2010] [Accepted: 10/19/2010] [Indexed: 11/29/2022]
|
27
|
Shiga-toxigenic Escherichia coli detection in stool samples screened for viral gastroenteritis in Alberta, Canada. J Clin Microbiol 2010; 49:574-8. [PMID: 21147949 DOI: 10.1128/jcm.01693-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga-toxigenic Escherichia coli (STEC) is an important cause of diarrheal disease. The most notorious STEC serotype is O157:H7, which is associated with hemorrhagic colitis and hemolytic-uremic syndrome (HUS). As a result, this serotype is routinely screened for in clinical microbiology laboratories. With the bias toward the identification of the O157 serogroup in routine diagnostic processes, non-O157 STEC has been largely underrepresented in the epidemiology of STEC infections. This diagnostic bias is further complicated by the fact that many non-O157 STEC infections cause nonspecific gastroenteritis symptoms reminiscent of enteric viral infections. In this study, real-time PCR was used to amplify Shiga toxin genetic determinants (stx(1) and stx(2)) from enriched stool samples that were initially submitted for the testing of enteric viruses in patients with suspected viral gastroenteritis between May and September of 2006, 2007, and 2008 (n = 2,702). Samples were submitted from the province of Alberta, Yukon, the Northwest Territories, and Nunavut, Canada. A total of 38 samples (1.4%) tested positive for Shiga toxin genes, and 15 isolates were cultured for further characterization. Several of the serotypes identified (O157:H7, O26:HNM, O26:H11, O103:H25, O121:H19, and O145:HNM) have been previously associated with outbreaks and HUS. This study outlines the importance of combining molecular methods with classical culture techniques to enhance the detection of emerging non-O157 as well as O157 serotypes in diarrheal stool samples. Furthermore, atypical diarrhea disease caused by non-O157 STEC can be routinely missed due to screening only for viral agents.
Collapse
|
28
|
Improved detection of five major gastrointestinal pathogens by use of a molecular screening approach. J Clin Microbiol 2010; 48:4140-6. [PMID: 20861334 DOI: 10.1128/jcm.01124-10] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The detection of bacterial and parasitic gastrointestinal pathogens through culture and microscopy is laborious and time-consuming. We evaluated a molecular screening approach (MSA) for the detection of five major enteric pathogens: Salmonella enterica, Campylobacter jejuni, Giardia lamblia, Shiga toxin-producing Escherichia coli (STEC), and Shigella spp./enteroinvasive E. coli (EIEC), for use in the daily practice of a clinical microbiology laboratory. The MSA consists of prescreening of stool specimens with two real-time multiplex PCR (mPCR) assays, which give results within a single working day, followed by guided culture/microscopy of the positive or mPCR-inhibited samples. In the present 2-year overview, 28,185 stool specimens were included. The MSA was applied to 13,974 stool samples (49.6%), whereas 14,211 samples were tested by conventional methods only (50.4%). The MSA significantly increased the total detection rate compared to that of conventional methods (19.2% versus 6.4%). The detection of all included pathogens, with the exception of S. enterica, significantly improved. MSA detection frequencies were as follows: C. jejuni, 8.1%; G. lamblia, 4.7%; S. enterica, 3.0%; STEC, 1.9%; and Shigella spp./EIEC, 1.4%. The guided culture/microscopy was positive in 76.8%, 58.1%, 88.9%, 16.8%, and 18.1% of mPCR-positive specimens, respectively. Of all mPCRs, only 1.8% was inhibited. Other findings were that detection of mixed infections was increased (0.9% versus 0.02%) and threshold cycle (C(T)) values for MSA guided culture/microscopy-positive samples were significantly lower than those for guided culture/microscopy-negative samples. In conclusion, an MSA for detection of gastrointestinal pathogens resulted in markedly improved detection rates and a substantial decrease in time to reporting of (preliminary) results.
Collapse
|
29
|
Chui L, Couturier MR, Chiu T, Wang G, Olson AB, McDonald RR, Antonishyn NA, Horsman G, Gilmour MW. Comparison of Shiga toxin-producing Escherichia coli detection methods using clinical stool samples. J Mol Diagn 2010; 12:469-75. [PMID: 20466837 PMCID: PMC2893631 DOI: 10.2353/jmoldx.2010.090221] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/18/2010] [Indexed: 12/29/2022] Open
Abstract
Molecular diagnostic tools capable of identifying Shiga toxin-specific genetic determinants in stool specimens permit an unbiased approach to detect Shiga toxin-producing Escherichia coli (STEC) in clinical samples and can indicate when culture-based isolation methods are required. It is increasingly recognized that clinically relevant STEC are not limited to the singular O157 serotypes, and therefore diagnostic assays targeting toxin-encoding determinants must be able to account for any genetic variation that exists between serotypes. In this study conventional PCR and four real-time PCR assays (HybProbe, TaqMan, SYBR Green, and LUX) targeting the stx1 and stx2 Shiga toxin coding sequences were used to identify STEC in enriched stool samples (n = 36) and a panel of O157 and non-O157 strains (n = 64). PCR assays targeting stx1 and stx2 had variable specificity and sensitivity values with enriched stool samples. Molecular assays using DNA from pure cultures revealed that some primers were not sensitive to all stx2 variants. This evaluation concluded that the TaqMan-based probes were most appropriate in high throughput clinical diagnostic laboratories in consideration of cost, turn around time, and assay performance.
Collapse
Affiliation(s)
- Linda Chui
- ARM (CCM), Provincial Laboratory for Public Health, 8440-112 Street, Edmonton, Alberta, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|