1
|
Ravenel K, Guegan H, Gastebois A, Bouchara JP, Gangneux JP, Giraud S. Fungal Colonization of the Airways of Patients with Cystic Fibrosis: the Role of the Environmental Reservoirs. Mycopathologia 2024; 189:19. [PMID: 38407729 DOI: 10.1007/s11046-023-00818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/23/2023] [Indexed: 02/27/2024]
Abstract
Filamentous fungi frequently colonize the airways of patients with cystic fibrosis and may cause severe diseases, such as the allergic bronchopulmonary aspergillosis. The most common filamentous fungi capable to chronically colonize the respiratory tract of the patients are Aspergillus fumigatus and Scedosporium species. Defining the treatment strategy may be challenging, the number of available drugs being limited and some of the causative agents being multiresistant microorganisms. The knowledge of the fungal niches in the outdoor and indoor environment is needed for understanding the origin of the contamination of the patients. In light of the abundance of some of the causative molds in compost, agricultural and flower fields, occupational activities related to such environments should be discouraged for patients with cystic fibrosis (CF). In addition, the microbiological monitoring of their indoor environment, including analysis of air and dust on surfaces, is essential to propose preventive measures aiming to reduce the exposure to environmental molds. Nevertheless, some specific niches were also identified in the indoor environment, in relation with humidity which favors the growth of thermotolerant molds. Potted plants were reported as indoor reservoirs for Scedosporium species. Likewise, Exophiala dermatitidis may be spread in the kitchen via dishwashers. However, genotype studies are still required to establish the link between dishwashers and colonization of the airways of CF patients by this black yeast. Moreover, as nothing is known regarding the other filamentous fungi associated with CF, further studies should be conducted to identify other potential specific niches in the habitat.
Collapse
Affiliation(s)
- Kévin Ravenel
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Hélène Guegan
- EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, CHU Rennes, INSERM, Univ Rennes, 35000, Rennes, France
| | - Amandine Gastebois
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Jean-Philippe Bouchara
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France
| | - Jean-Pierre Gangneux
- EHESP, IRSET (Institut de Recherche en Santé Environnement et Travail), UMR_S 1085, CHU Rennes, INSERM, Univ Rennes, 35000, Rennes, France
| | - Sandrine Giraud
- IRF (Infections Respiratoires Fongiques), SFR ICAT 4208, Univ Angers, Univ Brest, Angers, France.
| |
Collapse
|
2
|
Zoqi H, Schmidt D, Sedlacek L, Rath PM, Steinmann J, Kirchhoff L. Establishment of a Novel Short Tandem Repeat Typing Method for Exophiala dermatitidis. Mycopathologia 2024; 189:5. [PMID: 38231292 PMCID: PMC10794339 DOI: 10.1007/s11046-023-00825-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
The opportunistic black yeast-like fungus Exophiala dermatitidis frequently colonizes the respiratory tract of cystic fibroses (CF) patients. Additionally, it can cause superficial, systemic, and cerebral forms of phaeohyphomycoses. The objective of this study was to develop and apply a microsatellite or short tandem repeat (STR) genotyping scheme for E. dermatitidis. In total, 82 E. dermatitidis isolates from various geographic origins (environmental = 9, CF = 63, invasive isolates = 9, melanin-deficient mutant = 1) were included in this study. After next-generation sequencing of a reference strain and sequence filtering for microsatellites, six STR markers were selected and amplified in two multiplex PCR reactions. The included isolates were discriminated in a genetic cluster analysis using the Pearson algorithm to reveal the relatedness of the isolates. The E. dermatitidis isolates clustered on basis of both, their source and their origin. The invasive isolates from Asia were unrelated to isolates from CF. Nearly all environmental isolates were grouped separately from patients' isolates. The Simpson index was 0.94. In conclusion, we were able to establish a STR genotyping scheme for investigating population genomics of E. dermatitidis.
Collapse
Affiliation(s)
- Hamide Zoqi
- Institute of Medical Microbiology, ECMM Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies (Diamond Status), University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Dirk Schmidt
- Institute of Medical Microbiology, ECMM Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies (Diamond Status), University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Ludwig Sedlacek
- Institute of Medical Microbiology and Hospital Epidemiology, Medical School Hannover (MHH), Hannover, Germany
| | - Peter-Michael Rath
- Institute of Medical Microbiology, ECMM Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies (Diamond Status), University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
| | - Joerg Steinmann
- Institute of Medical Microbiology, ECMM Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies (Diamond Status), University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany
- Institute of Clinical Microbiology, Infectious Diseases and Infection Control, Klinikum Nürnberg, Paracelsus Medical University, 90419, Nuremberg, Germany
| | - Lisa Kirchhoff
- Institute of Medical Microbiology, ECMM Center of Excellence in Clinical and Laboratory Mycology and Clinical Studies (Diamond Status), University Hospital Essen, University of Duisburg-Essen, 45122, Essen, Germany.
| |
Collapse
|
3
|
Kurbessoian T, Murante D, Crocker A, Hogan DA, Stajich JE. In host evolution of Exophiala dermatitidis in cystic fibrosis lung micro-environment. G3 (BETHESDA, MD.) 2023; 13:jkad126. [PMID: 37293838 PMCID: PMC10484061 DOI: 10.1093/g3journal/jkad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 09/26/2022] [Accepted: 05/18/2023] [Indexed: 06/10/2023]
Abstract
Individuals with cystic fibrosis (CF) are susceptible to chronic lung infections that lead to inflammation and irreversible lung damage. While most respiratory infections that occur in CF are caused by bacteria, some are dominated by fungi such as the slow-growing black yeast Exophiala dermatitidis. Here, we analyze isolates of E. dermatitidis cultured from two samples, collected from a single subject 2 years apart. One isolate genome was sequenced using long-read Nanopore technology as an in-population reference to use in comparative single nucleotide polymorphism and insertion-deletion variant analyses of 23 isolates. We then used population genomics and phylo-genomics to compare the isolates to each other as well as the reference genome strain E. dermatitidis NIH/UT8656. Within the CF lung population, three E. dermatitidis clades were detected, each with varying mutation rates. Overall, the isolates were highly similar suggesting that they were recently diverged. All isolates were MAT 1-1, which was consistent with their high relatedness and the absence of evidence for mating or recombination between isolates. Phylogenetic analysis grouped sets of isolates into clades that contained isolates from both early and late time points indicating there are multiple persistent lineages. Functional assessment of variants unique to each clade identified alleles in genes that encode transporters, cytochrome P450 oxidoreductases, iron acquisition, and DNA repair processes. Consistent with the genomic heterogeneity, isolates showed some stable phenotype heterogeneity in melanin production, subtle differences in antifungal minimum inhibitory concentrations, and growth on different substrates. The persistent population heterogeneity identified in lung-derived isolates is an important factor to consider in the study of chronic fungal infections, and the analysis of changes in fungal pathogens over time may provide important insights into the physiology of black yeasts and other slow-growing fungi in vivo.
Collapse
Affiliation(s)
- Tania Kurbessoian
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| | - Daniel Murante
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Alex Crocker
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Jason E Stajich
- Department of Microbiology and Plant Pathology and Institute of Integrative Genome Biology, University of California Riverside, Riverside, CA 92521, USA
| |
Collapse
|
4
|
Isolation of Exophiala dermatitidis is not associated with worse clinical outcomes during acute pulmonary exacerbations in cystic fibrosis. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. The black yeast Exophiala dermatitidis has been isolated in respiratory samples from people with cystic fibrosis (CF). However, adequate detection may require longer incubation periods than the current UK national standard for CF respiratory samples. Furthermore, it is unclear whether isolation of E. dermatitidis is associated with poorer clinical outcomes in CF.
Hypothesis/gap statement.
E. dermatitidis does not cause clinically significant lung disease in CF adults.
Aim. To evaluate differences in clinical outcomes over a 12 month period and during acute pulmonary exacerbations between CF adults with and without untreated E. dermatitidis.
Methodology. Incubation times for respiratory samples on Sabouraud dextrose agar with chloramphenicol (SABC) plates at a large regional adult CF centre were extended from 2 to 7 days over a 1 month period. The number of patients from whom E. dermatitidis was isolated, and the length of incubation time prior to isolation, were recorded. Outcomes of treatment of exacerbations with intravenous antibiotics but in the absence of concomitant antifungal therapy were compared between those with and without E. dermatitidis, as were changes in lung function and body mass index (BMI) over a 12 month period.
Results. Extended incubation unmasked the presence of E. dermatitidis in 22 of 132 patients; all isolations occurred after >48 h of incubation. Patients who isolated E. dermatitidis had lower rates of
Pseudomonas aeruginosa
isolation (P=0.02) and higher rates of non-tuberculous mycobacteria isolation (P=0.03), and were more likely to be prescribed a long-term antifungal medication (P=0.03), but had no differences in age, sex, baseline lung function or body mass index (BMI). There were no differences in response to treatment of acute exacerbations between patients with and without E. dermatitidis, or in change in forced expiratory volume in 1 s (FEV1), BMI and number of exacerbations over 12 months of follow-up.
Conclusion.
E. dermatitidis is not associated with worse clinical outcomes in CF. Given potential side effects and drug interactions, routine targeting of E. dermatitidis with antifungals during acute exacerbations is not advised.
Collapse
|
5
|
Gülmez D, Doğan Ö, Boral B, Döğen A, İlkit M, de Hoog GS, Arikan-Akdagli S. In vitro activities of antifungal drugs against environmentalExophialaisolates and review of the literature. Mycoses 2018; 61:561-569. [DOI: 10.1111/myc.12779] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/23/2018] [Accepted: 03/24/2018] [Indexed: 12/01/2022]
Affiliation(s)
- Dolunay Gülmez
- Department of Medical Microbiology; Faculty of Medicine; Hacettepe University; Ankara Turkey
| | - Özlem Doğan
- Department of Medical Microbiology; Faculty of Medicine; Hacettepe University; Ankara Turkey
- Medical Microbiology Department; Haydarpaşa Numune Hospital; Istanbul Turkey
| | - Barış Boral
- Department of Medical Microbiology; Faculty of Medicine; Hacettepe University; Ankara Turkey
- Department of Medical Microbiology; Faculty of Medicine; Çukurova University; Adana Turkey
| | - Aylin Döğen
- Department of Pharmaceutical Microbiology; Faculty of Pharmacy; Mersin University; Mersin Turkey
| | - Macit İlkit
- Department of Medical Microbiology; Faculty of Medicine; Çukurova University; Adana Turkey
| | - G. Sybren de Hoog
- Westerdijk Fungal Biodiversity Institute; Utrecht The Netherlands
- Center of Expertise in Mycology Radboudumc/CWZ; Nijmegen The Netherlands
| | - Sevtap Arikan-Akdagli
- Department of Medical Microbiology; Faculty of Medicine; Hacettepe University; Ankara Turkey
| |
Collapse
|
6
|
Scheffold A, Schwarz C, Bacher P. Fungus-Specific CD4 T Cells as Specific Sensors for Identification of Pulmonary Fungal Infections. Mycopathologia 2017; 183:213-226. [PMID: 29168073 DOI: 10.1007/s11046-017-0229-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 11/14/2017] [Indexed: 12/24/2022]
Abstract
Patients with cystic fibrosis (CF) suffer from chronic lung infections, caused by bacterial, viral or fungal pathogens, which determine morbidity and mortality. The contribution of individual pathogens to chronic disease and acute lung exacerbations is often difficult to determine due to the complex composition of the lung microbiome in CF. In particular, the relevance of fungal pathogens in CF airways remains poorly understood due to limitations of current diagnostics to identify the presence of fungal pathogens and to resolve the individual host-pathogen interaction status. T-lymphocytes play an essential role in host defense against pathogens, but also in inappropriate immune reactions such as allergies. They have the capacity to specifically recognize and discriminate the different pathogens and orchestrate a diverse array of effector functions. Thus, the analysis of the fungus-specific T cell status of an individual can in principle provide detailed information about the identity of the fungal pathogen(s) encountered and the actual fungus-host interaction status. This may allow to classify patients, according to appropriate (protective) or inappropriate (pathology-associated) immune reactions against individual fungal pathogens. However, T cell-based diagnostics are currently not part of the clinical routine. The identification and characterization of fungus-specific T cells in health and disease for diagnostic purposes are associated with significant challenges. Recent technological developments in the field of fungus-specific T helper cell detection provide new insights in the host T cell-fungus interaction. In this review, we will discuss basic principles and the potential of T cell-based diagnostics, as well as the perspectives and further needs for use of T cells for improved clinical diagnostics of fungal diseases.
Collapse
Affiliation(s)
- Alexander Scheffold
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, Leibniz Association, Berlin, Germany.
| | - Carsten Schwarz
- Department of Pediatric Pneumology and Immunology, Cystic Fibrosis Centre Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Petra Bacher
- Department of Cellular Immunology, Clinic for Rheumatology and Clinical Immunology, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117, Berlin, Germany
| |
Collapse
|
7
|
Exophiala dermatitidis Revealing Cystic Fibrosis in Adult Patients with Chronic Pulmonary Disease. Mycopathologia 2017; 183:71-79. [PMID: 29094263 DOI: 10.1007/s11046-017-0218-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/20/2017] [Indexed: 12/20/2022]
Abstract
Cystic fibrosis (CF) is a genetic inherited disease due to mutations in the gene cystic fibrosis transmembrane conductance regulator (CFTR). Because of the huge diversity of CFTR mutations, the CF phenotypes are highly heterogeneous, varying from typical to mild form of CF, also called atypical CF. These atypical features are more frequently diagnosed at adolescence or adulthood, and among clinical signs and symptoms leading to suspect a mild form of CF, colonization or infection of the respiratory tract due to well-known CF pathogens should be a warning signal. Exophiala dermatitidis is a melanized dimorphic fungus commonly detected in respiratory specimens from CF patients, but only very rarely from respiratory specimens from non-CF patients. We described here two cases of chronic colonization of the airways by E. dermatitidis, with recurrent pneumonia and hemoptysis in one patient, which led clinicians to diagnose mild forms of CF in these elderly patients who were 68- and 87-year-old. These cases of late CF diagnosis suggest that airway colonization or respiratory infections due to E. dermatitidis in patients with bronchiectasis should led to search for a mild form of CF, regardless of the age and associated symptoms. On a broader level, in patients with chronic respiratory disease and recurrent pulmonary infections, an allergic bronchopulmonary mycosis or an airway colonization by CF-related fungi like E. dermatitidis or some Aspergillus, Scedosporium or Rasamsonia species, should be considered as potential markers of atypical CF and should led clinicians to conduct investigations for CF diagnosis.
Collapse
|
8
|
Toward the Standardization of Mycological Examination of Sputum Samples in Cystic Fibrosis: Results from a French Multicenter Prospective Study. Mycopathologia 2017; 183:101-117. [DOI: 10.1007/s11046-017-0173-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 06/27/2017] [Indexed: 02/03/2023]
|
9
|
Rapid Identification of Clinically Relevant Members of the Genus Exophiala by Matrix-Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry and Description of Two Novel Species, Exophiala campbellii and Exophiala lavatrina. J Clin Microbiol 2017; 55:1162-1176. [PMID: 28122875 DOI: 10.1128/jcm.02459-16] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/22/2017] [Indexed: 11/20/2022] Open
Abstract
Exophiala is a ubiquitous pleomorphic genus comprising at least 40 species, many of which have been associated with superficial, visceral, or systemic infections in humans, other mammals, or cold-blooded animals. In this study, we investigated the potential of matrix-assisted laser desorption-ionization time of flight mass spectrometry (MALDI-TOF MS) for the identification of Exophiala species. A total of 89 isolates (including 50 human and 4 animal clinical isolates) stored in the National Collection of Pathogenic Fungi were identified by PCR amplification and sequencing of internal transcribed spacer region 1. Eighty-three of the isolates corresponded to 16 known species within Exophiala/Rhinocladiella The remaining six isolates are shown by phylogenetic analyses based on four loci to represent two novel Exophiala species. Four isolates from domestic bathrooms which form a sister species with Exophiala lecanii-corni are described here as Exophiala lavatrina sp. nov. The remaining two isolates, both from subcutaneous infections, are distantly related to Exophiala oligosperma and are described here as Exophiala campbellii sp. nov. The triazoles and terbinafine exhibited low MICs against all Exophiala isolates in vitro MALDI-TOF MS successfully distinguished all 18 species and identified all isolates after appropriate reference spectra were created and added to commercial databases. Intraspecific mean log scores ranged from 1.786 to 2.584 and were consistently significantly higher than interspecific scores (1.193 to 1.624), with the exception of E. lecanii-corni and E. lavatrina, for which there was considerable log score overlap. In summary, MALDI-TOF MS allows the rapid and accurate identification of a wide range of clinically relevant Exophiala species.
Collapse
|
10
|
Zupančič J, Novak Babič M, Zalar P, Gunde-Cimerman N. The Black Yeast Exophiala dermatitidis and Other Selected Opportunistic Human Fungal Pathogens Spread from Dishwashers to Kitchens. PLoS One 2016; 11:e0148166. [PMID: 26867131 PMCID: PMC4750988 DOI: 10.1371/journal.pone.0148166] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 01/13/2016] [Indexed: 12/19/2022] Open
Abstract
We investigated the diversity and distribution of fungi in nine different sites inside 30 residential dishwashers. In total, 503 fungal strains were isolated, which belong to 10 genera and 84 species. Irrespective of the sampled site, 83% of the dishwashers were positive for fungi. The most frequent opportunistic pathogenic species were Exophiala dermatitidis, Candida parapsilosis sensu stricto, Exophiala phaeomuriformis, Fusarium dimerum, and the Saprochaete/Magnusiomyces clade. The black yeast E. dermatitidis was detected in 47% of the dishwashers, primarily at the dishwasher rubber seals, at up to 106 CFU/cm2; the other fungi detected were in the range of 102 to 105 CFU/cm2. The other most heavily contaminated dishwasher sites were side nozzles, doors and drains. Only F. dimerum was isolated from washed dishes, while dishwasher waste water contained E. dermatitidis, Exophiala oligosperma and Sarocladium killiense. Plumbing systems supplying water to household appliances represent the most probable route for contamination of dishwashers, as the fungi that represented the core dishwasher mycobiota were also detected in the tap water. Hot aerosols from dishwashers contained the human opportunistic yeast C. parapsilosis, Rhodotorula mucilaginosa and E. dermatitidis (as well as common air-borne genera such as Aspergillus, Penicillium, Trichoderma and Cladosporium). Comparison of fungal contamination of kitchens without and with dishwashers revealed that virtually all were contaminated with fungi. In both cases, the most contaminated sites were the kitchen drain and the dish drying rack. The most important difference was higher prevalence of black yeasts (E. dermatitidis in particular) in kitchens with dishwashers. In kitchens without dishwashers, C. parapsilosis strongly prevailed with negligible occurrence of E. dermatitidis. F. dimerum was isolated only from kitchens with dishwashers, while Saprochaete/Magnusiomyces isolates were only found within dishwashers. We conclude that dishwashers represent a reservoir of enriched opportunistic pathogenic species that can spread from the dishwasher into the indoor biome.
Collapse
Affiliation(s)
- Jerneja Zupančič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Monika Novak Babič
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Polona Zalar
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Nina Gunde-Cimerman
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- Centre of Excellence for Integrated Approaches in Chemistry and Biology of Proteins (CIPKeBiP), Ljubljana, Slovenia
- * E-mail:
| |
Collapse
|
11
|
Libert X, Chasseur C, Packeu A, Bureau F, Roosens NH, De Keersmaecker SJC. A molecular approach for the rapid, selective and sensitive detection of Exophiala jeanselmei in environmental samples: development and performance assessment of a real-time PCR assay. Appl Microbiol Biotechnol 2016; 100:1377-1392. [PMID: 26615400 PMCID: PMC4717172 DOI: 10.1007/s00253-015-7175-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/09/2015] [Accepted: 11/11/2015] [Indexed: 11/04/2022]
Abstract
Exophiala jeanselmei is an opportunistic pathogenic black yeast growing in humid environments such as water reservoirs of air-conditioning systems. Because this fungal contaminant could be vaporized into the air and subsequently cause health problems, its monitoring is recommended. Currently, this monitoring is based on culture and microscopic identification which are complex, sometimes ambiguous and time-demanding, i.e., up to 21 days. Therefore, molecular, culture-independent methods could be more advantageous for the monitoring of E. jeanselmei. In this study, we developed a SYBR®green real-time PCR assay based on the internal transcribed spacer 2 from the 18S ribosomal DNA complex for the specific detection of E. jeanselmei. The selectivity (100 %), PCR efficiency (95.5 %), dynamic range and repeatability of this qPCR assay were subsequently evaluated. The limit of detection for this qPCR assay was determined to be 1 copy of genomic DNA of E. jeanselmei. Finally, water samples collected from cooling reservoirs were analyzed using this qPCR assay to deliver a proof of concept for the molecular detection of E. jeanselmei in environmental samples. The results obtained by molecular analysis were compared with those of classical methods (i.e., culture and microscopic identification) used in routine analysis and were 100 % matching. This comparison demonstrated that this SYBR®green qPCR assay can be used as a molecular alternative for monitoring and routine investigation of samples contaminated by E. jeanselmei, while eliminating the need for culturing and thereby considerably decreasing the required analysis time to 2 days.
Collapse
Affiliation(s)
- X Libert
- Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050, Brussels, Belgium
- Cellular and Molecular Immunology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Université de Liège (ULg), Liège, Wallonia, Belgium
| | - C Chasseur
- Health and Environment, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - A Packeu
- Mycology and Aerobiology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - F Bureau
- Cellular and Molecular Immunology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), Université de Liège (ULg), Liège, Wallonia, Belgium
| | - N H Roosens
- Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050, Brussels, Belgium
| | - S J C De Keersmaecker
- Platform Biotechnology and Molecular Biology, Scientific Institute of Public Health (WIV-ISP), J. Wytsmanstraat 14, 1050, Brussels, Belgium.
| |
Collapse
|
12
|
Dishwashers provide a selective extreme environment for human-opportunistic yeast-like fungi. FUNGAL DIVERS 2015. [DOI: 10.1007/s13225-015-0327-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
13
|
Touati K, Nguyen DNL, Delhaes L. The Airway Colonization by Opportunistic Filamentous Fungi in Patients with Cystic Fibrosis: Recent Updates. CURRENT FUNGAL INFECTION REPORTS 2014. [DOI: 10.1007/s12281-014-0197-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Chalkias S, Alonso CD, Levine JD, Wong MT. Emerging pathogen in immunocompromised hosts: Exophiala dermatitidis mycosis in graft-versus-host disease. Transpl Infect Dis 2014; 16:616-20. [PMID: 24890324 DOI: 10.1111/tid.12236] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 01/26/2014] [Accepted: 02/16/2014] [Indexed: 11/29/2022]
Abstract
Infection with the dematiaceous environmental fungus Exophiala, an emerging pathogen in immunocompromised individuals, poses a diagnostic and therapeutic challenge. Herein, we report the first Exophiala dermatitidis fungemia case, to our knowledge, in an allogeneic hematopoietic stem cell transplant patient with graft-versus-host disease, expanding the clinical setting where Exophiala species mycosis should be suspected.
Collapse
Affiliation(s)
- S Chalkias
- Division of Infectious Diseases, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
15
|
Steinmann J, Giraud S, Schmidt D, Sedlacek L, Hamprecht A, Houbraken J, Meis JF, Bouchara JP, Buer J, Rath PM. Validation of a novel real-time PCR for detecting Rasamsonia argillacea species complex in respiratory secretions from cystic fibrosis patients. New Microbes New Infect 2014; 2:72-8. [PMID: 25356347 PMCID: PMC4184661 DOI: 10.1002/nmi2.44] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/14/2014] [Accepted: 03/21/2014] [Indexed: 12/18/2022] Open
Abstract
Members of the recently introduced fungal genus Rasamsonia (formerly included in
the Geosmithia genus) have been described as emerging pathogens in immunosuppressed
hosts or patients with cystic fibrosis (CF). Rasamsonia species have often been
misidentified as Penicillium or Paecilomyces because of similar
morphological characteristics. We validated a commercially available real-time PCR assay
(Primerdesign™, UK) for accurate detection of species from the Rasamsonia
argillacea complex. First, we tested this assay with a collection of 74 reference strains
and clinical isolates and then compared the PCR with cultures of 234 respiratory samples from 152
patients with CF from two University Hospitals in Germany and France. The assay reliably detected
the three main species within the Rasamsonia argillacea species complex
(R. argillacea, R. piperina,
R. aegroticola), which are typically encountered in CF patients. The limit
of DNA detection was between 0.01 and 1 pg/μL. Analysis of the DNA extracts from
respiratory specimens of CF patients revealed that four out of the 153 patients studied
(2.6%) were colonized with R. argillacea species complex. Two species
from the R. argillacea complex grew in the parallel cultures from the same
patients. In one patient the PCR was positive 5 months before culture. The real-time PCR
assay is a sensitive and specific method for detecting the three most important species of the
R. argillacea species complex encountered in the CF
context. Detection of these emerging pathogens in respiratory secretions from CF patients by this
novel assay may increase our understanding of the occurrence and epidemiology of the R.
argillacea species complex.
Collapse
Affiliation(s)
- J Steinmann
- Institute of Medical Microbiology, University Hospital
Essen, University of Duisburg-EssenEssen, Germany
- Corresponding author: J. Steinmann, Institute of Medical
Microbiology, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45122
Essen, Germany E-mail:
| | - S Giraud
- L'UNAM Université, Université
d′Angers, Groupe d′Etude des Interactions Hôte-PathogèneAngers, France
| | - D Schmidt
- Institute of Medical Microbiology, University Hospital
Essen, University of Duisburg-EssenEssen, Germany
| | - L Sedlacek
- Institute of Medical Microbiology and Hospital
Epidemiology, Hannover Medical SchoolHannover, Germany
| | - A Hamprecht
- Institute for Medical Microbiology, Immunology and
Hygiene, University Hospital of CologneCologne, Germany
| | - J Houbraken
- CBS-KNAW Fungal Biodiversity CentreUtrecht, The Netherlands
| | - J F Meis
- Department of Medical Microbiology and Infectious
Diseases, Canisius Wilhelmina HospitalNijmegen, The Netherlands
- Department of Medical Microbiology, Radboud University
Medical CentreNijmegen, The Netherlands
| | - J P Bouchara
- L'UNAM Université, Université
d′Angers, Groupe d′Etude des Interactions Hôte-PathogèneAngers, France
- Laboratory of Parasitology and Mycology, Angers
University HospitalAngers, France
| | - J Buer
- Institute of Medical Microbiology, University Hospital
Essen, University of Duisburg-EssenEssen, Germany
| | - P-M Rath
- Institute of Medical Microbiology, University Hospital
Essen, University of Duisburg-EssenEssen, Germany
| |
Collapse
|
16
|
Chotirmall SH, McElvaney NG. Fungi in the cystic fibrosis lung: bystanders or pathogens? Int J Biochem Cell Biol 2014; 52:161-73. [PMID: 24625547 DOI: 10.1016/j.biocel.2014.03.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/21/2014] [Accepted: 03/02/2014] [Indexed: 12/25/2022]
Abstract
Improvement to the life expectancy of people with cystic fibrosis (PWCF) brings about novel challenges including the need for evaluation of the role of fungi in the cystic fibrosis (CF) lung. To determine if such organisms represent bystanders or pathogens affecting clinical outcomes we review the existing knowledge from a clinical, biochemical, inflammatory and immunological perspective. The prevalence and importance of fungi in the CF airway has likely been underestimated with the most frequently isolated filamentous fungi being Aspergillus fumigatus and Scedosporium apiospermum and the major yeast Candida albicans. Developing non-culture based microbiological methods for fungal detection has improved both our classification and understanding of their clinical consequences including localized, allergic and systemic infections. Cross-kingdom interaction between bacteria and fungi are discussed as is the role of biofilms further affecting clinical outcome. A combination of host and pathogen-derived factors determines if a particular fungus represents a commensal, colonizer or pathogen in the setting of CF. The underlying immune state, disease severity and treatment burden represent key host variables whilst fungal type, form, chronicity and virulence including the ability to evade immune recognition determines the pathogenic potential of a specific fungus at a particular point in time. Further research in this emerging field is warranted to fully elucidate the spectrum of disease conferred by the presence of fungi in the CF airway and the indications for therapeutic interventions.
Collapse
Affiliation(s)
- Sanjay H Chotirmall
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland
| | - Noel G McElvaney
- Respiratory Research Division, Department of Medicine, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Beaumont Road, Dublin 9, Ireland.
| |
Collapse
|
17
|
Willger SD, Grim SL, Dolben EL, Shipunova A, Hampton TH, Morrison HG, Filkins LM, O‘Toole GA, Moulton LA, Ashare A, Sogin ML, Hogan DA. Characterization and quantification of the fungal microbiome in serial samples from individuals with cystic fibrosis. MICROBIOME 2014; 2:40. [PMID: 25408892 PMCID: PMC4236224 DOI: 10.1186/2049-2618-2-40] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/25/2014] [Indexed: 05/05/2023]
Abstract
BACKGROUND Human-associated microbial communities include fungi, but we understand little about which fungal species are present, their relative and absolute abundances, and how antimicrobial therapy impacts fungal communities. The disease cystic fibrosis (CF) often involves chronic airway colonization by bacteria and fungi, and these infections cause irreversible lung damage. Fungi are detected more frequently in CF sputum samples upon initiation of antimicrobial therapy, and several studies have implicated the detection of fungi in sputum with worse outcomes. Thus, a more complete understanding of fungi in CF is required. RESULTS We characterized the fungi and bacteria in expectorated sputa from six CF subjects. Samples were collected upon admission for systemic antibacterial therapy and upon the completion of treatment and analyzed using a pyrosequencing-based analysis of fungal internal transcribed spacer 1 (ITS1) and bacterial 16S rDNA sequences. A mixture of Candida species and Malassezia dominated the mycobiome in all samples (74%-99% of fungal reads). There was not a striking trend correlating fungal and bacterial richness, and richness showed a decline after antibiotic therapy particularly for the bacteria. The fungal communities within a sputum sample resembled other samples from that subject despite the aggressive antibacterial therapy. Quantitative PCR analysis of fungal 18S rDNA sequences to assess fungal burden showed variation in fungal density in sputum before and after antibacterial therapy but no consistent directional trend. Analysis of Candida ITS1 sequences amplified from sputum or pure culture-derived genomic DNA from individual Candida species found little (<0.5%) or no variation in ITS1 sequences within or between strains, thereby validating this locus for the purpose of Candida species identification. We also report the enhancement of the publically available Visualization and Analysis of Microbial Population Structures (VAMPS) tool for the analysis of fungal communities in clinical samples. CONCLUSIONS Fungi are present in CF respiratory sputum. In CF, the use of intravenous antibiotic therapy often does not profoundly impact bacterial community structure, and we observed a similar stability in fungal species composition. Further studies are required to predict the effects of antibacterials on fungal burden in CF and fungal community stability in non-CF populations.
Collapse
Affiliation(s)
- Sven D Willger
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Sharon L Grim
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
- Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA
| | - Emily L Dolben
- Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Anna Shipunova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | | | - Hilary G Morrison
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | | | | | - Lisa A Moulton
- Dartmouth-Hitchcock Medical Center, Section of Pulmonary and Critical Care Medicine, Lebanon, NH, USA
| | - Alix Ashare
- Dartmouth-Hitchcock Medical Center, Section of Pulmonary and Critical Care Medicine, Lebanon, NH, USA
| | - Mitchell L Sogin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA
| | | |
Collapse
|
18
|
Döğen A, Ilkit M, de Hoog GS. Black yeast habitat choices and species spectrum on high altitude creosote-treated railway ties. Fungal Biol 2013; 117:692-6. [DOI: 10.1016/j.funbio.2013.07.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 07/20/2013] [Accepted: 07/23/2013] [Indexed: 10/26/2022]
|