1
|
Domínguez M, Miranda CD, Fuentes O, de la Fuente M, Godoy FA, Bello-Toledo H, González-Rocha G. Occurrence of Transferable Integrons and sul and dfr Genes Among Sulfonamide-and/or Trimethoprim-Resistant Bacteria Isolated From Chilean Salmonid Farms. Front Microbiol 2019; 10:748. [PMID: 31031727 PMCID: PMC6474311 DOI: 10.3389/fmicb.2019.00748] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
Salmon farming industry in Chile currently uses a significant quantity of antimicrobials to control bacterial pathologies. The main aims of this study were to investigate the presence of transferable sulfonamide- and trimethoprim-resistance genes, sul and dfr, and their association with integrons among bacteria associated to Chilean salmon farming. For this purpose, 91 Gram-negative strains resistant to sulfisoxazole and/or trimethoprim recovered from various sources of seven Chilean salmonid farms and mainly identified as belonging to the Pseudomonas genus (81.0%) were studied. Patterns of antimicrobial resistance of strains showed a high incidence of resistance to florfenicol (98.9%), erythromycin (95.6%), furazolidone (90.1%) and amoxicillin (98.0%), whereas strains exhibited minimum inhibitory concentrations (MIC90) values of sulfisoxazole and trimethoprim of >4,096 and >2,048 μg mL−1, respectively. Strains were studied for their carriage of these genes by polymerase chain reaction, using specific primers, and 28 strains (30.8%) were found to carry at least one type of sul gene, mainly associated to a class 1 integron (17 strains), and identified by 16S rRNA gene sequencing as mainly belonging to the Pseudomonas genus (21 strains). Of these, 22 strains carried the sul1 gene, 3 strains carried the sul2 gene, and 3 strains carried both the sul1 and sul2 genes. Among these, 19 strains also carried the class 1 integron-integrase gene intI1, whereas the dfrA1, dfrA12 and dfrA14 genes were detected, mostly not inserted in the class 1 integron. Otherwise, the sul3 and intI2 genes were not found. In addition, the capability to transfer by conjugation these resistance determinants was evaluated in 22 selected strains, and sul and dfr genes were successfully transferred by 10 assayed strains, mainly mediated by a 10 kb plasmid, with a frequency of transfer of 1.4 × 10−5 to 8.4 × 10−3 transconjugant per recipient cell, and exhibiting a co-transference of resistance to florfenicol and oxytetracycline, currently the most used in Chilean salmon industry, suggesting an antibacterial co-selection phenomenon. This is the first report of the characterization and transferability of integrons as well as sul and dfr genes among bacteria associated to Chilean salmon farms, evidencing a relevant role of this environment as a reservoir of these genes.
Collapse
Affiliation(s)
- Mariana Domínguez
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile
| | - Claudio D Miranda
- Laboratorio de Patobiología Acuática, Departamento de Acuicultura, Universidad Católica del Norte, Coquimbo, Chile.,Centro AquaPacífico, Coquimbo, Chile
| | - Oliver Fuentes
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile.,Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile
| | - Mery de la Fuente
- Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción, Chile.,Departamento de Ciencias Biológicas, Facultad de Ciencias de la Vida, Universidad Andres Bello, Talcahuano, Chile
| | - Félix A Godoy
- Centro i∼mar, Universidad de Los Lagos, Puerto Montt, Chile
| | - Helia Bello-Toledo
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile
| | - Gerardo González-Rocha
- Laboratorio de Investigación en Agentes Antibacterianos, Departamento de Microbiología, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
2
|
Domingues S, da Silva GJ, Nielsen KM. Integrons: Vehicles and pathways for horizontal dissemination in bacteria. Mob Genet Elements 2014; 2:211-223. [PMID: 23550063 PMCID: PMC3575428 DOI: 10.4161/mge.22967] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Integrons are genetic elements first described at the end of the 1980s. Although most integrons were initially described in human clinical isolates, they have now been identified in many non-clinical environments, such as water and soil. Integrons are present in ≈10% of the sequenced bacterial genomes and are frequently linked to mobile genetic elements (MGEs); particularly the class 1 integrons. Genetic linkage to a diverse set of MGEs facilitates horizontal transfer of class 1 integrons within and between bacterial populations and species. The mechanistic aspects limiting transfer of MGEs will therefore limit the transfer of class 1 integrons. However, horizontal movement due to genes provided in trans and homologous recombination can result in class 1 integron dynamics independent of MGEs. A key determinant for continued dissemination of class 1 integrons is the probability that transferred MGEs will be vertically inherited in the recipient bacterial population. Heritability depends both on genetic stability as well as the fitness costs conferred to the host. Here we review the factors known to govern the dissemination of class 1 integrons in bacteria.
Collapse
Affiliation(s)
- Sara Domingues
- Centre of Pharmaceutical Studies; Faculty of Pharmacy; University of Coimbra; Coimbra, Portugal ; Department of Pharmacy; Faculty of Health Sciences; University of Tromsø; Tromsø, Norway
| | | | | |
Collapse
|