1
|
Chiba M, Miri S, Yousuf B, Esmail GA, Leao L, Li Y, Hincke M, Minic Z, Mottawea W, Hammami R. Dual bacteriocin and extracellular vesicle-mediated inhibition of Campylobacter jejuni by the potential probiotic candidate Ligilactobacillus salivarius UO.C249. Appl Environ Microbiol 2024; 90:e0084524. [PMID: 39078127 PMCID: PMC11337818 DOI: 10.1128/aem.00845-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
Campylobacter jejuni (C. jejuni) is one of the most common causes of foodborne infections worldwide and a major contributor to diarrheal diseases. This study aimed to explore the ability of commensal gut bacteria to control C. jejuni infection. Bacterial strains from the intestinal mucosa of broilers were screened in vitro against C. jejuni ATCC BAA1153. The cell-free supernatant (CFS) of Ligilactobacillus salivarius UO.C249 showed potent dose-dependent antimicrobial activity against the pathogen, likely due to the presence of bacteriocin-like moieties, as confirmed by protease treatment. Genome and exoproteome analyses revealed the presence of known bacteriocins, including Abp118. The genome of Lg. salivarius UO.C249 harbors a 1.8-Mb chromosome and a 203-kb megaplasmid. The strain was susceptible to several antibiotics and had a high survival rate in the simulated chicken gastrointestinal tract (GIT). Post-protease treatment revealed residual inhibitory activity, suggesting alternative antimicrobial mechanisms. Short-chain fatty acid (SCFA) quantification confirmed non-inhibitory levels of acetic (24.4 ± 1.2 mM), isovaleric (34 ± 1.0 µM), and butyric (32 ± 2.5 µM) acids. Interestingly, extracellular vesicles (EVs) isolated from the CFS of Lg. salivarius UO.C249 were found to inhibit C. jejuni ATCC BAA-1153. Proteome profiling of these EVs revealed the presence of unique proteins distinct from bacteriocins identified in CFS. The majority of the identified proteins in EVs are located in the membrane and play roles in transmembrane transport and peptidoglycan degradation, peptidase, proteolysis, and hydrolysis. These findings suggest that although bacteriocins are a primary antimicrobial mechanism, EV production also contributes to the inhibitory activity of Lg. salivarius UO.C249 against C. jejuni. IMPORTANCE Campylobacter jejuni (C. jejuni) is a major cause of gastroenteritis and a global public health concern. The increasing antibiotic resistance and lack of effective alternatives in livestock production pose serious challenges for controlling C. jejuni infections. Therefore, alternative strategies are needed to control this pathogen, especially in the poultry industry where it is prevalent and can be transmitted to humans through contaminated food products. In this study, Ligilactobacillus salivarius UO.C249 isolated from broiler intestinal mucosa inhibited C. jejuni and exhibited important probiotic features. Beyond bacteriocins, Lg. salivarius UO.C249 secretes antimicrobial extracellular vesicles (EVs) with a unique protein set distinct from bacteriocins that are involved in transmembrane transport and peptidoglycan degradation. Our findings suggest that beyond bacteriocins, EV production is also a distinct inhibitory signaling mechanism used by Lg. salivarius UO.C249 to control C. jejuni. These findings hold promise for the application of probiotic EVs for pathogen control.
Collapse
Affiliation(s)
- Mariem Chiba
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Saba Miri
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Basit Yousuf
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Galal Ali Esmail
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Luana Leao
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - Yingxi Li
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Maxwell Hincke
- Department of Innovation in Medical Education, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| | - Zoran Minic
- John L. Holmes Mass Spectrometry Facility, Faculty of Science, University of Ottawa, Ottawa, Ontario, Canada
| | - Walid Mottawea
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University, Mansoura, Egypt
| | - Riadh Hammami
- NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Luo SC, Wei SM, Luo XT, Yang QQ, Wong KH, Cheung PCK, Zhang BB. How probiotics, prebiotics, synbiotics, and postbiotics prevent dental caries: an oral microbiota perspective. NPJ Biofilms Microbiomes 2024; 10:14. [PMID: 38402294 PMCID: PMC10894247 DOI: 10.1038/s41522-024-00488-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/12/2024] [Indexed: 02/26/2024] Open
Abstract
Dental caries, a highly prevalent oral disease, impacts a significant portion of the global population. Conventional approaches that indiscriminately eradicate microbes disrupt the natural equilibrium of the oral microbiota. In contrast, biointervention strategies aim to restore this balance by introducing beneficial microorganisms or inhibiting cariogenic ones. Over the past three decades, microbial preparations have garnered considerable attention in dental research for the prevention and treatment of dental caries. However, unlike related pathologies in the gastrointestinal, vaginal, and respiratory tracts, dental caries occurs on hard tissues such as tooth enamel and is closely associated with localized acid overproduction facilitated by cariogenic biofilms. Therefore, it is insufficient to rely solely on previous mechanisms to delineate the role of microbial preparations in the oral cavity. A more comprehensive perspective should involve considering the concepts of cariogenic biofilms. This review elucidates the latest research progress, mechanisms of action, challenges, and future research directions regarding probiotics, prebiotics, synbiotics, and postbiotics for the prevention and treatment of dental caries, taking into account the unique pathogenic mechanisms of dental caries. With an enhanced understanding of oral microbiota, personalized microbial therapy will emerge as a critical future research trend.
Collapse
Affiliation(s)
- Si-Chen Luo
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Si-Min Wei
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Xin-Tao Luo
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Qiong-Qiong Yang
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China
| | - Ka-Hing Wong
- Research Institute for Future Food, Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, PR China
| | - Peter C K Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, PR China
| | - Bo-Bo Zhang
- Guangdong Provincial Key Laboratory of Marine Biology, Department of Biology, College of Science, Shantou University, Shantou, 515063, Guangdong, PR China.
| |
Collapse
|
3
|
Calvigioni M, Mazzantini D, Celandroni F, Ghelardi E. Animal and In Vitro Models as Powerful Tools to Decipher the Effects of Enteric Pathogens on the Human Gut Microbiota. Microorganisms 2023; 12:67. [PMID: 38257894 PMCID: PMC10818369 DOI: 10.3390/microorganisms12010067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
Examining the interplay between intestinal pathogens and the gut microbiota is crucial to fully comprehend the pathogenic role of enteropathogens and their broader impact on human health. Valid alternatives to human studies have been introduced in laboratory practice to evaluate the effects of infectious agents on the gut microbiota, thereby exploring their translational implications in intestinal functionality and overall health. Different animal species are currently used as valuable models for intestinal infections. In addition, considering the recent advances in bioengineering, futuristic in vitro models resembling the intestinal environment are also available for this purpose. In this review, the impact of the main human enteropathogens (i.e., Clostridioides difficile, Campylobacter jejuni, diarrheagenic Escherichia coli, non-typhoidal Salmonella enterica, Shigella flexneri and Shigella sonnei, Vibrio cholerae, and Bacillus cereus) on intestinal microbial communities is summarized, with specific emphasis on results derived from investigations employing animal and in vitro models.
Collapse
Affiliation(s)
| | | | | | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56127 Pisa, Italy; (M.C.)
| |
Collapse
|
4
|
Huligere SS, Kumari V B C, Desai SM, Wong LS, Firdose N, Ramu R. Investigating the antidiabetic efficacy of dairy-derived Lacticaseibacillus paracasei probiotic strains: modulating α-amylase and α-glucosidase enzyme functions. Front Microbiol 2023; 14:1288487. [PMID: 38111646 PMCID: PMC10725979 DOI: 10.3389/fmicb.2023.1288487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/02/2023] [Indexed: 12/20/2023] Open
Abstract
The current study aims to evaluate and characterize the probiotic andantidiabetic properties of lactic acid bacteria (LAB) obtained from milk and other dairy-based products. The strains were tested physiologically, biochemically, and molecularly. Based on biochemical tests and 16S rRNA gene amplification and sequencing, all three isolates RAMULAB18, RAMULAB19, and RAMULAB53 were identified as Lacticaseibacillus paracasei with homology similarity of more than 98%. The inhibitory potential of each isolate against carbohydrate hydrolysis enzymes (α-amylase and α-glucosidase) was assessed using three different preparations of RAMULAB (RL) isolates: the supernatant (RL-CS), intact cells (RL-IC), and cell-free extraction (RL-CE). Additionally, the isolate was evaluated for its antioxidant activity against free radicals (DPPH and ABTS). The strain's RL-CS, RL-CE, and RL-IC inhibited α-amylase (17.25 to 55.42%), α-glucosidase (15.08-59.55%), DPPH (56.42-87.45%), and ABTS (46.35-78.45%) enzymes differently. With the highest survival rate (>98%) toward tolerance to gastrointestinal conditions, hydrophobicity (>42.18%), aggregation (>74.21%), as well as attachment to an individual's colorectal cancer cell line (HT-29) (>64.98%), human buccal and chicken crop epithelial cells, all three isolates exhibited extensive results. All three isolates exhibited high resistance toward antibiotics (methicillin, kanamycin, cefixime, and vancomycin), and other assays such as antibacterial, DNase, hemolytic, and gelatinase were performed for safety assessment. Results suggest that the LAB described are valuable candidates for their significant health benefits and that they can also be utilized as a beginning or bio-preservative tradition in the food, agriculture, and pharmaceutical sectors. The LAB isolates are excellent in vitro probiotic applicants and yet additional in vivo testing is required.
Collapse
Affiliation(s)
- Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Chandana Kumari V B
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Sudhanva M. Desai
- Department of Chemical Engineering, Dayanand Sagar College of Engineering, Bengaluru, Karnataka, India
| | - Ling Shing Wong
- Faculty of Health and Life Sciences, INTI International University, Nilai, Malaysia
| | - Nagma Firdose
- Department of Pharmacology, JSS Medical College, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| |
Collapse
|
5
|
Ye Y, Xu X, Mao B, Tang X, Cui S, Zhao J, Zhang Q. Evaluation of heat-inactivated Limosilactobacillus fermentum CCFM1139 and its supernatant for the relief of experimental periodontitis in rats. Food Funct 2023; 14:2847-2856. [PMID: 36880339 DOI: 10.1039/d2fo02938c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Periodontitis is a chronic inflammatory disease induced by subgingival microbial dysbiosis, characterised by inflammation of the soft tissues of the periodontium and progressive loss of alveolar bone. Limosilactobacillus fermentum CCFM1139 is a probiotic with the potential to relieve periodontitis in vitro and in vivo. Due to the cost of active strain in production applications, we considered the effectiveness of bacterial components and metabolites in alleviating experimental periodontitis. Therefore, this study investigated the effect of heat-inactivated Limosilactobacillus fermentum CCFM1139 and its supernatant in the development of experimental periodontitis through animal experiments. The results showed that active, heat-inactivated Limosilactobacillus fermentum CCFM1139 and its supernatant all significantly reduced IL-1β levels in gingival tissue and serum (p < 0.05). Micro-computed tomography (micro CT) analysis showed that the active and heat-inactivated Limosilactobacillus fermentum CCFM1139 reduced alveolar bone loss in rats with periodontitis by 25.6% and 15.9% respectively (p < 0.05), with no change in percentage of bone volume (p > 0.05). In histomorphometric analysis, active Limosilactobacillus fermentum CCFM1139 showed better results in reducing alveolar bone loss and reducing inflammatory cell recruitment at the second molar. In addition, there was no significant difference in the number of tartrate-resistant acid phosphatase (TRAP) positive cells after in all experimental groups (p > 0.05). Therefore, heat-inactivated Limosilactobacillus fermentum CCFM1139 or its supernatant also have the ability to relieve periodontitis, and their alleviating effect may focus on the regulation of inflammatory response.
Collapse
Affiliation(s)
- Yuhan Ye
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Xianyin Xu
- Department of Stomatology, Wuxi Children's Hospital, Wuxi, Jiangsu 214023, P. R. China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R. China.
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Center of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd, Shanghai 200436, China
| |
Collapse
|
6
|
Helmy YA, Taha-Abdelaziz K, Hawwas HAEH, Ghosh S, AlKafaas SS, Moawad MMM, Saied EM, Kassem II, Mawad AMM. Antimicrobial Resistance and Recent Alternatives to Antibiotics for the Control of Bacterial Pathogens with an Emphasis on Foodborne Pathogens. Antibiotics (Basel) 2023; 12:274. [PMID: 36830185 PMCID: PMC9952301 DOI: 10.3390/antibiotics12020274] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the most important global public health problems. The imprudent use of antibiotics in humans and animals has resulted in the emergence of antibiotic-resistant bacteria. The dissemination of these strains and their resistant determinants could endanger antibiotic efficacy. Therefore, there is an urgent need to identify and develop novel strategies to combat antibiotic resistance. This review provides insights into the evolution and the mechanisms of AMR. Additionally, it discusses alternative approaches that might be used to control AMR, including probiotics, prebiotics, antimicrobial peptides, small molecules, organic acids, essential oils, bacteriophage, fecal transplants, and nanoparticles.
Collapse
Affiliation(s)
- Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Khaled Taha-Abdelaziz
- Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA
| | - Hanan Abd El-Halim Hawwas
- Department of Zoonoses, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Samar Sami AlKafaas
- Molecular Cell Biology Unit, Division of Biochemistry, Department of Chemistry, Faculty of Science, Tanta University, Tanta 31511, Egypt
| | | | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Issmat I. Kassem
- Centre for Food Safety, Department of Food Science and Technology, University of Georgia, Griffin, GA 30609, USA
| | - Asmaa M. M. Mawad
- Department of Biology, College of Science, Taibah University, Madinah 42317, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
| |
Collapse
|
7
|
Huligere SS, Chandana Kumari VB, Alqadi T, Kumar S, Cull CA, Amachawadi RG, Ramu R. Isolation and characterization of lactic acid bacteria with potential probiotic activity and further investigation of their activity by α-amylase and α-glucosidase inhibitions of fermented batters. Front Microbiol 2023; 13:1042263. [PMID: 36756202 PMCID: PMC9901530 DOI: 10.3389/fmicb.2022.1042263] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 11/23/2022] [Indexed: 01/24/2023] Open
Abstract
Probiotic microbiota plays a vital role in gastrointestinal health and possesses other beneficial attributes such as antimicrobial and antibiotic agents along with a significant role in the management of diabetes. The present study identifies the probiotic potential of Lactobacillus spp. isolated from three traditionally fermented foods namely, jalebi, medhu vada, and kallappam batters at biochemical, physiological, and molecular levels. By 16S rRNA gene amplification and sequencing, the isolates were identified. A similarity of >98% to Lacticaseibacillus rhamnosus RAMULAB13, Lactiplantibacillus plantarum RAMULAB14, Lactiplantibacillus pentosus RAMULAB15, Lacticaseibacillus paracasei RAMULAB16, Lacticaseibacillus casei RAMULAB17, Lacticaseibacillus casei RAMULAB20, and Lacticaseibacillus paracasei RAMULAB21 was suggested when searched for homology using NCBI database. Utilizing the cell-free supernatant (CS), intact cells (IC), and cell-free extract (CE) of the isolates, inhibitory potential activity against the carbohydrate hydrolyzing enzymes α-glucosidase and α-amylase was assessed. CS, CE, and IC of the isolates had a varying capability of inhibition against α-glucosidase (15.08 to 59.55%) and α-amylase (18.79 to 63.42%) enzymes. To assess the probiotic potential of seven isolates, various preliminary characteristics were examined. All the isolates exhibited substantial tolerance toward gastrointestinal conditions and also demonstrated the highest survival rate (> 99%), hydrophobicity (> 65%), aggregation (> 76%), adherence to HT-29 cells (> 84%), and chicken crop epithelial cells suggesting that the isolates had a high probiotic attribute. Additionally, the strains showed remarkable results in safety assessment assays (DNase and hemolytic), and antibacterial and antibiotic evaluations. The study concludes that the lactic acid bacteria (LAB) characterized possesses outstanding probiotic properties and has antidiabetic effects. In order to obtain various health advantages, LAB can be utilized as probiotic supplements.
Collapse
Affiliation(s)
- Sujay S. Huligere
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - V. B. Chandana Kumari
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India
| | - Taha Alqadi
- Department of Biology, Adham University College, Umm Al-Qura University, Makkah, Saudi Arabia
| | | | - Charley A. Cull
- Midwest Veterinary Services, Inc., Oakland, NE, United States
| | - Raghavendra G. Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States,Raghavendra G. Amachawadi,
| | - Ramith Ramu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research, Mysore, Karnataka, India,*Correspondence: Ramith Ramu,
| |
Collapse
|
8
|
Almeida MEDE, Pessoa WFB, Melgaço ACC, Ramos LP, Rezende RP, Romano CC. In vitro selection and characterization of probiotic properties in eight lactobacillus strains isolated from cocoa fermentation. AN ACAD BRAS CIENC 2022; 94:e20220013. [PMID: 36541978 DOI: 10.1590/0001-3765202220220013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 05/20/2022] [Indexed: 12/23/2022] Open
Abstract
Traditionally, probiotic microorganisms are isolated from human and animal intestinal microbiota. However, the demand for diversification of biofunctional products has driven the search for new sources of probiotic candidates, such as fermented foods and vegetables. The present study found that strains isolated from the fermentation of fine cocoa from southern Bahia have biotechnological potential for use as a probiotic, since they showed capacity for self-aggregation and co-aggregation, antimicrobial activity against intestinal pathogens and resistance to gastrointestinal transits. Scores of importance for each property were established in order to more accurately assess the probiotic potential of the strains. The tests carried out contemplate the criteria previously established for the selection of probiotic candidates.
Collapse
Affiliation(s)
- Milena E DE Almeida
- Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Laboratório de Imunologia, Campos Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Salobrinho, 456662-900 Ilhéus, BA, Brazil
| | - Wallace Felipe B Pessoa
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Campus I, Departmento de Fisiologia e Patologia, s/n, Via Pau Brasil, Conj. Pres. Castelo Branco III, 58051-900 João Pessoa, PB, Brazil
| | - Ana Clara C Melgaço
- Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Laboratório de Imunologia, Campos Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Salobrinho, 456662-900 Ilhéus, BA, Brazil
| | - Louise P Ramos
- Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Laboratório de Imunologia, Campos Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Salobrinho, 456662-900 Ilhéus, BA, Brazil
| | - Rachel P Rezende
- Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Departmento de Ciências Biológicas, Laboratório de Biotecnologia Microbiana, Campus Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Salobrinho, 45662-900 Ilhéus, BA, Brazil
| | - Carla Cristina Romano
- Universidade Estadual de Santa Cruz, Centro de Biotecnologia e Genética, Laboratório de Imunologia, Campos Soane Nazaré de Andrade, Rodovia Jorge Amado, Km 16, Salobrinho, 456662-900 Ilhéus, BA, Brazil
| |
Collapse
|
9
|
Karbowiak M, Gałek M, Szydłowska A, Zielińska D. The Influence of the Degree of Thermal Inactivation of Probiotic Lactic Acid Bacteria and Their Postbiotics on Aggregation and Adhesion Inhibition of Selected Pathogens. Pathogens 2022; 11:1260. [PMID: 36365011 PMCID: PMC9692860 DOI: 10.3390/pathogens11111260] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/25/2022] [Accepted: 10/25/2022] [Indexed: 07/25/2023] Open
Abstract
The study aimed to evaluate the effect of thermal inactivation of potentially probiotic lactic acid bacteria (LAB) strains isolated from food on their ability to compete with pathogenic microorganisms. Five strains of LAB, previously isolated from food and characterized, one commercial reference strain of Lactiplantibacillus plantarum 299v, and two indicator strains of Staphylococcus aureus 25923 and Listeriamonocytogenes 15313 were used in the study. The experiment consisted in applying a stress factor (high temperature: 80 °C, at a different time: 5, 15, and 30 min) to the tested LAB cells to investigate the in vitro properties such as hydrophobicity abilities (against p-xylene and n-hexadecane), auto-aggregation, co-aggregation with pathogens, and inhibition of pathogens adhesion to the porcine gastric mucin. The bacterial strains showed various hydrophobicity to p-xylene (36-73%) and n-hexadecane (11-25%). The affinity for solvents expanded with increasing thermal inactivation time. All LAB isolates were able to auto-aggregate (ranging from 17 to 49%). Bacterial strains subjected to 5 and 15 min of thermal inactivation had the highest auto-aggregation ability in comparison to viable and heat-killed cells for 30 min. The LAB strains co-aggregated with pathogens to different degrees; among them, the highest scores of co-aggregation were observed for L. monocytogenes, reaching 27% (with 15 min of heat-killed LAB cells). All LAB strains reduced the adherence of pathogenic bacteria in the competition test, moreover, heat-killed cells (especially 15 min inactivated) were more efficient than viable cells. The properties of selected LAB strains as moderately heat-stressed forms analyzed in the study increased the prevention of colonization and elimination of pathogenic bacteria in the in vitro model of gastrointestinal tract. The thermal inactivation process may therefore preserve and modifies some characteristics of bacterial cells.
Collapse
|
10
|
Soleiman Meiguni F, Imanparast S, Salimi F, Nemati F. The Probiotic Biosurfactant From Levilactobacillus brevis Strain F20 Isolated from a Diary Product with Potential Food Applications. FOOD BIOTECHNOL 2022. [DOI: 10.1080/08905436.2022.2127758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Fatemeh Soleiman Meiguni
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Somaye Imanparast
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - Fatemeh Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| | - Fahimeh Nemati
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
11
|
Functional Characteristics of Lactic Acid Bacteria In Vitro Isolated from Spontaneously Fermented Sour Porridge with Broomcorn Millet in Northwestern Shanxi Province of China. Foods 2022; 11:foods11152353. [PMID: 35954119 PMCID: PMC9367719 DOI: 10.3390/foods11152353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 11/25/2022] Open
Abstract
Eighteen strains of lactic acid bacteria were isolated from spontaneously fermented sour porridge with broomcorn millet in Northwestern Shanxi Province of China, and their probiotic characteristics were investigated in vitro. Survival rates under gastrointestinal conditions, cholesterol reduction, antibacterial capabilities, antioxidant activities, and safety assessments were examined. Results showed that five strains were selected as probiotics and identified as Levilactobacillusbrevis. Strain L10 exhibited excellent probiotic characteristics, with an 86% survival rate under pH 2.0 for 2 h, 80% survival rate in 0.3% bile salt for 6 h, the highest survival rate (78%) in simulated gastrointestinal juice for 3 h, the highest hydrophobicity (42% to xylene and 39% to hexadecane), the highest aggregation (39% auto-aggregation and 10.4–18.13% co-aggregation), relative higher cholesterol reduction rate (80%), the highest antibacterial activities, the highest antioxidant activity, sensitive to most antibiotics tested, without hemolytic and hydrolyze gelatinase activity and could not produce biogenic amine. Therefore, strain L10 could be applied to functional foods.
Collapse
|
12
|
Knobloch S, Skírnisdóttir S, Dubois M, Kolypczuk L, Leroi F, Leeper A, Passerini D, Marteinsson VÞ. Impact of Putative Probiotics on Growth, Behavior, and the Gut Microbiome of Farmed Arctic Char (Salvelinus alpinus). Front Microbiol 2022; 13:912473. [PMID: 35928148 PMCID: PMC9343752 DOI: 10.3389/fmicb.2022.912473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Beneficial bacteria promise to promote the health and productivity of farmed fish species. However, the impact on host physiology is largely strain-dependent, and studies on Arctic char (Salvelinus alpinus), a commercially farmed salmonid species, are lacking. In this study, 10 candidate probiotic strains were subjected to in vitro assays, small-scale growth trials, and behavioral analysis with juvenile Arctic char to examine the impact of probiotic supplementation on fish growth, behavior and the gut microbiome. Most strains showed high tolerance to gastric juice and fish bile acid, as well as high auto-aggregation activity, which are important probiotic characteristics. However, they neither markedly altered the core gut microbiome, which was dominated by three bacterial species, nor detectably colonized the gut environment after the 4-week probiotic treatment. Despite a lack of long-term colonization, the presence of the bacterial strains showed either beneficial or detrimental effects on the host through growth rate enhancement or reduction, as well as changes in fish motility under confinement. This study offers insights into the effect of bacterial strains on a salmonid host and highlights three strains, Carnobacterium divergens V41, Pediococcus acidilactici ASG16, and Lactiplantibacillus plantarum ISCAR-07436, for future research into growth promotion of salmonid fish through probiotic supplementation.
Collapse
Affiliation(s)
| | | | | | | | | | - Alexandra Leeper
- Microbiology Research Group, Matís ohf., Reykjavík, Iceland
- Faculty of Biosciences, Department of Animal and Aquaculture Sciences, Norwegian University of Life Sciences, Ås, Norway
| | | | - Viggó Þ. Marteinsson
- Microbiology Research Group, Matís ohf., Reykjavík, Iceland
- Faculty of Food Science and Nutrition, University of Iceland, Reykjavik, Iceland
- *Correspondence: Viggó Þ. Marteinsson,
| |
Collapse
|
13
|
Amini E, Salimi F, Imanparast S, Mansour FN. Isolation and characterization of exopolysaccharide derived from Lacticaseibacillus paracasei AS20(1) with probiotic potential and evaluation of its antibacterial activity. Lett Appl Microbiol 2022; 75:967-981. [PMID: 35716384 DOI: 10.1111/lam.13771] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/26/2022]
Abstract
This study was done to find exopolysaccharide (EPS)-producing lactic acid bacteria (LAB) against foodborne pathogens. Isolated LAB were screened to find the ones with the ability to produce antibacterial EPS against foodborne pathogens. Among tested EPSs, EPS of AS20(1) isolate showed inhibitory effects on the growth of Listeria monocytogenes (MIC = 0·935 mg ml-1 , MBC = 0·935 mg ml-1 ), Yersinia enterocolitica (MIC = 12·5 mg ml-1 , MBC = 50 mg ml-1 ) and Bacillus cereus (MIC = 6·25 mg ml-1 , MBC = 12·5 mg ml-1 ). According to 16S rRNA sequencing, AS20(1) showed the closest similarity to Lacticaseibacillus paracasei (100%). This antibacterial EPS showed negligible toxicity (4·4%-5·2%) against red blood cells. Lacticaseibacillus paracasei AS20(1) showed probiotic properties, including high acid resistance, hydrophobicity (47·5%), autoaggregation and coaggregation with foodborne pathogens. Also, L. paracasei AS20(1) showed no haemolysis activity and antibiotic resistance. Characterization of antibacterial EPS revealed that it is a heteropolysaccharide with various functional groups, amorphous structure, and smooth surface, sheet and compact structure, which can be suitable for food packaging. L. paracasei AS20(1) and its antimicrobial EPS can be used to make functional food.
Collapse
Affiliation(s)
- E Amini
- Faculty of Advanced Sciences and Technology, Department of Biotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - F Salimi
- Department of Cellular and Molecular Biology, School of Biology, Damghan University, Damghan, Iran
| | - S Imanparast
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| | - F N Mansour
- Faculty of Advanced Sciences and Technology, Department of Biotechnology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
14
|
Kim JH, Jang HJ, Lee NK, Paik HD. Antibacterial and Antibiofilm Effect of Cell-Free Supernatant of Lactobacillus brevis KCCM 202399 Isolated from Korean Fermented Food against Streptococcus mutans KCTC 5458. J Microbiol Biotechnol 2022; 32:56-63. [PMID: 34675145 PMCID: PMC9628830 DOI: 10.4014/jmb.2109.09045] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/08/2021] [Accepted: 10/15/2021] [Indexed: 12/15/2022]
Abstract
This study aims to determine the antibiofilm effect of cell-free supernatant (CFS) of Lactobacillus brevis strains against Streptococcus mutans strains. To study the antibiofilm mechanism against S. mutans strains, antibacterial effects, cell surface properties (auto-aggregation and cell surface hydrophobicity), exopolysaccharide (EPS) production, and morphological changes were examined. The antibiofilm effect of L. brevis KCCM 202399 CFS as morphological changes were evaluated by scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM), compared with the control treatment. Among the L. brevis strains, L. brevis KCCM 202399 showed the highest antibiofilm effect on S. mutans KCTC 5458. The antibacterial effect of L. brevis KCCM 202399 against S. mutans KCTC 5458 was investigated using the deferred method (16.00 mm). The minimum inhibitory concentration of L. brevis KCCM 202399 against S. mutans KCTC 5458 was 25.00%. Compared with the control treatment, L. brevis KCCM 202399 CFS inhibited the bacterial adhesion of S. mutans KCTC 5458 by decreasing auto-aggregation, cell surface hydrophobicity, and EPS production (45.91%, 40.51%, and 67.44%, respectively). L. brevis KCCM 202399 CFS inhibited and eradicated the S. mutans KCTC 5458 biofilm. Therefore, these results suggest that L. brevis KCCM 202399 CFS may be used to develop oral health in the probiotic industry.
Collapse
Affiliation(s)
- Jong Ha Kim
- Department of Food Science and Biotechnology of Animal Resource Konkuk University, Seoul 05029, Republic of Korea
| | - Hye Ji Jang
- Department of Food Science and Biotechnology of Animal Resource Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resource Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource Konkuk University, Seoul 05029, Republic of Korea,Corresponding author Phone: +82-2-2049-6011 E-mail:
| |
Collapse
|
15
|
Zhang Z, Zhao L, Song M, Luo J, Liu H, Xue K, Huang C, Chen H, Ge J. Providencia heimbachae Associated with Post-weaning Diarrhea in Piglets: Identification, Phenotype, and Pathogenesis. Curr Microbiol 2021; 79:1. [PMID: 34878563 DOI: 10.1007/s00284-021-02697-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023]
Abstract
Despites Providencia heimbachae has been isolated from human, penguin, and bovine fetus, relatively little information is available regarding the pathogenicity and biologic characteristics of P. heimbachae. Here, we report that investigation of post-weaning diarrhea yielded bacterial isolates identified as P. heimbachae based on the biochemical tests and 16S ribosomal DNA sequence analysis. The two isolates were positive for utilization of Malonate, no gas production from glucose, and non-fermentation of D-mannitol, D-Galactose, and L-Rhamnose that were different from those of the type strain, and both of them have the ability of adhesion and invasion to IPEC-J2 cells, and were resistant to 21 out of the 41 antibiotics tested. In addition, the isolate 99101 was highly pathogenic to mice and piglets. Histopathology studies on nerve tissue of piglets that developed hindlimb paralysis showed microglia cell infiltration and neuron damage in the spinal cord. Notably, the strains could grow under low temperature (4 °C), which raise attention of a new risk factor for food safety. To the best of our knowledge, this is the first report of P. heimbachae strain caused post-weaning diarrhea in piglets in both natural and experimental conditions. These findings extended the knowledge of P. heimbachae as an important zoonotic agent, which should be given more attention during surveillance and diagnostics.
Collapse
Affiliation(s)
- Zhuo Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Lili Zhao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Manman Song
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Jilong Luo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hanghang Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Kun Xue
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Chengshi Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, 150069, China
| | - Junwei Ge
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, China.
- Northeastern Science Inspection Station, China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Harbin, 150030, China.
| |
Collapse
|
16
|
Lactobacillus reuteri and Enterococcus faecium from Poultry Gut Reduce Mucin Adhesion and Biofilm Formation of Cephalosporin and Fluoroquinolone-Resistant Salmonella enterica. Animals (Basel) 2021; 11:ani11123435. [PMID: 34944212 PMCID: PMC8697943 DOI: 10.3390/ani11123435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/29/2021] [Accepted: 09/03/2021] [Indexed: 12/16/2022] Open
Abstract
Non-typhoidal Salmonella (NTS) can cause infection in poultry, livestock, and humans. Although the use of antimicrobials as feed additives is prohibited, the previous indiscriminate use and poor regulatory oversight in some parts of the world have resulted in increased bacterial resistance to antimicrobials, including cephalosporins and fluoroquinolones, which are among the limited treatment options available against NTS. This study aimed to isolate potential probiotic lactic acid bacteria (LAB) strains from the poultry gut to inhibit fluoroquinolone and cephalosporin resistant MDR Salmonella Typhimurium and S. Enteritidis. The safety profile of the LAB isolates was evaluated for the hemolytic activity, DNase activity, and antibiotic resistance. Based on the safety results, three possible probiotic LAB candidates for in vitro Salmonella control were chosen. Candidate LAB isolates were identified by 16S rDNA sequencing as Lactobacillus reuteri PFS4, Enterococcus faecium PFS13, and Enterococcus faecium PFS14. These strains demonstrated a good tolerance to gastrointestinal-related stresses, including gastric acid, bile, lysozyme, and phenol. In addition, the isolates that were able to auto aggregate had the ability to co-aggregate with MDR S. Typhimurium and S. Enteritidis. Furthermore, LAB strains competitively reduced the adhesion of pathogens to porcine mucin Type III in co-culture studies. The probiotic combination of the selected LAB isolates inhibited the biofilm formation of S. Typhimurium FML15 and S. Enteritidis FML18 by 90% and 92%, respectively. In addition, the cell-free supernatant (CFS) of the LAB culture significantly reduced the growth of Salmonella in vitro. Thus, L. reuteri PFS4, E. faecium PFS13, and E. faecium PFS 14 are potential probiotics that could be used to control MDR S. Typhimurium and S. Enteritidis in poultry. Future investigations are required to elucidate the in vivo potential of these probiotic candidates as Salmonella control agents in poultry and animal feed.
Collapse
|
17
|
Hacıoglu S, Kunduhoglu B. Probiotic Characteristics of Lactobacillus brevis KT38-3 Isolated from an Artisanal Tulum Cheese. Food Sci Anim Resour 2021; 41:967-982. [PMID: 34796324 PMCID: PMC8564325 DOI: 10.5851/kosfa.2021.e49] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 11/06/2022] Open
Abstract
Probiotics are living microorganisms that, when administered in adequate amounts,
provide a health benefit to the host and are considered safe. Most probiotic
strains that are beneficial to human health are included in the “Lactic
acid bacteria” (LAB) group. The positive effects of probiotic bacteria on
the host’s health are species-specific and even strain-specific.
Therefore, evaluating the probiotic potential of both wild and novel strains is
essential. In this study, the probiotic characteristics of Lactobacillus
brevis KT38-3 were determined. The strain identification was
achieved by 16S rRNA sequencing. API-ZYM test kits were used to determine the
enzymatic capacity of the strain. L. brevis KT38-3 was able to
survive in conditions with a broad pH range (pH 2–7), range of bile salts
(0.3%–1%) and conditions that simulated gastric juice and
intestinal juice. The percentage of autoaggregation (59.4%),
coaggregation with E. coli O157:H7 (37.4%) and
hydrophobicity were determined to be 51.1%, 47.4%, and
52.7%, respectively. L. brevis KT38-3 produced
β-galactosidase enzymes and was able ferment lactose. In addition, this
strain was capable of producing antimicrobial peptides against the bacteria
tested, including methicillin and/or vancomycin-resistant bacteria. The
cell-free supernatants of the strain had high antioxidant activities (DPPH:
54.9% and ABTS: 48.7%). Therefore, considering these many
essential in vitro probiotic properties, L.
brevis KT38-3 has the potential to be used as a probiotic
supplement. Supporting these findings with in vivo experiments
to evaluate the potential health benefits will be the subject of our future
work.
Collapse
Affiliation(s)
- Seda Hacıoglu
- Institute of Science, University of Eskişehir Osmangazi, Eskişehir 26040, Turkey
| | - Buket Kunduhoglu
- Department of Biology, Faculty of Science and Letters, University of Eskişehir Osmangazi, Eskişehir 26040, Turkey
| |
Collapse
|
18
|
The Influence of Environmental Conditions on the Antagonistic Activity of Lactic Acid Bacteria Isolated from Fermented Meat Products. Foods 2021; 10:foods10102267. [PMID: 34681316 PMCID: PMC8534964 DOI: 10.3390/foods10102267] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to determine the impact of environmental conditions on the antimicrobial properties of 21 lactic acid bacteria strains in the selected indicator bacteria. To assess the antimicrobial activity of the whole bacteria culture (WBC), the agar well diffusion method was used. The interference of LAB strains with the growth of the selected indicator bacteria was evaluated by incubating co-cultures in the food matrix. Based on the conducted research, it was found that environmental conditions have a significant impact on the antimicrobial activity of lactic acid bacteria strains. The highest antimicrobial activity was recorded under optimal conditions for the development of LAB, the incubation time being different depending on the indicator strain used. The tested LAB strains were characterized by a high ability to inhibit indicator strains, especially in the food matrix. These results led us to further characterize and purify the antimicrobial compound produced by lactic acid bacteria taking into account changing environmental conditions.
Collapse
|
19
|
Abstract
Immunoglobulin A (IgA) is the most abundant antibody at mucosal surfaces and has been the subject of many investigations involving microbiota research in the last decade. Although the classic functions of IgA include neutralization of harmful toxins, more recent investigations have highlighted an important role for IgA in regulating the composition and function of the commensal microbiota. Multiple reviews have comprehensively covered the literature that describes recent, novel mechanisms of action of IgA and development of the IgA response within the intestine. Here we focus on how the interaction between IgA and the microbiota promotes homeostasis with the host to prevent disease.
Collapse
Affiliation(s)
- Allison M Weis
- Department of Pathology, University of Utah School of Medicine, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA
| | - June L Round
- Department of Pathology, University of Utah School of Medicine, Division of Microbiology and Immunology, Salt Lake City, UT 84112, USA.
| |
Collapse
|
20
|
Improving the Gut Microbiota with Probiotics and Faecal Microbiota Transplantation. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Probiotics are “live strains of strictly selected microorganisms which, when administered in adequate amounts, confer a health benefit on the host”. After birth, our intestine is colonized by microbes like Escherichia coli, Clostridium spp., Streptococcus spp., Lactobacillus spp., Bacteroides spp., and Bifidobacterium spp. Our intestine is an extremely complex living system that participates in the protection of host through a strong defence against external aggregations. The microbial ecosystem of the intestine includes many native species of Bacteroides and Firmicutes that permanently colonize the gastrointestinal tract. The composition of flora changes over time depending upon diet and medical emergencies which leads to the diseased condition. Probiotics exert their mode of action by altering the local environment of the gut by competing with the pathogens, bacteriocins production, H2O2 production etc. Obesity is one of the major health problems and is considered as the most prevalent form of inappropriate nutrition. Probiotics like Lactobacillus Sp., Bifidobacterium Sp., Streptococcus Sp. are successfully used in the treatment of obesity proved in clinical trials. Faecal microbiota transplant (FMT), also known as a stool transplant, is the process of transplantation of Faecal bacteria from a healthy donor into a recipient’s gut to restore normal flora in the recipient. The therapeutic principle on which FMT works is microbes and their functions and metabolites produced by them which are used to treat a variety of diseases. The present review focuses on the role of gastrointestinal microbiome, probiotic selection criteria, their applications and FMT to treat diseases.
Collapse
|
21
|
Śliżewska K, Chlebicz-Wójcik A, Nowak A. Probiotic Properties of New Lactobacillus Strains Intended to Be Used as Feed Additives for Monogastric Animals. Probiotics Antimicrob Proteins 2021; 13:146-162. [PMID: 32577907 PMCID: PMC7904557 DOI: 10.1007/s12602-020-09674-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The study aimed to evaluate the safety and probiotic properties of selected Lactobacillus strains, which are intended to be fed to monogastric animals. The Lactobacillus spp. appeared to be safe since they did not degrade mucus and did not exhibit β-haemolysis. Moreover, the survival of Caco-2 cells in the presence of metabolites of the selected strains was high, which also indicated their safety. The analysed strains showed moderate or strong antagonistic activity against Salmonella spp., Listeria monocytogenes, Campylobacter jejuni and Campylobacter coli, which was tested with the usage of the agar slab method. Furthermore, the strains showed high survivability in an acidic environment and the presence of bile salts (~90%). High resistivity or moderate susceptibility to antibiotics was also observed, as a result of the disc diffusion method. The strains were mostly moderately hydrophilic (hydrophobicity: 10.43–41.14%); nevertheless, their auto-aggregation capability exceeded 50% and their co-aggregation with pathogens varied between 12.12 and 85.45%. The ability of the selected strains to adhere to Caco-2 cells was also analysed; they were found to be moderately adhesive (85.09–95.05%) and able to hinder pathogens attaching to the cells (up to 62.58%). The analysed strains exhibit probiotic properties, such as high survivability and adherence to epithelial cells; therefore, they are suitable for administration to monogastric animals. Since the overuse of antibiotic growth promoters in livestock leads to the spread of antibiotic-resistant pathogens and accumulation of chemotherapeutic residues in food of animal origin, it is of vital importance to introduce alternative feed additives.
Collapse
Affiliation(s)
- Katarzyna Śliżewska
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland.
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland.
| | - Agnieszka Chlebicz-Wójcik
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland.
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland.
| | - Adriana Nowak
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-924, Łódź, Poland
| |
Collapse
|
22
|
Kang J, Lee JJ, Cho JH, Choe J, Kyoung H, Kim SH, Kim HB, Song M. Effects of dietary inactivated probiotics on growth performance and immune responses of weaned pigs. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2021; 63:520-530. [PMID: 34189502 PMCID: PMC8203999 DOI: 10.5187/jast.2021.e44] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022]
Abstract
This experiment was performed to verify whether dietary heat-killed
Lactobacillus rhamnosus (LR) improves growth performance
and modulates immune responses of weaned pigs. Ninety-six weaned pigs ([Landrace
× Yorkshire] × Duroc; 6.95 ± 0.25 kg body weight [BW]; 28 d
old) were randomly allocated to four treatments: 1) a basal diet without
heat-killed LR (CON), 2) T1 (CON with 0.1% heat-killed LR), 3) T2 (CON with 0.2%
heat-killed LR), and 4) T3 (CON with 0.4% heat-killed LR). Each treatment had
six pens with four pigs (6 replicates per treatment) in a randomized completely
block design. The heat-killed LR used in this study contained 1 ×
109 FU/g of LR in a commercial product. Pigs were fed each
treatment for four weeks using a two-phase feeding program to measure growth
performance and frequency of diarrhea. During the last week of this study, all
diets contained 0.2% chromic oxide as an indigestible marker. Fecal sampling was
performed through rectal palpation for the consecutive three days after the four
adaptation days to measure apparent total tract digestibility (ATTD) of dry
matter, crude protein, and gross energy (GE). Blood sampling was also performed
on day 1, 3, 7, and 14 after weaning to measure immune responses such as serum
tumor necrosis factor-α (TNF-α), transforming growth
factor-β1 (TGF-β1), C-reactive protein (CRP), and cortisol. The
heat-killed LR increased (p < 0.05) growth rate, feed
efficiency, and ATTD of GE for overall experimental period compared with CON,
but reduced (p < 0.05) post-weaning diarrhea. In
addition, pigs fed diets contained heat-killed had lower concentrations of serum
TNF-α (d 7; p < 0.05), TGF-β1 (d 7;
p < 0.10), and cortisol (d 3 and 7;
p < 0.05) than pigs fed CON. In conclusion, dietary
heat-killed LR improved growth rate, modified immune responses of weaned pigs,
and alleviated post-weaning diarrhea.
Collapse
Affiliation(s)
- Joowon Kang
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Jeong Jae Lee
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | - Jin Ho Cho
- Division of Food and Animal Science, Chungbuk National University, Cheongju 28644, Korea
| | - Jeehwan Choe
- Department of Beef Science, Korea National Collage of Agriculture and Fisheries, Jeonju 54874, Korea
| | - Hyunjin Kyoung
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| | | | - Hyeun Bum Kim
- Department of Animal Resource, Dankook University, Cheonan 31116, Korea
| | - Minho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
23
|
Siciliano RA, Reale A, Mazzeo MF, Morandi S, Silvetti T, Brasca M. Paraprobiotics: A New Perspective for Functional Foods and Nutraceuticals. Nutrients 2021; 13:1225. [PMID: 33917707 PMCID: PMC8068161 DOI: 10.3390/nu13041225] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/15/2022] Open
Abstract
Probiotics are live microorganisms that confer health benefits on the host. However, in recent years, several concerns on their use have been raised. In particular, industrial processing and storage of probiotic products are still technological challenges as these could severely impair cell viability. On the other hand, safety of live microorganisms should be taken into account, especially when administered to vulnerable people, such as the elderly and immunodeficient individuals. These drawbacks have enhanced the interest toward new products based on non-viable probiotics such as paraprobiotics and postbiotics. In particular, paraprobiotics, defined as "inactivated microbial cells (non-viable) that confer a health benefit to the consumer," hold the ability to regulate the adaptive and innate immune systems, exhibit anti-inflammatory, antiproliferative and antioxidant properties and exert antagonistic effect against pathogens. Moreover, paraprobiotics can exhibit enhanced safety, assure technological and practical benefits and can also be used in products suitable for people with weak immunity and the elderly. These features offer an important opportunity to prompt the market with novel functional foods or nutraceuticals that are safer and more stable. This review provides an overview of central issues on paraprobiotics and highlights the urgent need for further studies aimed at assessing safety and efficacy of these products and their mechanisms of action in order to support decisions of regulatory authorities. Finally, a definition is proposed that unambiguously distinguishes paraprobiotics from postbiotics.
Collapse
Affiliation(s)
- Rosa Anna Siciliano
- Institute of Food Sciences, National Research Council (CNR-ISA), Via Roma 64, 83100 Avellino, Italy; (R.A.S.); (A.R.)
| | - Anna Reale
- Institute of Food Sciences, National Research Council (CNR-ISA), Via Roma 64, 83100 Avellino, Italy; (R.A.S.); (A.R.)
| | - Maria Fiorella Mazzeo
- Institute of Food Sciences, National Research Council (CNR-ISA), Via Roma 64, 83100 Avellino, Italy; (R.A.S.); (A.R.)
| | - Stefano Morandi
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Celoria 2, 20133 Milan, Italy; (S.M.); (M.B.)
| | - Tiziana Silvetti
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Celoria 2, 20133 Milan, Italy; (S.M.); (M.B.)
| | - Milena Brasca
- Institute of Sciences of Food Production, National Research Council (CNR-ISPA), Via G. Celoria 2, 20133 Milan, Italy; (S.M.); (M.B.)
| |
Collapse
|
24
|
Jin Y, Luo B, Cai J, Yang B, Zhang Y, Tian F, Ni Y. Evaluation of indigenous lactic acid bacteria of raw mare milk from pastoral areas in Xinjiang, China, for potential use in probiotic fermented dairy products. J Dairy Sci 2021; 104:5166-5184. [PMID: 33714582 DOI: 10.3168/jds.2020-19398] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 01/04/2021] [Indexed: 01/27/2023]
Abstract
In the present study 114 lactic acid bacteria strains, isolated from raw mare milks from pastoral areas for ethnic minorities in northwest China, were screened for probiotic traits, and their characteristics were compared with those of Lactobacillus rhamnosus GG, a commercial strain. Among the 114 strains identified, the most common species was Pediococcus pentosaceus (n = 52), followed by Leuconostoc lactis (n = 35), Lactobacillus helveticus (n = 7), Lactobacillus plantarum (n = 6), Lactobacillus kefiri (n = 5), Lactobacillus curvatus (n = 4), Lactobacillus paracasei (n = 3), and Lactococcus garvieae (n = 3). Based on acid and bile salt tolerance, 15 strains were further selected. All selected strains were subjected to a series of in vitro tests to assess their technological properties, including cell surface hydrophobicity (13.6-56.2%), autoaggregation ability (9.26-38.30%), coaggregation ability, and heat and lysozyme survival rates (84.74-94.01% and 80.52-99.37%, respectively). In vitro antagonism showed that Lb. plantarum (M5-19, M8-60, M8-59) exhibited the most strong inhibitory activity against 7 tested pathogens. Moreover, antibiotic resistance and hemolytic activity were investigated for safety assessment. No strain exhibited hemolytic activity, and most of the strains were sensitive to a series of 14 antibiotics of clinical importance. Ultimately, the principal component analysis of all data obtained above showed that 2 Lb. plantarum strains (M8-59, M8-60) and Lb. paracasei M1-36 exhibited the best potential for their inclusion as adjunct functional cultures in local fermented dairy products.
Collapse
Affiliation(s)
- Yamei Jin
- School of Food Sciences and Technology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China
| | - Baolong Luo
- School of Food Sciences and Technology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China
| | - Jingjing Cai
- School of Food Sciences and Technology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China
| | - Bo Yang
- School of Food Sciences and Technology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China
| | - Yan Zhang
- School of Food Sciences and Technology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China
| | - Fengwei Tian
- School of Food Sciences and Technology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China
| | - Yongqing Ni
- School of Food Sciences and Technology, Shihezi University, Shihezi 832000, Xinjiang, People's Republic of China.
| |
Collapse
|
25
|
Zielińska D, Łepecka A, Ołdak A, Długosz E, Kołożyn-Krajewska D. Growth and adhesion inhibition of pathogenic bacteria by live and heat-killed food-origin Lactobacillus strains or their supernatants. FEMS Microbiol Lett 2021; 368:6149457. [PMID: 33629723 DOI: 10.1093/femsle/fnab024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/23/2021] [Indexed: 12/27/2022] Open
Abstract
The study aimed to evaluate qualitatively and quantitatively the antimicrobial capacity of 10 potential probiotic Lactobacillus strains against model enteropathogens and spoilage microorganisms. The probiotic strains (live and heat-killed forms) were also assessed for their ability to inhibit adhesion of selected pathogens to Caco-2 cells. The largest inhibition zones (the diffusion method) were connected with the usage of whole bacteria cultures (WBC), also high and moderate with cell-free supernatant (CFS) and the lowest with cell-free neutralized supernatant (CNS). The highest antagonistic activity of Lactobacillus strains was observed against L. monocytogenes strains, moderate activity against Salmonella, Shigella, Escherichia coli, Pseudomonas and, the lowest against S.aureus, Bacillus and Enterococcus. The inhibition of adhesion to Caco-2 cells was very high in the case of E. coli, Salmonella and L. monocytogenes, and moderate in the case of S.aureus. On average, the inhibition effect was higher when pathogenic bacteria were treated by WBC, than heat-killed Lactobacillus. Although, in most samples, the effect was not significantly different (P> 0.05). The strains Lb. brevis O24 and Lb. rhamnosus K3 showed the biggest overall antimicrobial properties, and were most effective in adherence inhibition of investigated indicator strains. These bacteria or their metabolites can be used for the production of various foods or pharmaceutical products.
Collapse
Affiliation(s)
- Dorota Zielińska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Science - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Anna Łepecka
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Science - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Aleksandra Ołdak
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Science - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Ewa Długosz
- Department of Preclinical Sciences, Institute of Veterinary Medicine, Warsaw University of Life Science - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| | - Danuta Kołożyn-Krajewska
- Department of Food Gastronomy and Food Hygiene, Institute of Human Nutrition Sciences, Warsaw University of Life Science - SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland
| |
Collapse
|
26
|
Deng W, Dittoe DK, Pavilidis HO, Chaney WE, Yang Y, Ricke SC. Current Perspectives and Potential of Probiotics to Limit Foodborne Campylobacter in Poultry. Front Microbiol 2020; 11:583429. [PMID: 33414767 PMCID: PMC7782433 DOI: 10.3389/fmicb.2020.583429] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/03/2020] [Indexed: 01/07/2023] Open
Abstract
Poultry has been one of the major contributors of Campylobacter related human foodborne illness. Numerous interventions have been applied to limit Campylobacter colonization in poultry at the farm level, but other strategies are under investigation to achieve more efficient control. Probiotics are viable microbial cultures that can establish in the gastrointestinal tract (GIT) of the host animal and elicit health and nutrition benefits. In addition, the early establishment of probiotics in the GIT can serve as a barrier to foodborne pathogen colonization. Thus, probiotics are a potential feed additive for reducing and eliminating the colonization of Campylobacter in the GIT of poultry. Screening probiotic candidates is laborious and time-consuming, requiring several tests and validations both in vitro and in vivo. The selected probiotic candidate should possess the desired physiological characteristics and anti-Campylobacter effects. Probiotics that limit Campylobacter colonization in the GIT rely on different mechanistic strategies such as competitive exclusion, antagonism, and immunomodulation. Although numerous research efforts have been made, the application of Campylobacter limiting probiotics used in poultry remains somewhat elusive. This review summarizes current research progress on identifying and developing probiotics against Campylobacter and presenting possible directions for future research efforts.
Collapse
Affiliation(s)
- Wenjun Deng
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | - Dana K. Dittoe
- Center of Food Safety, Department of Food Science, University of Arkansas, Fayetteville, AR, United States
| | | | | | - Yichao Yang
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
27
|
Hamden H, MSaad Guerfali M, Charaabi K, Djobbi W, Fadhl S, Mahjoubi M, Mnasri K, Najjari A, Saidi M, Chevrier C, Cherif A. Screening and selection of potential probiotic strains from the Mediterranean fruit fly (Ceratitis capitata) guts origin based on SIT application. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1848010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- H. Hamden
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - Meriem MSaad Guerfali
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - K. Charaabi
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - W. Djobbi
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - S. Fadhl
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - M. Mahjoubi
- Isbst, BVBGR-LR11ES31, University of Manouba, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - K. Mnasri
- Isbst, BVBGR-LR11ES31, University of Manouba, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - A. Najjari
- Isbst, BVBGR-LR11ES31, University of Manouba, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - M. Saidi
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - C. Chevrier
- IRBI, University of Tours UMR CNRS, 7261, Tours, France
| | - A. Cherif
- Isbst, BVBGR-LR11ES31, University of Manouba, Technopole Sidi Thabet 2020, Ariana, Tunisia
| |
Collapse
|
28
|
Probiotic Properties of Lactiplantibacillus plantarum LB5 Isolated from Kimchi Based on Nitrate Reducing Capability. Foods 2020; 9:foods9121777. [PMID: 33266127 PMCID: PMC7760155 DOI: 10.3390/foods9121777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 01/01/2023] Open
Abstract
The purpose of this study was to investigate the probiotic properties of lactic acid bacteria isolated from Korean radish water kimchi (dongchimi). A total of 800 isolates of lactic acid bacteria were isolated from kimchi, and the strain having reduction and tolerance capability for nitrate and nitrite was selected and identified as Lactiplantibacillus plantarum LB5 (LPLB5) by 16S rRNA sequencing. LPLB5 showed higher tolerance to acidic pH values (pH 2.5), 0.3% bile salts, and heat treatment (40, 50, and 60 °C). Antibacterial activity showed strong inhibition against four food-borne pathogenic bacteria (E. coli O157:H7 ATCC 35150, Pseudomonas aeruginosa KCCM 12539, Listeria monocytogenes KCCM 40307, and Staphylococcus aureus ATCC 25923). The strain did not show any antibiotic resistance, β-hemolytic activity, or ability to produce β-glucuronidase. LPLB5 also exhibited a 30% auto-aggregation ability and 33–60% co-aggregation ability with four pathogenic bacteria (E. coli O157: H7 ATCC 35150, E. coli KCTC 2571, L. monocytogenes ATCC 51776, and S. aureus ATCC 25923). Moreover, the strain showed approximately 40% 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical- and 10% 2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) radical-scavenging activity. In cell culture studies, human colon epithelial cells (Caco-2) were treated with LPLB5 (106 and 107 CFU/mL); the bacteria showed more than 70% adherence onto and a 32% invasion rate into the Caco-2 cells. LPLB5 significantly decreased the mRNA expression levels of pro-inflammatory cytokines (interleukin-1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor-alpha (TNF-α)) and increased the mRNA expression levels of anti-inflammatory cytokines (interleukin-4 (IL-4), interleukin-10 (IL-10), and interferon-gamma (IFN-γ)) in lipopolysaccharide-stimulated Caco-2 cells. Our data suggest that LPLB5 is safe and possesses probiotic, antioxidant, and anti-inflammatory activities.
Collapse
|
29
|
Probiotic Potential and Gluten Hydrolysis Activity of Lactobacillus brevis KT16-2. Probiotics Antimicrob Proteins 2020; 13:720-733. [PMID: 33169341 DOI: 10.1007/s12602-020-09723-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2020] [Indexed: 01/09/2023]
Abstract
Celiac disease (CD) is a chronic autoimmune disease that occurs in genetically predisposed individuals. Gluten-hydrolyzing probiotic bacteria are promising for alleviating symptoms in individuals with CD. Therefore, in this study, the gluten hydrolysis ability and probiotic potential of Lact. brevis KT16-2 were determined. Lact. brevis KT16-2 formed proteolysis zones on gluten and gliadin agar plates, in which gluten and gliadin were used as the only nitrogen sources. SDS-PAGE analysis showed that Lact. brevis KT16-2 completely hydrolyzed peptides ranging from 28 to 66 kDa in 8 h. Then, the survival of the strain in bile salts, in simulated gastric juice and at low pH was determined. Additionally, the antioxidant and antimicrobial substance production, autoaggregation, hydrophobicity and antibiotic resistance of the strain were investigated. API-ZYM test kits were used to determine the enzymatic capacity of the strain. Lact. brevis KT16-2 had the ability to hydrolyze wheat gluten. It was able to survive in a broad pH range (pH 2-8), in bile salts (0.3-1%), and in simulated gastric juice. It had the ability to autoaggregate (59.4%), and the hydrophobicity (52.7%) of the strain was determined. In addition, this strain was capable of producing antimicrobial peptides against test bacteria, including antibiotic-resistant bacteria. Cell-free supernatants (CFS) of the strain had high antioxidant activity (DPPH-71.0% and ABTS-54.1%). The results of this study suggest that Lact. brevis KT16-2, which can hydrolyze gliadin and has many essential probiotic properties, has the potential to be used as a probiotic supplement for individuals with CD.
Collapse
|
30
|
Pazhoohan M, Sadeghi F, Moghadami M, Soltanmoradi H, Davoodabadi A. Antimicrobial and antiadhesive effects of Lactobacillus isolates of healthy human gut origin on Enterotoxigenic Escherichia coli (ETEC) and Enteroaggregative Escherichia coli (EAEC). Microb Pathog 2020; 148:104271. [PMID: 32835777 DOI: 10.1016/j.micpath.2020.104271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 05/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Diarrhea is one of the five leading causes of mortality in children under the age of five, especially in developing countries. Nowadays, by increasing the resistance of pathogens to antibiotics, employment of probiotics as novel therapeutic method, could be considered as a necessity.The aim of this study was to examine the features and antagonistic action of Lactobacillus strains, against the growth and adhesion of Enterotoxigenic Escherichia coli (ETEC) and Enteroaggregative Escherichia coli (EAEC) strains creating diarrhea in children. Then, we introduced new strains of Lactobacillus as probiotic candidates, to prevent diarrheal infections in children. METHODS Stool samples were collected from healthy individuals, and Lactobacillus strains were isolated. The antimicrobial effect of the isolates against ETEC and EAEC strains investigated by agar well diffusion method and their resistance to acidic and bile conditions. The potency of selected isolates in adhesion to HT-29 epithelial cells and their ability to inhibit the adhesion of ETEC and EAEC strains to this cell were measured. At the end, identification of the optimally efficient Lactobacillus isolates was performed by 16S rDNA sequencing and making Phylogenetic tree using MEGA (version 4.0) software. RESULTS In total, 157 isolates suspected to Lactobacillus were isolated from 115 stool samples. In antimicrobial activity test, ETEC and EAEC growth was inhibited by 132 and 84 isolates respectively, while 17 isolates showed resistance to Bile. Of 17 Bile resistant Lactobacillus isolates, 15 isolates were resistant to pH: 3.2. Further, among 15 isolates, only two isolates, were resistant to pH: 2.5. In the adhesion assay, five isolates had more adhesion tendency to HT-29 epithelial cells than L. rhamnosus GG, which was considered as a positive control. Investigation of isolates that inhibit adhesion of ETEC and EAEC strains to HT-29 cells showed that four isolates were able to inhibit ETEC adhesion. However, only one out of four isolates was relatively able to have an impact on EAEC adhesion. CONCLUSION In conclusion, three species of Lactobacillus including L. paracasei (two strain), L. fermentum (two strain) and L. plantarum showed good probiotic properties compared to other isolates that were identified by sequencing. In this study, strain L. fermentum 61.1 had the highest adhesion ability to HT-29 cells and strain L. paracasei 47.2 had the highest potency to inhibit ETEC adhesion to HT-29 cells. These isolates have good probiotic properties and are likely to be effective in preventing or treating diarrheal infections, especially in children.
Collapse
Affiliation(s)
- Maryam Pazhoohan
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| | - Farzin Sadeghi
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran; Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Morteza Moghadami
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Hossein Soltanmoradi
- Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abolfazl Davoodabadi
- Infectious Diseases & Tropical Medicine Research Center, Babol University of Medical Sciences, Babol, Iran; Department of Microbiology, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran.
| |
Collapse
|
31
|
Alp D, Kuleaşan H, Korkut Altıntaş A. The importance of the S-layer on the adhesion and aggregation ability of Lactic acid bacteria. Mol Biol Rep 2020; 47:3449-3457. [PMID: 32279212 DOI: 10.1007/s11033-020-05430-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/03/2020] [Indexed: 12/22/2022]
Abstract
S-layer proteins in Lactic acid bacteria are not the only cell surface structures used for aggregation, but also plays significant role for intestinal tissue adhesion along with some other functional elements. In addition, it was determined that the properties of S-layer proteins differs not only between species but also the strains which belong to same species. In this work, presence and some functions of S-layer in lactic acid bacteria were determined, its effect on resistance to gastrointestinal enzymes, aggregation and adhesion ability were investigated as well. For this purpose S-layers of microorganisms were removed by 5 M LiCl treatment and size of the proteins were determined by SDS-PAGE analysis. The removal of S-layer proteins caused a change in the resistance of microorganisms to GIS enzymes. After the S-layer removal, two strains considerably lost their resistance to GIS enzymes. The strains mostly lost their aggregation ability in the absence of S-layer. The results showed that S-layer proteins are not the only structures involved in aggregation processes but, is a major mediator in Lactobacilli. Removal of S-layer had no effect on adhesion ability of W. cibaria DA28, the effect on L. casei DA4, L. coryniformis DA263 and L. plantarum DA140 was moderate, but the effect was high on L. plantarum DA100. The study showed that S-layer proteins play limited protection against GIS enzymes. In addition, absence of S-layer adversely affected aggregation and adhesion ability of strains.
Collapse
Affiliation(s)
- Duygu Alp
- Faculty of Engineering, Department of Food Engineering, Suleyman Demirel University, Isparta, Turkey.
| | - Hakan Kuleaşan
- Faculty of Engineering, Department of Food Engineering, Suleyman Demirel University, Isparta, Turkey
| | - Aylin Korkut Altıntaş
- Faculty of Engineering, Department of Food Engineering, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
32
|
Šikić Pogačar M, Langerholc T, Mičetić-Turk D, Možina SS, Klančnik A. Effect of Lactobacillus spp. on adhesion, invasion, and translocation of Campylobacter jejuni in chicken and pig small-intestinal epithelial cell lines. BMC Vet Res 2020; 16:34. [PMID: 32013961 PMCID: PMC6998324 DOI: 10.1186/s12917-020-2238-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/09/2020] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Campylobacter spp. are a major cause of bacterial food-borne diarrhoeal disease. This mainly arises through contamination of meat products during processing. For infection, Campylobacter spp. must adhere to epithelial cells of the mucus layer, survive conditions of the gastrointestinal tract, and colonise the intestine of the host. Addition of probiotic bacteria might promote competitive adhesion to epithelial cells, consequently reducing Campylobacter jejuni colonisation. Effect of Lactobacillus spp. (PCS20, PCS22, PCS25, LGG, PCK9) on C. jejuni adhesion, invasion and translocation in pig (PSI cl.1) and chicken (B1OXI) small-intestine cell lines, as well as pig enterocytes (CLAB) was investigated. RESULTS Overall, in competitive adhesion assays with PSI cl.1 and CLAB cell monolayers, the addition of Lactobacillus spp. reduced C. jejuni adherence to the cell surface, and negatively affected the C. jejuni invasion. Interestingly, Lactobacillus spp. significantly impaired C. jejuni adhesion in three-dimensional functional PSI cl.1 and B1OXI cell models. Also, C. jejuni did not translocate across PSI cl.1 and B1OXI cell monolayers when co-incubated with probiotics. Among selected probiotics, Lactobacillus rhamnosus LGG was the strain that reduced adhesion efficacy of C. jejuni most significantly under co-culture conditions. CONCLUSION The addition of Lactobacillus spp. to feed additives in livestock nutrition might be an effective novel strategy that targets Campylobacter adhesion to epithelial cells, and thus prevents colonisation, reduces the transmission, and finally lowers the incidence of human campylobacteriosis.
Collapse
Affiliation(s)
| | - Tomaž Langerholc
- Department of Microbiology, Biochemistry, Molecular Biology and Biotechnology, Faculty of Agriculture and Life Science, University of Maribor, 2311, Hoče, Slovenia
| | | | - Sonja Smole Možina
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Anja Klančnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, 1000, Ljubljana, Slovenia
| |
Collapse
|
33
|
Samson JS, Choresca CH, Quiazon KMA. Selection and screening of bacteria from African nightcrawler, Eudrilus eugeniae (Kinberg, 1867) as potential probiotics in aquaculture. World J Microbiol Biotechnol 2020; 36:16. [PMID: 31897642 DOI: 10.1007/s11274-019-2793-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/21/2019] [Indexed: 11/24/2022]
Abstract
Earthworms are used as an alternative protein source in aquaculture. These organisms serve as an ideal and favorable site for bacterial growth and activity. Hence, in our present study, we isolated and screened potential probiotic bacteria from African nightcrawler (Eudrilus eugeniae). Among 45 bacterial isolates, four (ANSCI9, BFAR9, RM3, and RM10) were selected based on their hydrophobicity, hydrolytic enzyme production, pH and fish bile tolerance, aggregation, and antimicrobial properties. The selected isolates showed good hydrophobicity (≥ 30%) and enzyme production (≥ 10 mm clearing zones), tolerance to pH and fish bile, and inhibitory properties against pathogenic microorganisms. The isolates were identified as Bacillus sp. RM3 (MH919306), Bacillus sp. RM10 (MH919308), Bacillus sp. ANSCI9 (MH919310) and Bacillus sp. BFAR9 (MH919302). These isolates were individually incorporated in the diets of Nile tilapia (Oreochromis niloticus) fingerlings for 14 days to assess their biosafety. The results showed that the survival rates in all treated groups (98.75 ± 2.5 to 100.00 ± 0.0%) were not significantly different (P < 0.05) from the control group (commercial diet) (96.25 ± 2.5%), suggesting that isolates have no adverse effect on the host. This study revealed the presence of potential probiotic microorganisms in E. eugeniae that are beneficial to the aquaculture industry.
Collapse
Affiliation(s)
- Jaypee S Samson
- College of Fisheries, Central Luzon State University, 3120, Science City of Muñoz, Nueva Ecija, Philippines. .,Freshwater Aquaculture Center, Central Luzon State University, 3120, Science City of Muñoz, Nueva Ecija, Philippines.
| | - Casiano H Choresca
- National Fisheries Research and Development Institute - Fisheries Biotechnology Center, Bureau of Fisheries and Aquatic Resources - National Freshwater Fisheries Technology Center, Central Luzon State University Compound, 3120, Science City of Muñoz, Nueva Ecija, Philippines
| | - Karl Marx A Quiazon
- College of Fisheries, Central Luzon State University, 3120, Science City of Muñoz, Nueva Ecija, Philippines.,Freshwater Aquaculture Center, Central Luzon State University, 3120, Science City of Muñoz, Nueva Ecija, Philippines
| |
Collapse
|
34
|
Sireswar S, Biswas S, Dey G. Adhesion and anti-inflammatory potential of Lactobacillus rhamnosus GG in a sea buckthorn based beverage matrix. Food Funct 2020; 11:2555-2572. [DOI: 10.1039/c9fo02249j] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A seabuckthorn based beverage matrix retains the functionality of L. rhamnosus GG and exhibits enhanced anti-inflammatory effects against LPS-induced inflammation in zebrafish.
Collapse
Affiliation(s)
- Srijita Sireswar
- School of Biotechnology
- Kalinga Institute of Industrial Technology
- Deemed to be University
- Bhubaneswar
- India
| | | | - Gargi Dey
- School of Biotechnology
- Kalinga Institute of Industrial Technology
- Deemed to be University
- Bhubaneswar
- India
| |
Collapse
|
35
|
Aziz G, Zaidi A, Bakht U, Parveen N, Ahmed I, Haider Z, Muhammad T. Microbial safety and probiotic potential of packaged yogurt products in Pakistan. J Food Saf 2019. [DOI: 10.1111/jfs.12741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Ghazal Aziz
- National Probiotic LabNational Institute for Biotechnology and Genetic Engineering (NIBGE) Faisalabad Punjab Pakistan
- Dept of BiotechnologyPakistan Institute of Engineering and Applied Sciences (PIEAS) Nilore Islamabad Pakistan
| | - Arsalan Zaidi
- National Probiotic LabNational Institute for Biotechnology and Genetic Engineering (NIBGE) Faisalabad Punjab Pakistan
- Dept of BiotechnologyPakistan Institute of Engineering and Applied Sciences (PIEAS) Nilore Islamabad Pakistan
| | - Urooj Bakht
- Institute of Biotechnology and Molecular BiologyUniversity of Lahore (UoL) Lahore Punjab Pakistan
| | - Naila Parveen
- National Probiotic LabNational Institute for Biotechnology and Genetic Engineering (NIBGE) Faisalabad Punjab Pakistan
| | - Ibrar Ahmed
- R&D Section, Alpha Genomics (Pvt) Ltd Islamabad Pakistan
| | - Zeeshan Haider
- Institute of Biotechnology and Molecular BiologyUniversity of Lahore (UoL) Lahore Punjab Pakistan
| | - Tariq Muhammad
- National Probiotic LabNational Institute for Biotechnology and Genetic Engineering (NIBGE) Faisalabad Punjab Pakistan
- Dept of BiotechnologyPakistan Institute of Engineering and Applied Sciences (PIEAS) Nilore Islamabad Pakistan
| |
Collapse
|
36
|
Joghataei M, Shahidi F, Pouladfar G, Mortazavi SA, Ghaderi A. Probiotic potential comparison of Lactobacillus strains isolated from Iranian traditional food products and human feces with standard probiotic strains. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6680-6688. [PMID: 31328278 DOI: 10.1002/jsfa.9945] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Traditional fermented products are a rich source of microorganisms which may have remarkable probiotic properties even more significant than probiotic strains of human origin. In this study three Lactobacillus plantarum and one Lactobacillus fermentum strains, isolated from either Iranian traditionally fermented products or children's feces, identified with molecular methods and selected based on high acid resistance, were investigated for their probiotic properties in vitro and compared with standard probiotic strains of the species; L. plantarum ATCC 14917, L. fermentum PTCC 1744 and L. acidophilus ATCC 4356. RESULTS Most of the isolates showed a high survival rate under gastrointestinal tract conditions and L. plantarum strains displayed a moderate ability to adhere to human colon adenocarcinoma cell line, HT-29. Neutralized cell free culture supernatants of L. plantarum strains were capable of inhibiting pathogens. Almost all of the strains were resistant to vancomycin and streptomycin and susceptible to other clinically relevant antibiotics. Isolated strains exhibited low to moderate autoaggregation (Auto-A), co-aggregation (Co-A) and hydrophobicity, following a strain specific manner. None of the strains invaded into HT-29 cells while strain PF11 could significantly decrease the number of adhering pathogenic bacteria. Most of the strains increased apoptosis of HT-29 cells, though they had no effect on human umbilical vein endothelial cells (HUVECs). CONCLUSION Favorable probiotic properties of strains PL4 and PF11 along with their anticancer activity imply their potential for clinical or technological applications. However, further in vitro/in vivo investigations are recommended. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mehri Joghataei
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fakhri Shahidi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Pouladfar
- Professor Alborzi Clinical Microbiology Research Center, Nemazee Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Ali Mortazavi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
37
|
Aziz G, Fakhar H, Rahman SU, Tariq M, Zaidi A. An assessment of the aggregation and probiotic characteristics of Lactobacillus species isolated from native (desi) chicken gut. J APPL POULTRY RES 2019. [DOI: 10.3382/japr/pfz042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
38
|
Kunyeit L, Kurrey NK, Anu-Appaiah KA, Rao RP. Probiotic Yeasts Inhibit Virulence of Non -albicans Candida Species. mBio 2019; 10:e02307-19. [PMID: 31615960 PMCID: PMC6794482 DOI: 10.1128/mbio.02307-19] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 12/24/2022] Open
Abstract
Systemic infections of Candida species pose a significant threat to public health. Toxicity associated with current therapies and emergence of resistant strains present major therapeutic challenges. Here, we report exploitation of the probiotic properties of two novel, food-derived yeasts, Saccharomyces cerevisiae (strain KTP) and Issatchenkia occidentalis (strain ApC), as an alternative approach to combat widespread opportunistic fungal infections. Both yeasts inhibit virulence traits such as adhesion, filamentation, and biofilm formation of several non-albicans Candida species, including Candida tropicalis, Candida krusei, Candida glabrata, and Candida parapsilosis as well as the recently identified multidrug-resistant species Candida auris They inhibit adhesion to abiotic surfaces as well as cultured colon epithelial cells. Furthermore, probiotic treatment blocks the formation of biofilms of individual non-albicans Candida strains as well as mixed-culture biofilms of each non-albicans Candida strain in combination with Candida albicans The probiotic yeasts attenuated non-albicans Candida infections in a live animal. In vivo studies using Caenorhabditis elegans suggest that exposure to probiotic yeasts protects nematodes from infection with non-albicans Candida strains compared to worms that were not exposed to the probiotic yeasts. Furthermore, application of probiotic yeasts postinfection with non-albicans Candida alleviated pathogenic colonization of the nematode gut. The probiotic properties of these novel yeasts are better than or comparable to those of the commercially available probiotic yeast Saccharomyces boulardii, which was used as a reference strain throughout this study. These results indicate that yeasts derived from food sources could serve as an effective alternative to antifungal therapy against emerging pathogenic Candida species.IMPORTANCE Non-albicans Candida-associated infections have emerged as a major risk factor in the hospitalized and immunecompromised patients. Besides, antifungal-associated complications occur more frequently with these non-albicans Candida species than with C. albicans Therefore, as an alternative approach to combat these widespread non-albicans Candida-associated infections, here we showed the probiotic effect of two yeasts, Saccharomyces cerevisiae (strain KTP) and Issatchenkia occidentalis (ApC), in preventing adhesion and biofilm formation of five non-albicans Candida strains, Candida tropicalis, Candida krusei, Candida glabrata, Candida parapsilosis, and Candida auris The result would influence the current trend of the conversion of conventional antimicrobial therapy into beneficial probiotic microbe-associated antimicrobial treatment.
Collapse
Affiliation(s)
- Lohith Kunyeit
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), CFTRI, Mysore, India
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| | - Nawneet K Kurrey
- Department of Biochemistry, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, India
| | - K A Anu-Appaiah
- Department of Microbiology and Fermentation Technology, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, India
- Academy of Scientific and Innovative Research (AcSIR), CFTRI, Mysore, India
| | - Reeta P Rao
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, Massachusetts, USA
| |
Collapse
|
39
|
Selvaraj A, Jayasree T, Valliammai A, Pandian SK. Myrtenol Attenuates MRSA Biofilm and Virulence by Suppressing sarA Expression Dynamism. Front Microbiol 2019; 10:2027. [PMID: 31551964 PMCID: PMC6737500 DOI: 10.3389/fmicb.2019.02027] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/19/2019] [Indexed: 11/13/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a deleterious human pathogen responsible for severe morbidity and mortality worldwide. The pathogen has attained high priority in the World Health Organization (WHO) - Multidrug-resistant (MDR) pathogens list. Emerging MDR strains of S. aureus are clinically challenging due to failure in conventional antibiotic therapy. Biofilm formation is one of the underlying mechanisms behind the antibiotic resistance. Hence, attenuating biofilm formation has become an alternative strategy to control persistent infections. The current study is probably the first that focuses on the antibiofilm and antivirulence potential of myrtenol against MRSA and its clinical isolates. Myrtenol exhibited a concentration-dependent biofilm inhibition without causing any harmful effect on cell growth and viability. Further, microscopic analysis validated the biofilm inhibitory efficacy of myrtenol against MRSA. In addition, myrtenol inhibited the synthesis of major virulence factors including slime, lipase, α-hemolysin, staphyloxanthin and autolysin. Inhibition of staphyloxanthin in turn sensitized the MRSA cells to healthy human blood and hydrogen peroxide (H2O2). Notably, myrtenol treated cells were deficient in extracellular DNA (eDNA) mediated autoaggregation as eDNA releasing autolysis was impaired by myrtenol. Biofilm disruptive activity on preformed biofilms was observed at concentrations higher than minimum biofilm inhibitory concentration (MBIC) of myrtenol. Also, the non-cytotoxic effect of myrtenol on human peripheral blood mononuclear cell (PBMC) was evidenced by trypan blue and Alamar blue assays. Transcriptional analysis unveiled the down-regulation of global regulator sarA and sarA mediated virulence genes upon myrtenol treatment, which is well correlated with results of phenotypic assays. Thus, the results of the present study revealed the sarA mediated antibiofilm and antivirulence potential of myrtenol against MRSA.
Collapse
|
40
|
Safety assessment of Gram-negative bacteria associated with traditional French cheeses. Food Microbiol 2019; 79:1-10. [DOI: 10.1016/j.fm.2018.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 09/25/2018] [Accepted: 11/03/2018] [Indexed: 12/21/2022]
|
41
|
Sun J, Qi C, Zhu H, Zhou Q, Xiao H, Le G, Chen D, Yu R. IgA-Targeted Lactobacillus jensenii Modulated Gut Barrier and Microbiota in High-Fat Diet-Fed Mice. Front Microbiol 2019; 10:1179. [PMID: 31178854 PMCID: PMC6542990 DOI: 10.3389/fmicb.2019.01179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 12/14/2022] Open
Abstract
IgA-coated Lactobacillus live in the mucous layer of the human or mammalian intestine in close proximity to epithelial cells. They act as potential probiotics for functional food development, but their physiological regulation has not yet been studied. We isolated IgA-targeted (Lactobacillus jensenii IgA21) and lumen lactic acid bacterial strains (Pediococcus acidilactici FS1) from the fecal microbiota of a healthy woman. C57BL/6 mice were fed a normal (CON) or high fat diet (HFD) for 6 weeks and then treated with IgA21 or FS1 for 4 weeks. HFD caused dyslipidemia, mucosal barrier damage, and intestinal microbiota abnormalities. Only IgA21 significantly inhibited dyslipidemia and gut barrier damage. This was related to significant up-regulation of mucin-2, PIgR mRNA expression, and colonic butyrate production (P < 0.05 vs. HFD). Unlike IgA21, FS1 caused a more pronounced gut dybiosis than did HFD, and, in particular, it induced a significant decrease in the Bacteroidales S24-7 group and an increase in Desulfovibrionaceae (P < 0.05 vs. CON). In conclusion, IgA-coated and non-coated lactic acid bacteria of gut have been demonstrated to differentially affect the intestinal barrier and serum lipids. This indicates that IgA-bound bacteria possess the potential to more easily interact with the host gut to regulate homeostasis.
Collapse
Affiliation(s)
- Jin Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ce Qi
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hualing Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Qin Zhou
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, United States
| | - Guowei Le
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Daozhen Chen
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| | - Renqiang Yu
- The Affiliated Wuxi Maternity and Child Health Care Hospital of Nanjing Medical University, Wuxi, China
| |
Collapse
|
42
|
PreliminaryIn VitroEvaluation of the Probiotic Potential of the Bacteriocinogenic StrainEnterococcus lactisPMD74 Isolated from Ezine Cheese. J FOOD QUALITY 2019. [DOI: 10.1155/2019/4693513] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Ezine cheese is a nonstarter and long-ripened cheese produced in the Mount of Ida region of Çanakkale, Turkey, with a protected designation of origin (PDO) status. The nonstarter fermented foods serve as sources for the isolation of novel strains. The present study aimed to report the novelty of the bacteriocinogenicEnterococcus lactisPMD74 strain and thein vitroassessment of its potential as a probiotic candidate. Additionally, the present study aimed to describe the technological and safety-related properties of the aforementioned strain. The strain exhibited high viability at pH 3.0, in the presence of pepsin, pancreatin, and bile salts (0.3% and 0.5%), and considerable survival passage through the stimulated digestion tests. The strain PMD74 exhibited substantial autoaggregative (41%) and coaggregative properties, which increased as a function of time. The highest coaggregation percentage was obtained withSalmonella entericaserotype Typhimurium SL1344 (23%), followed byStaphylococcus aureusATCC 6538 (10.3%) andEscherichia coliATCC 26922 (7.4%), respectively. The strain PMD74 was able to inhibit the growth of a number of Gram-positive bacteria, includingListeria monocytogenes,Lactobacillus sake,Staphylococcus aureus, andE. faecalis. The antimicrobial activity of the proteinaceous compound was calculated as 6400 AU·mL−1by the critical dilution method againstE. faecalisATTC 29212.γ-Hemolytic PMD74 was observed to be sensitive to vancomycin, ampicillin, penicillin, gentamicin, tetracycline, chloramphenicol, and tylosin. Among the four genes tested,E. lactisPMD74 was observed to be positive for three virulence determinants,ace,sprE, andgelE, and negative foresp. The amino acid decarboxylase activities were detected negative for histidine, tyrosine, and ornithine.E. lactisPMD74 was classified as a low acidifier, which suggested its possible role as an adjunct culture.E. lactisPMD74 exhibited considerable survival ability (8.86 log CFU·mL−1) in the acidic condition of fermented milk for a four-week-long storage period.
Collapse
|
43
|
K. B. A, Madhavan A, T. R. R, Thomas S, Nisha P. Short chain fatty acids enriched fermentation metabolites of soluble dietary fibre from Musa paradisiaca drives HT29 colon cancer cells to apoptosis. PLoS One 2019; 14:e0216604. [PMID: 31095579 PMCID: PMC6522120 DOI: 10.1371/journal.pone.0216604] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/24/2019] [Indexed: 12/15/2022] Open
Abstract
In this study, the prebiotic potential of soluble dietary fibre extracted from plantain inflorescence (PIF) was investigated. PIF demonstrated prebiotic potential by enhancing the growth of the probiotics under study and thereby hindered colon cancer development. The soluble dietary fibre from Musa paradisiaca inflorescence (PIF) was fermented using Lactobacillus casei and Bifidobacterium bifidum. The fermentation supernatants (LS and BS) were enriched with short chain fatty acids (SCFA) and were able to initiate apoptotic signalling in HT29 colon cancer cells leading to cell death. Both BS and LS exhibited cytotoxic effect; induced DNA damage and enhanced generation of reactive oxygen species in HT29 cells leading to apoptosis. The induction of apoptosis was facilitated by the reduction of membrane potential of mitochondria and ATP synthesis; enhanced delivery of cytochrome c and interference with the expression of pro/antiapoptotic proteins. BS, which exhibited better activity, was further analysed for the identification of differentially regulated proteins by performing two dimensional electrophoresis and MALDI-TOF mass spectrometry. Results emphasized on the fact that, the exposure to BSalteredthe HT29 proteins expression, particularly the upregulation of apoptosis- inducing factor-AIFM1 leading to apoptosis of HT29 cells.
Collapse
Affiliation(s)
- Arun K. B.
- Agro Processing and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
| | - Aravind Madhavan
- Microbial Processing and Technology Division, CSIR-NIIST, Thiruvananthapuram, Kerala, India
| | - Reshmitha T. R.
- Agro Processing and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Sithara Thomas
- Agro Processing and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - P. Nisha
- Agro Processing and Technology Division, National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, Kerala, India
- Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
- * E-mail:
| |
Collapse
|
44
|
Screening and selection of probiotic Lactobacillus strains of Indian gut origin based on assessment of desired probiotic attributes combined with principal component and heatmap analysis. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.02.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
45
|
Food Supplements to Mitigate Detrimental Effects of Pelvic Radiotherapy. Microorganisms 2019; 7:microorganisms7040097. [PMID: 30987157 PMCID: PMC6518429 DOI: 10.3390/microorganisms7040097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022] Open
Abstract
Pelvic radiotherapy has been frequently reported to cause acute and late onset gastrointestinal (GI) toxicities associated with significant morbidity and mortality. Although the underlying mechanisms of pelvic radiation-induced GI toxicity are poorly understood, they are known to involve a complex interplay between all cell types comprising the intestinal wall. Furthermore, increasing evidence states that the human gut microbiome plays a role in the development of radiation-induced health damaging effects. Gut microbial dysbiosis leads to diarrhea and fatigue in half of the patients. As a result, reinforcement of the microbiome has become a hot topic in various medical disciplines. To counteract GI radiotoxicities, apart from traditional pharmacological compounds, adjuvant therapies are being developed including food supplements like vitamins, prebiotics, and probiotics. Despite the easy, cheap, safe, and feasible approach to protect patients against acute radiation-induced toxicity, clinical trials have yielded contradictory results. In this review, a detailed overview is given of the various clinical, intestinal manifestations after pelvic irradiation as well as the role of the gut microbiome herein. Furthermore, whilst discussing possible strategies to prevent these symptoms, food supplements are presented as auspicious, prophylactic, and therapeutic options to mitigate acute pelvic radiation-induced GI injury by exploring their molecular mechanisms of action.
Collapse
|
46
|
Nami Y, Vaseghi Bakhshayesh R, Mohammadzadeh Jalaly H, Lotfi H, Eslami S, Hejazi MA. Probiotic Properties of Enterococcus Isolated From Artisanal Dairy Products. Front Microbiol 2019; 10:300. [PMID: 30863379 PMCID: PMC6400110 DOI: 10.3389/fmicb.2019.00300] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/04/2019] [Indexed: 12/11/2022] Open
Abstract
The present study focused on probiotic characterization and safety evaluation of Enterococcus isolates from different artisanal dairy products. All the isolates exhibited inhibitory activity against several food spoilage bacteria and food-borne pathogens, including Shigella flexneri, Staphylococcus aureus, Listeria monocytogenes, Yersinia enterocolitica, Klebsiella pneumoniae, Escherichia coli, and Bacillus subtilis. The PCR results indicated the presence of at least one enterocin structural gene in all the tested strains. The Enterococcus isolates were further evaluated regarding their safety properties and functional features. The isolates were susceptible to vancomycin, gentamycin, and chloramphenicol. The results of PCR amplification revealed that all the tested isolates harbored none of the tested virulence genes except E. faecalis (ES9), which showed the presence of esp gene. The Enterococcus isolates showed cholesterol lowering properties. The selected isolates showed a high tolerance to low pH, and toward bile salts. They also demonstrated hydrophobicity activity, auto-aggregation, and adhesion ability to the human intestinal Caco-2 cell line. These properties may contribute the bacteria colonizing the gut. This study revealed that the Enterococcus isolates, especially E. durans ES11, ES20 and ES32, might be excellent candidates for production of functional foods to promote health benefits.
Collapse
Affiliation(s)
- Yousef Nami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Reza Vaseghi Bakhshayesh
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Hossein Mohammadzadeh Jalaly
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Hajie Lotfi
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
| | - Solat Eslami
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
- Dietary Supplements and Probiotic Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Amin Hejazi
- Department of Food Biotechnology, Branch for Northwest and West Region, Agricultural Biotechnology Research Institute, Education and Extension Organization (AREEO), Tabriz, Iran
| |
Collapse
|
47
|
Prabhurajeshwar C, Chandrakanth K. Evaluation of antimicrobial properties and their substances against pathogenic bacteria in-vitro by probiotic Lactobacilli strains isolated from commercial yoghurt. CLINICAL NUTRITION EXPERIMENTAL 2019. [DOI: 10.1016/j.yclnex.2018.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Qureshi N, Li P, Gu Q. Probiotic therapy in Helicobacter pylori infection: a potential strategy against a serious pathogen? Appl Microbiol Biotechnol 2019; 103:1573-1588. [PMID: 30610283 DOI: 10.1007/s00253-018-09580-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/11/2018] [Accepted: 12/12/2018] [Indexed: 12/18/2022]
Abstract
Helicobacter pylori is a highly prevalent human pathogen responsible for chronic inflammation of the gastric tissues, gastroduodenal ulcers, and cancer. The treatment includes a pair of antibiotics with a proton pump inhibitor PPI. Despite the presence of different treatments, the infection rate is still increasing both in developed and developing states. The challenge of treatment failure is greatly due to the resistance of H. pylori to antibiotics and its side effects. Probiotics potential to cure H. pylori infection is well-documented. Probiotics combined with conventional treatment regime appear to have great potential in eradicating H. pylori infection, therefore, provide an excellent alternative approach to manage H. pylori load and its threatening disease outcome. Notably, anti-H. pylori activity of probiotics is strain specific,therefore establishing standard guidelines regarding the dose and formulation of individual strain is inevitable. This review is focused on probiotic's antagonism against H. pylori summarizing their three main potential aspects: their efficiency (i) as an alternative to H. pylori eradication treatment, (ii) as an adjunct to H. pylori eradication treatment and (iii) as a vaccine delivery vehicle.
Collapse
Affiliation(s)
- Nuzhat Qureshi
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Ping Li
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China
| | - Qing Gu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, Department of Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310018, People's Republic of China.
| |
Collapse
|
49
|
Synbiotic combination of Lactobacillus rhamnosus NCDC 298 and short chain fructooligosaccharides prevents enterotoxigenic Escherichia coli infection. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2018.08.061] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
50
|
Son SH, Yang SJ, Jeon HL, Yu HS, Lee NK, Park YS, Paik HD. Antioxidant and immunostimulatory effect of potential probiotic Lactobacillus paraplantarum SC61 isolated from Korean traditional fermented food, jangajji. Microb Pathog 2018; 125:486-492. [DOI: 10.1016/j.micpath.2018.10.018] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 02/04/2023]
|