1
|
Jan A, Bashir G, Altaf I, Fomda BA, Hamid S, Jan K. Evaluation of various phenotypic methods for differentiation of Candida dubliniensis from Candida albicans. J Microbiol Methods 2021; 193:106400. [PMID: 34973998 DOI: 10.1016/j.mimet.2021.106400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/22/2021] [Accepted: 12/22/2021] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Candida dubliniensis was first identified by Sullivan et al. (1995) in Dublin, Ireland. Its clinical significance is associated with development of fluconazole-resistance and invasive diseases in immunocompromised hosts. C. dubliniensis share many features with C. albicans so has been overlooked and misidentified for a long time. AIMS Evaluation of various phenotypic tests with polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) as a gold standard to find out the best method/methods for identifying C. dubliniensis. MATERIALS AND METHODS First PCR-RFLP was performed on 186C. albicans and 14C. dubliniensis strains and then five phenotypic tests were performed simultaneously on all the strains. RESULTS The results of salt tolerance test at 48 h, colony color on HiCrome candida differential agar (HCDA) at 72 h, heat tolerance test at 48 h, xylose assimilation using discs at 72 h and growth on xylose based agar medium (XAM) at 48 h are completely concordant with PCR-RFLP. Colony color on Tobacco agar could differentiate accurately 100% test strains while peripheral hyphal fringes and chlamydosporulation on this agar was seen in only 86% and 87% respectively. Our routine methods proved to be cost effective than PCR-RFLP but the turnaround time was same or more than PCR-RFLP. CONCLUSION For routine identification of C. dubliniensis we recommend use of colony color on HCDA and growth on XAM as simple, reliable and inexpensive method.
Collapse
Affiliation(s)
- Abiroo Jan
- Microbiology, Department of Microbiology, Government Medical College-Anantnag, Anantnag 192101, India
| | - Gulnaz Bashir
- Microbiology, Department of Microbiology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar 190011, India.
| | - Insha Altaf
- Microbiology, Department of Microbiology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar 190011, India
| | - Bashir A Fomda
- Microbiology, Department of Microbiology, Sher-i-Kashmir Institute of Medical Sciences, Srinagar 190011, India
| | - Sabiya Hamid
- Microbiology, Department of Microbiology, Government Medical College, Baramulla, Baramulla. 193103, India
| | - Kownsar Jan
- Microbiology, Department of Microbiology, Government Medical College, Baramulla, Baramulla. 193103, India
| |
Collapse
|
2
|
Hernández-Carreón O, Hernández-Howell C, Hernández-Hernández G, Herrera-Basurto MS, González-Gómez BE, Gutiérrez-Escobedo G, García-Calderón NI, Barrón-Pastor D, De Las Peñas A, Castaño I. Highly specific and rapid molecular detection of Candida glabrata in clinical samples. Braz J Microbiol 2021; 52:1733-1744. [PMID: 34331680 DOI: 10.1007/s42770-021-00584-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 07/18/2021] [Indexed: 01/08/2023] Open
Abstract
The most common nosocomial fungal infections are caused by several species of Candida, of which Candida glabrata is the second most frequently isolated species from bloodstream infections. C. glabrata displays relatively high minimal inhibitory concentration values (MIC) to the antifungal fluconazole and is associated with high mortality rates. To decrease mortality rates, the appropriate treatment must be administered promptly. C. glabrata contains in its genome several non-identical copies of species-specific sequences. We designed three pairs of C. glabrata-specific primers for endpoint PCR amplification that align to these species-specific sequences and amplify the different copies in the genome. Using these primers, we developed a fast, sensitive, inexpensive, and highly specific PCR-based method to positively detect C. glabrata DNA in a concentration-dependent manner from mixes of purified genomic DNA of several Candida species, as well as from hemocultures and urine clinical samples. This tool can be used for positive identification of C. glabrata in the clinic.
Collapse
Affiliation(s)
- Oscar Hernández-Carreón
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - Cesia Hernández-Howell
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - Grecia Hernández-Hernández
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - M Selene Herrera-Basurto
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - Blanca E González-Gómez
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - Guadalupe Gutiérrez-Escobedo
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - Norma I García-Calderón
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - Daniel Barrón-Pastor
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - Alejandro De Las Peñas
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico
| | - Irene Castaño
- IPICYT, División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, AC, Camino a la Presa San José No. 2055, Col. Lomas 4, 78216, San Luis Potosí, Mexico.
| |
Collapse
|
3
|
High-resolution mycobiota analysis reveals dynamic intestinal translocation preceding invasive candidiasis. Nat Med 2020; 26:59-64. [PMID: 31907459 PMCID: PMC7005909 DOI: 10.1038/s41591-019-0709-7] [Citation(s) in RCA: 192] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 11/19/2019] [Indexed: 12/27/2022]
Abstract
The intestinal microbiota is a complex community of bacteria, archaea, viruses, protists and fungi1,2. While the composition of bacterial constituents has been linked to immune homeostasis and to infectious susceptibility3–7, the role of non-bacterial constituents and of cross-kingdom microbial interactions in these processes is poorly understood2,8. Fungi represent a major cause of infectious morbidity and mortality in immune-compromised individuals, though the relationship of intestinal fungi (i.e., the mycobiota) with fungal bloodstream infections (BSI) remains undefined9. We integrated an optimized bioinformatics pipeline with high-resolution mycobiota sequencing and comparative genomic analyses of fecal and blood specimens from recipients of allogeneic hematopoietic cell transplant (allo-HCT). Patients with Candida BSI experienced a prior marked intestinal expansion of pathogenic Candida species; this expansion consisted of a complex dynamic between multiple species and subspecies with a stochastic translocation pattern into the bloodstream. The intestinal expansion of pathogenic Candida species was associated with a significant loss in bacterial burden and diversity, particularly in the anaerobes. Thus, simultaneous analysis of intestinal fungi and bacteria identifies dysbiosis states across kingdoms that may promote fungal translocation and facilitate invasive disease. These findings support microbiota-driven approaches to identify patients at risk for fungal BSI for pre-emptive therapeutic intervention.
Collapse
|
4
|
ElFeky DS, Gohar NM, El-Seidi EA, Ezzat MM, AboElew SH. Species identification and antifungal susceptibility pattern ofCandidaisolates in cases of vulvovaginal candidiasis. ALEXANDRIA JOURNAL OF MEDICINE 2019. [DOI: 10.1016/j.ajme.2015.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Dalia Saad ElFeky
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Egypt
| | - Noha Mahmoud Gohar
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Egypt
| | - Eman Ahmad El-Seidi
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Egypt
| | - Mona Mahmoud Ezzat
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University, Egypt
| | - Somaia Hassan AboElew
- Department of Obstetrics and Gynecology, Faculty of Medicine, Cairo University, Egypt
| |
Collapse
|
5
|
Asghar W, Sher M, Khan NS, Vyas JM, Demirci U. Microfluidic Chip for Detection of Fungal Infections. ACS OMEGA 2019; 4:7474-7481. [PMID: 31080939 PMCID: PMC6504191 DOI: 10.1021/acsomega.9b00499] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/27/2019] [Indexed: 05/08/2023]
Abstract
Fungal infections can lead to severe clinical outcomes such as multiple organ failure and septic shock. Rapid detection of fungal infections allows clinicians to treat patients in a timely manner and improves clinical outcomes. Conventional detection methods include blood culture followed by plate culture and polymerase chain reaction. These methods are time-consuming and require expensive equipment, hence, they are not suitable for point-of-care and clinical settings. There is an unmet need to develop a rapid and inexpensive detection method for fungal infections such as candidemia. We developed an innovative immuno-based microfluidic device that can rapidly detect and capture Candida albicans from phosphate-buffered saline (PBS) and human whole blood. Our microchip technology showed an efficient capture of C. albicans in PBS with an efficiency of 61-78% at various concentrations ranging from 10 to 105 colony-forming units per milliliter (cfu/mL). The presented microfluidic technology will be useful to screen for various pathogens at the point-of-care and clinical settings.
Collapse
Affiliation(s)
- Waseem Asghar
- Ashgar
Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, Florida 33431, United States
- Department
of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida 33431, United States
- E-mail: (W.A.)
| | - Mazhar Sher
- Ashgar
Lab, Micro and Nanotechnology in Medicine, College of Engineering and Computer Science, Boca Raton, Florida 33431, United States
- Department
of Computer & Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, Florida 33431, United States
| | - Nida S. Khan
- Division
of Infectious Disease, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02115, United States
| | - Jatin M. Vyas
- Division
of Infectious Disease, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts 02115, United States
| | - Utkan Demirci
- Bio-Acoustic
MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for
Cancer Early Detection, Department of Radiology, School of Medicine, Stanford University, Palo Alto, California 94305, United States
- E-mail: (U.D.)
| |
Collapse
|
6
|
Robledo-Leal E, Rivera-Morales LG, Sangorrín MP, González GM, Ramos-Alfano G, Adame-Rodriguez JM, Alcocer-Gonzalez JM, Arechiga-Carvajal ET, Rodriguez-Padilla C. Identification and susceptibility of clinical isolates of Candida spp. to killer toxins. BRAZ J BIOL 2018; 78:742-749. [PMID: 29412252 DOI: 10.1590/1519-6984.175635] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/11/2017] [Indexed: 01/07/2023] Open
Abstract
Although invasive infections and mortality caused by Candida species are increasing among compromised patients, resistance to common antifungal agents is also an increasing problem. We analyzed 60 yeasts isolated from patients with invasive candidiasis using a PCR/RFLP strategy based on the internal transcribed spacer (ITS2) region to identify different Candida pathogenic species. PCR analysis was performed from genomic DNA with a primer pair of the ITS2-5.8S rDNA region. PCR-positive samples were characterized by RFLP. Restriction resulted in 23 isolates identified as C. albicans using AlwI, 24 isolates as C. parapsilosis using RsaI, and 13 as C. tropicalis using XmaI. Then, a group of all isolates were evaluated for their susceptibility to a panel of previously described killer yeasts, resulting in 75% being susceptible to at least one killer yeast while the remaining were not inhibited by any strain. C. albicans was the most susceptible group while C. tropicalis had the fewest inhibitions. No species-specific pattern of inhibition was obtained with this panel of killer yeasts. Metschnikowia pulcherrima, Pichia kluyveri and Wickerhamomyces anomalus were the strains that inhibited the most isolates of Candida spp.
Collapse
Affiliation(s)
- E Robledo-Leal
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León - UANL, Av. Universidad, s/n, Ciudad Universitaria, CP 66455, San Nicolás de los Garza, Nuevo León, México
| | - L G Rivera-Morales
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León - UANL, Av. Universidad, s/n, Ciudad Universitaria, CP 66455, San Nicolás de los Garza, Nuevo León, México
| | - M P Sangorrín
- Grupo de Biodiversidad y Biotecnología de Levaduras, Consejo Nacional de Investigaciones Científicas y Tecnológicas, Facultad de Ingeniería, Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas - PROBIEN, Universidad Nacional del Comahue, Buenos Aires, 1400, CP 8300, Neuquén, Argentina
| | - G M González
- Departamento de Microbiología, Facultad de Medicina, Universidad Autónoma de Nuevo León - UANL, Av. Francisco I. Madero Pte, s/n y Av. Gonzalitos, Monterrey, CP 64460, Nuevo León, México
| | - G Ramos-Alfano
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León - UANL, Av. Universidad, s/n, Ciudad Universitaria, CP 66455, San Nicolás de los Garza, Nuevo León, México
| | - J M Adame-Rodriguez
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León - UANL, Av. Universidad, s/n, Ciudad Universitaria, CP 66455, San Nicolás de los Garza, Nuevo León, México
| | - J M Alcocer-Gonzalez
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León - UANL, Av. Universidad, s/n, Ciudad Universitaria, CP 66455, San Nicolás de los Garza, Nuevo León, México
| | - E T Arechiga-Carvajal
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León - UANL, Av. Universidad, s/n, Ciudad Universitaria, CP 66455, San Nicolás de los Garza, Nuevo León, México
| | - C Rodriguez-Padilla
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León - UANL, Av. Universidad, s/n, Ciudad Universitaria, CP 66455, San Nicolás de los Garza, Nuevo León, México
| |
Collapse
|
7
|
Abstract
Nucleic acid extraction is the first step of any amplification experiment no matter what kind of amplification is used to detect a specific pathogen. Efficient nucleic acid extraction is essential to obtain good results using any molecular test. The optimal extraction method should fulfill the following conditions: speed, short working time, cost-effectiveness, high sensitivity and specificity, good reproducibility, and safety. The methods can be divided into solution or column based according to differences of their principles. The automated extraction instruments have many advantages, and these have proven to be very useful. Moreover, in recent years, fully automated instruments combining NA extraction and amplification have been commercially available. However, the method itself does not provide assurance, and the DNA recovery can be different among various kits or instruments that use the similar principles. Therefore, it is important to carefully evaluate the performance of any extraction method used in the clinical microbiology laboratory even though manufacturers may have reported good validation results with specific organisms.
Collapse
Affiliation(s)
- Yi-Wei Tang
- Departments of Laboratory Medicine and Internal Medicine, Memorial Sloan Kettering Cancer Center, New York, NY USA
| | - Charles W. Stratton
- Department of Pathology, Microbiology and Immunology and Medicine, Vanderbilt University Medical Center, Nashville, TN USA
| |
Collapse
|
8
|
Rapid Detection and Differentiation of Clinically Relevant Candida Species Simultaneously from Blood Culture by Use of a Novel Signal Amplification Approach. J Clin Microbiol 2017; 56:JCM.00982-17. [PMID: 29046411 DOI: 10.1128/jcm.00982-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 10/05/2017] [Indexed: 01/03/2023] Open
Abstract
Fungal bloodstream infections are a significant problem in the United States, with an attributable mortality rate of up to 40%. An early diagnosis to direct appropriate therapy has been shown to be critical to reduce mortality rates. Conventional phenotypic methods for fungal detection take several days, which is often too late to impact outcomes. Herein, we describe a cost-effective multiplex assay platform for the rapid detection and differentiation of major clinically relevant Candida species directly from blood culture. This approach utilizes a novel biotin-labeled polymer-mediated signal amplification process combined with targeting rRNA to exploit phylogenetic differences for sensitive and unambiguous species identification; this assay detects seven pathogenic Candida species (C. albicans, C. glabrata, C. parapsilosis, C. tropicalis, C. krusei, C. lusitaniae, and C. guilliermondii) simultaneously with very high specificity to the species level in less than 80 min with the limits of detection at 1 × 103 to 10 × 103 CFU/ml or as few as 50 CFU per assay. The performance of the described assay was verified with 67 clinical samples (including mixed multiple-species infections as well), with an overall 100% agreement with matrix-assisted laser desorption ionization (MALDI) mass spectrometry-based reference results. By providing a species identity rapidly, the clinician is aided with information that may direct appropriate therapy sooner and more accurately than current approaches, including PCR-based tests.
Collapse
|
9
|
Use of phylogenetical analysis to predict susceptibility of pathogenic Candida spp. to antifungal drugs. J Microbiol Methods 2016; 131:51-60. [DOI: 10.1016/j.mimet.2016.09.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/27/2016] [Accepted: 09/27/2016] [Indexed: 11/17/2022]
|
10
|
Gupta P, Ahmad A, Khare V, Kumar A, Banerjee G, Verma N, Singh M. Comparative evaluation of pan-fungal real-time PCR, galactomannan and (1-3)-β-D-glucan assay for invasive fungal infection in paediatric cancer patients. Mycoses 2016; 60:234-240. [DOI: 10.1111/myc.12584] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 09/01/2016] [Accepted: 10/20/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Prashant Gupta
- Department of Microbiology; King George's Medical University; Lucknow India
| | - Abrar Ahmad
- Department of Microbiology; King George's Medical University; Lucknow India
| | - Vineeta Khare
- Department of Microbiology; Era's Lucknow Medical College; Lucknow India
| | - Archana Kumar
- Department of Pediatrics; King George's Medical University; Lucknow India
| | - Gopa Banerjee
- Department of Microbiology; King George's Medical University; Lucknow India
| | - Nitya Verma
- Department of Otorhinolaryngology; King George's Medical University; Lucknow India
| | - Mastan Singh
- Department of Microbiology; King George's Medical University; Lucknow India
| |
Collapse
|
11
|
Chassot F, Venturini TP, Piasentin FB, Rossato L, Fiorini A, Svidzinski TIE, Alves SH. Exploring the In Vitro Resistance of Candida parapsilosis to Echinocandins. Mycopathologia 2016; 181:663-70. [PMID: 27318852 DOI: 10.1007/s11046-016-0028-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 06/09/2016] [Indexed: 11/29/2022]
Abstract
The naturally high minimum inhibitory concentration exhibited by echinocandins against Candida parapsilosis has been known since the first introduction of these antifungal agents. Despite this awareness, clinical failures have not been reported; consequently, the resistance of C. parapsilosis to echinocandins remains unexplored. We exposed 30 isolates of C. parapsilosis to echinocandins (caspofungin, micafungin, and anidulafungin) in vitro and studied the effects of this exposure. After 60 exposures, 80, 67, and 60 % of the isolates changed from susceptible to non-susceptible to caspofungin, micafungin, and anidulafungin, respectively. In addition, four strains exhibited cross-resistance to all three echinocandins. Based on the M27-A3 (CLSI, 2008) and M27-S4 (CLSI, 2012) techniques, the susceptibility of the resistant strains to other antifungal agents was assayed. All of the tested echinocandin-resistant strains were susceptible to amphotericin B, and the resistance rate to fluconazole, voriconazole, and flucytosine was 73.3, 43.3, and 20 %, respectively. The exposure of C. parapsilosis to the three echinocandins generated cross-resistant strains and an unexpected in vitro resistance to azoles and flucytosine.
Collapse
Affiliation(s)
- Francieli Chassot
- Health Sciences Centre, Federal University of Santa Maria, Santa Maria, RS, Brazil. .,Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria (UFSM), Av. Roraima n° 1000, Prédio 20, Sala 4139, Santa Maria, RS, CEP 97105-900, Brazil.
| | | | | | - Luana Rossato
- Health Sciences Centre, Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - Adriana Fiorini
- Department of Clinical Analysis and Biomedicine, State University of Maringa, Maringa, PR, Brazil
| | | | - Sydney Hartz Alves
- Health Sciences Centre, Federal University of Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
12
|
Sensitive and rapid RT-qPCR quantification of pathogenic Candida species in human blood. J Microbiol Methods 2015; 117:128-35. [PMID: 26232708 DOI: 10.1016/j.mimet.2015.07.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/27/2015] [Accepted: 07/27/2015] [Indexed: 12/23/2022]
Abstract
For accurate diagnosis and appropriate treatment of candidiasis, we developed a highly sensitive quantitative RT-PCR (RT-qPCR) system for five Candida species that have been reported to be the major causes of bloodstream fungal infection (Candida albicans, Candida glabrata, Candida tropicalis, Candida parapsilosis, and Candida krusei), together with a system for all pathogenic Candida species. Cells of each fungal species spiked into human peripheral blood (PB) were specifically detected at a lower detection limit of 10(0) cell/1 mL PB by this system using the newly developed specific primer sets targeting 18S or 26S rRNA of the five Candida species, together with the existing group primer set. The total count of the five Candida spp. as the sum of those obtained by using the five species primer sets was equivalent to the count obtained by using the group primer set, indicating that the group set covered the major five Candida spp. in human blood with the same degree of accuracy as the species primer sets. The RT-qPCR counts of the Candida species were in good agreement with CFU counts obtained by their culture on CHROMagar™, with a lower detection limit of 10(0)cell/mL of PB. Candida rRNA molecules were stably stored for at least 7 days at 4°C by keeping the blood specimens in an RNA stabilizing reagent. These results strongly suggest that this sensitive system is useful for accurate and rapid diagnosis of Candida bloodstream infections.
Collapse
|
13
|
Bineshian F, Yadegari MH, Sharifi Z, Akbari Eidgahi M, Nasr R. Identification of Candida Species Using MP65 Gene and Evaluation of the Candida albicans MP65 Gene Expression in BALB/C Mice. Jundishapur J Microbiol 2015; 8:e18984. [PMID: 26060567 PMCID: PMC4458353 DOI: 10.5812/jjm.8(5)2015.18984] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 10/22/2014] [Accepted: 11/04/2014] [Indexed: 01/11/2023] Open
Abstract
Background: Systemic candidiasis is a major public health concern. In particular, in immunocompromised people, such as patients with neutropenia, patients with Acquired Immune Deficiency Syndrome (AIDS) and cancer who are undergoing antiballistic chemotherapy or bone marrow transplants, and people with diabetes. Since the clinical signs and symptoms are nonspecific, early diagnosis is often difficult. The 65-kDa mannoprotein (MP65) gene of Candida albicans is appropriate for detection and identification of systemic candidiasis. This gene encodes a putative b-glucanase mannoprotein of 65 kDa, which plays a major role in the host-fungus relationship, morphogenesis and pathogenicity. Objectives: The current study aimed to identify different species of Candida (C. albicans, C. glabrata and C. parapsilosis) using the Polymerase Chain Reaction (PCR) technique and also to evaluate C. albicans MP65 gene expression in BALB/C mice. Materials and Methods: All yeast isolates were identified on cornmeal agar supplemented with tween-80, germ tube formation in serum, and assimilation of carbon sources in the API 20 C AUX yeast identification system. Polymerase Chain Reaction was performed on all samples using species-specific primers for the MP65 65 kDa gene. After RNA extraction, cDNA synthesis was performed by the Maxime RT Pre Mix kit. Candida albicans MP65 gene expression was evaluated by quantitative Real-Time (q Real-Time) and Real-Time (RT) PCR techniques. The 2-ΔΔCT method was used to analyze relative changes in gene expression of MP65. For statistical analysis, nonparametric Wilcoxon test was applied using the SPSS version 16 software. Results: Using biochemical methods, one hundred, six and one isolates of clinical samples were determined as C. albicans, C. glabrata and C. parapsilosis, respectively. Species-specific primers for PCR experiments were applied to clinical specimens, and in all cases a single expected band for C. albicans, C. glabrata and C. parapsilosis was obtained (475, 361 and 124 base pairs, respectively). All species isolated by culture methods (100% positivity) were evaluated with PCR using species-specific primers to identify Candida species. Relative expression of Mp65 genes increased significantly after C. albicans injection into the mice (P < 0.05). Conclusions: The results of the current study showed that the PCR method is reproducible for rapid identification of Candida species with specific primers. Mp65 gene expression of C. albicans after injection into the mice was 2.3 folds higher than before injection, with this difference being significant. These results indicated that increase of Mp65 gene expression might be an early stage of infection; however definitive conclusions require further studies.
Collapse
Affiliation(s)
- Farahnaz Bineshian
- Department of Mycology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, IR Iran
- Corresponding author: Farahnaz Bineshian, Department of Mycology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, IR Iran. Tel: + 98-2313354170, Fax: + 98-2313354161, E-mail:
| | | | - Zohre Sharifi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, IR Iran
| | | | - Reza Nasr
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, IR Iran
| |
Collapse
|
14
|
Detection of multiple fungal species in blood samples by real-time PCR: an interpretative challenge. J Clin Microbiol 2015; 52:3515-6. [PMID: 25143424 DOI: 10.1128/jcm.01685-14] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
15
|
Molecular and nonmolecular diagnostic methods for invasive fungal infections. Clin Microbiol Rev 2015; 27:490-526. [PMID: 24982319 DOI: 10.1128/cmr.00091-13] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Invasive fungal infections constitute a serious threat to an ever-growing population of immunocompromised individuals and other individuals at risk. Traditional diagnostic methods, such as histopathology and culture, which are still considered the gold standards, have low sensitivity, which underscores the need for the development of new means of detecting fungal infectious agents. Indeed, novel serologic and molecular techniques have been developed and are currently under clinical evaluation. Tests like the galactomannan antigen test for aspergillosis and the β-glucan test for invasive Candida spp. and molds, as well as other antigen and antibody tests, for Cryptococcus spp., Pneumocystis spp., and dimorphic fungi, have already been established as important diagnostic approaches and are implemented in routine clinical practice. On the other hand, PCR and other molecular approaches, such as matrix-assisted laser desorption ionization (MALDI) and fluorescence in situ hybridization (FISH), have proved promising in clinical trials but still need to undergo standardization before their clinical use can become widespread. The purpose of this review is to highlight the different diagnostic approaches that are currently utilized or under development for invasive fungal infections and to identify their performance characteristics and the challenges associated with their use.
Collapse
|
16
|
Sidonets IV, Meshkov AN. GENETICS FOR DIAGNOSTICS IN PREVENTIVE MEDICINE. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2014. [DOI: 10.15829/1728-8800-2014-4-75-80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
The sequencing of first human genome followed by rapid development of technologies, that led to significant lowering of costs for genetic analyze and its fast performing, made possible a broad invention of genetic diagnostics methods into clinical practice. Contemporary methods of molecular genetics make possible to research on inherited factors on chromosome level with molecular cytogenetics methods, and on the level of local mutations with the use or polymeraze chain reaction, microchips and sequencing. Temps of the next generation sequencing methods provide the opportunity to predict soon inclusion in practice of the personalized medical analysis of large genetic data massive, that can be used for the disease outcome prediction, estimation of its course, and for the prescription and correction of pharmacotherapy. In this review, different (including novel) approaches to genetic diagnostics are explored for the rare as common diseases, their benefits and restrictions.
Collapse
Affiliation(s)
- I. V. Sidonets
- FSBI State Scientific-Research Centre for Preventive Medicine of the Ministry of Health, Moscow
| | - A. N. Meshkov
- FSBI State Scientific-Research Centre for Preventive Medicine of the Ministry of Health, Moscow
| |
Collapse
|
17
|
Enzymatic treatment of specimens before DNA extraction directly influences molecular detection of infectious agents. PLoS One 2014; 9:e94886. [PMID: 24936792 PMCID: PMC4061000 DOI: 10.1371/journal.pone.0094886] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 03/20/2014] [Indexed: 12/31/2022] Open
Abstract
INTRODUCTION Biological samples, pharmaceuticals or food contain proteins, lipids, polymers, ammoniums and macromolecules that alter the detection of infectious agents by DNA amplification techniques (PCR). Moreover the targeted DNA has to be released from the complex cell walls and the compact nucleoprotein matrixes and cleared from potential inhibitors. The goal of the present work was to assess the efficiency of enzymatic pretreatments on infectious agents to make DNA available for further extraction and amplification. METHODS Staphylococcus epidermidis, Streptococcus mitis, Propionibacterium acnes, Escherichia coli, Pseudomonas aeruginosa, Candida albicans, Aspergillus niger and Fusarium solani were mixed with an internal control virus and treated with: 1) proteinase K; 2) lyticase and 3) lyticase followed by proteinase K. DNAs was manually extracted using the QIAmp DNA Mini kit or the MagNA Pure Compact automate. DNA extraction yields and the inhibitors were assessed with a phocid Herpesvirus. Bacterial detection was performed using TaqMan real-time PCR and yeasts and filamentous Fungi with HRM (real-time PCR followed by high-resolution melting analysis). RESULTS Viral DNA was released, extracted and detected using manual and automatic methods without pre enzymatic treatments. Either the manual or the automatic DNA extraction systems did not meet the sensitivity expectations if enzymatic treatments were not performed before: lyticase for Fungi and Proteinase K for Bacteria. The addition of lyticase and proteinase K did not improve results. For Fungi the detection after lyticase was higher than for Proteinase K, for which melting analysis did not allow fungal specification. DISCUSSION Columns and magnetic beads allowed collecting DNA and separate PCR inhibitors. Detection rates cannot be related to DNA-avidity of beads or to elution but to the lack of proteolysis.
Collapse
|
18
|
Pereira TDSF, Correia Silva Alves JDF, Gomes CC, Nascimento ARD, Stoianoff MADR, Gomez RS. Kinetics of oral colonization by Candida
spp. during topical corticotherapy for oral lichen planus. J Oral Pathol Med 2014; 43:570-5. [DOI: 10.1111/jop.12174] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | | | - Carolina Cavaliéri Gomes
- Department of Pathology; Institute of Biological Sciences; Universidade Federal de Minas Gerais; Belo Horizonte Brazil
| | - Adriana Rocha do Nascimento
- Department of Microbiology; Institute of Biological Sciences; Universidade Federal de Minas Gerais; Belo Horizonte Brazil
| | | | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology; School of Dentistry; Universidade Federal de Minas Gerais; Belo Horizonte Brazil
| |
Collapse
|
19
|
Yurdakul P, Colakoglu S. Molecular methods for detection of invasive fungal infections and mycobacteria and their clinical significance in hematopoietic stem cell transplantation. Methods Mol Biol 2014; 1109:239-70. [PMID: 24473787 DOI: 10.1007/978-1-4614-9437-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Infection remains an important source of morbidity and mortality in patients who undergo hematopoietic stem cell transplantation (HSCT). In the immune reconstitution period after transplantation, HSCT recipients are most likely to have bacterial or fungal infections. Invasive fungal infections (IFIs) and mycobacterial infections (MBIs) are among the complications of HSCT, with high morbidity and mortality rates. Early diagnosis of both is crucial in order to manipulate the disease and to avoid fulminant outcomes. This chapter reviews the current knowledge on the molecular diagnosis of IFIs and MBIs in HSCT recipients, describing two different polymerase chain reaction (PCR)-based methods, one commercial (qPCR, Roche) and one in-house IS6110-based protocol.
Collapse
Affiliation(s)
- Pinar Yurdakul
- Ankara University Faculty of Medicine, Cord Blood Bank, Ankara, Turkey
| | | |
Collapse
|
20
|
Candida identification: a journey from conventional to molecular methods in medical mycology. World J Microbiol Biotechnol 2014; 30:1437-51. [PMID: 24379160 DOI: 10.1007/s11274-013-1574-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 12/02/2013] [Indexed: 12/17/2022]
Abstract
The incidence of Candida infections have increased substantially in recent years due to aggressive use of immunosuppressants among patients. Use of broad-spectrum antibiotics and intravascular catheters in the intensive care unit have also attributed with high risks of candidiasis among immunocompromised patients. Among Candida species, C. albicans accounts for the majority of superficial and systemic infections, usually associated with high morbidity and mortality often caused due to increase in antimicrobial resistance and restricted number of antifungal drugs. Therefore, early detection of candidemia and correct identification of Candida species are indispensable pre-requisites for appropriate therapeutic intervention. Since blood culture based methods lack sensitivity, and species-specific identification by conventional method is time-consuming and often leads to misdiagnosis within closely related species, hence, molecular methods may provide alternative for accurate and rapid identification of Candida species. Although, several molecular approaches have been developed for accurate identification of Candida species but the internal transcribed spacer 1 and 2 (ITS1 and ITS2) regions of the rRNA gene are being used extensively in a variety of formats. Of note, ITS sequencing and PCR-RFLP analysis of ITS region seems to be promising as a rapid, easy, and cost-effective method for identification of Candida species. Here, we review a number of existing techniques ranging from conventional to molecular approaches currently in use for the identification of Candida species. Further, advantages and limitations of these methods are also discussed with respect to their discriminatory power, reproducibility, and ease of performance.
Collapse
|
21
|
Xafranski H, Melo ASA, Machado AM, Briones MRS, Colombo AL. A quick and low-cost PCR-based assay for Candida spp. identification in positive blood culture bottles. BMC Infect Dis 2013; 13:467. [PMID: 24099320 PMCID: PMC3851980 DOI: 10.1186/1471-2334-13-467] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 09/26/2013] [Indexed: 12/26/2022] Open
Abstract
Background Differences in the susceptibility of Candida species to antifungal drugs make identification to the species level important for clinical management of candidemia. Molecular tests are not yet standardized or available in most clinical laboratories, although such tests can reduce the time required for species identification, as compared to the conventional culture-based methods. To decrease laboratory costs and improve diagnostic accuracy, different molecular methods have been proposed, including DNA extraction protocols to produce pure DNA free of PCR inhibitors. The objective of this study was to validate a new format of molecular method, based on the internal transcribed spacer (ITS) of the rDNA gene amplification followed by sequencing, to identify common and cryptic Candida species causing candidemia by analyzing DNA in blood culture bottles positive for yeasts. Methods For DNA extraction, an “in-house” protocol based on organic solvent extraction was tested. Additional steps of liquid nitrogen incubation followed by mechanical disruption ensured complete cell lysis, and highly pure DNA. One hundred sixty blood culture bottles positive for yeasts were processed. PCR assays amplified the ITS region. The DNA fragments of 152 samples were sequenced and these sequences were identified using the GenBank database (NCBI). Molecular yeast identification was compared to results attained by conventional method. Results The organic solvent extraction protocol showed high reproducibility in regards to DNA quantity, as well as high PCR sensitivity (10 pg of C. albicans DNA and 95% amplification on PCR). The identification of species at the molecular level showed 97% concordance with the conventional culturing method. The molecular method tested in the present study also allowed identification of species not commonly implicated in human infections. Conclusions This study demonstrated that our molecular method presents significant advantages over the conventional yeast culture identification method by providing accurate results within 24 hours, in contrast to at least 72 hours required by the automated conventional culture method. Additionally, our molecular method allowed the identification of mixed infections, as well as infections due to emergent fungal pathogens. This economical DNA extraction method developed in our laboratory provided high-quality DNA and 60% cost savings compared to commercial methods.
Collapse
Affiliation(s)
- Hemílio Xafranski
- Laboratório Especial de Micologia, Departamento de Medicina, Universidade Federal de São Paulo, Rua Pedro de Toledo 669 5 andar, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Since thermostable Taq DNA polymerase was discovered in 1987, nucleic acid amplification techniques have made great strides and contributed greatly to progress in the life sciences. These techniques were introduced into the clinical laboratory and have produced great changes in diagnostic tools and tests. In particular, there have been many innovative molecular testing developments in the field of diagnostic microbiology.
Collapse
|
23
|
Kabir MA, Ahmad Z. Candida infections and their prevention. ISRN PREVENTIVE MEDICINE 2012; 2013:763628. [PMID: 24977092 PMCID: PMC4062852 DOI: 10.5402/2013/763628] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 10/04/2012] [Indexed: 12/15/2022]
Abstract
Infections caused by Candida species have been increased dramatically worldwide due to the increase in immunocompromised patients. For the prevention and cure of candidiasis, several strategies have been adopted at clinical level. Candida infected patients are commonly treated with a variety of antifungal drugs such as fluconazole, amphotericin B, nystatin, and flucytosine. Moreover, early detection and speciation of the fungal agents will play a crucial role for administering appropriate drugs for antifungal therapy. Many modern technologies like MALDI-TOF-MS, real-time PCR, and DNA microarray are being applied for accurate and fast detection of the strains. However, during prolonged use of these drugs, many fungal pathogens become resistant and antifungal therapy suffers. In this regard, combination of two or more antifungal drugs is thought to be an alternative to counter the rising drug resistance. Also, many inhibitors of efflux pumps have been designed and tested in different models to effectively treat candidiasis. However, most of the synthetic drugs have side effects and biomedicines like antibodies and polysaccharide-peptide conjugates could be better alternatives and safe options to prevent and cure the diseases. Furthermore, availability of genome sequences of Candida
albicans and other non-albicans strains has made it feasible to analyze the genes for their roles in adherence, penetration, and establishment of diseases. Understanding the biology of Candida species by applying different modern and advanced technology will definitely help us in preventing and curing the diseases caused by fungal pathogens.
Collapse
Affiliation(s)
- M Anaul Kabir
- Molecular Genetics Laboratory, School of Biotechnology, National Institute of Technology Calicut, Calicut 673601, India
| | - Zulfiqar Ahmad
- Department of Biological and Environmental Sciences, Alabama A&M University, Normal, AL 35762, USA
| |
Collapse
|
24
|
Vijayakumar R, Giri S, Kindo AJ. Molecular species identification of Candida from blood samples of intensive care unit patients by polymerase chain reaction - restricted fragment length polymorphism. J Lab Physicians 2012; 4:1-4. [PMID: 22923914 PMCID: PMC3425257 DOI: 10.4103/0974-2727.98661] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Introduction: Candida spp is an emerging cause of blood stream infections worldwide. Delay in speciation of Candida isolates by conventional methods and resistance to antifungal drugs (especially fluconazole, amphotericin B, etc.) in various Candida species are some of the factors responsible for the increase in morbidity and mortality due to candidemia. So, the rapid detection and identification of Candida isolates from blood is very important for the proper management of patients having candidemia. Materials and Methods: In this study, we have used polymerase chain reaction (PCR) – restriction fragment length polymorphism (RFLP) as a method for the speciation of Candida isolates from blood samples of intensive care unit (ICU) patients. PCR was used to amplify the ITS-1 and ITS-2 regions of Candida spp using universal primers ITS-1 and ITS-4. The amplified product was digested using Msp I restriction enzyme by RFLP. Results and Discussion: The method PCR-RFLP helped in identifying five medically important Candida spp (C. tropicalis, C. albicans, C. parapsilosis, C. krusei and C. glabrata) from blood. This method is rapid, reliable, easy and cost-effective and can be used in routine laboratory diagnostics for the rapid identification of Candida isolates from blood. Conclusion: PCR-RFLP is an easy, rapid and highly valuable tool which can be used in routine diagnostic laboratories to speciate Candida isolates obtained from blood. This rapid method of speciation will help clinicians to decide on empirical therapy in candidemia cases before antifungal susceptibility results are available.
Collapse
Affiliation(s)
- Ramraj Vijayakumar
- Department of Microbiology, Sri Ramachandra Medical College and Research Institute, Sri Ramachandra University, Porur, Chennai, India
| | | | | |
Collapse
|
25
|
Kourkoumpetis TK, Fuchs BB, Coleman JJ, Desalermos A, Mylonakis E. Polymerase chain reaction-based assays for the diagnosis of invasive fungal infections. Clin Infect Dis 2012; 54:1322-31. [PMID: 22362884 DOI: 10.1093/cid/cis132] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Currently accepted fungal diagnostic techniques, such as culture, biopsy, and serology, lack rapidity and efficiency. Newer diagnostic methods, such as polymerase chain reaction (PCR)-based assays, have the potential to improve fungal diagnostics in a faster, more sensitive, and specific manner. Preliminary data indicate that, when PCR-based fungal diagnostic assays guide antifungal therapy, they may lower patient mortality and decrease unnecessary antifungal treatment, improving treatment-associated costs and avoiding toxicity. Moreover, newer PCR techniques can identify antifungal resistance DNA loci, but the clinical correlation between those loci and clinical failure has to be studied further. In addition, future studies need to focus on the implementation of PCR techniques in clinical decision making and on combining them with other diagnostic tests. A consensus on the standardization of PCR techniques, along with validation from large prospective studies, is necessary to allow widespread adoption of these assays.
Collapse
Affiliation(s)
- Themistoklis K Kourkoumpetis
- Department of Medicine, Infectious Disease Division, Massachusetts General Hospital, Harvard Medical School, Boston 02214, USA
| | | | | | | | | |
Collapse
|
26
|
Quindós G, Eraso E, López-Soria LM, Ezpeleta G. [Invasive fungal disease: conventional or molecular mycological diagnosis?]. Enferm Infecc Microbiol Clin 2011; 30:560-71. [PMID: 22206948 DOI: 10.1016/j.eimc.2011.10.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 10/18/2011] [Accepted: 10/18/2011] [Indexed: 12/31/2022]
Abstract
Diagnosis of invasive mycoses is a difficult challenge due to the limitations and low sensitivity of traditional microbiology methods which lead to diagnostic and therapeutic delays. The aim of this review is to summarise the state of the art of the molecular diagnosis of invasive fungal disease and to clarify its current role in the clinical practice. Conventional microbiological methods could be complemented with molecular methods in the rapid and definitive identification of fungal isolates. Biomarkers (β-glucan, galactomannan) are very useful in immunocompromised patients and have been included as probable invasive mycoses by the EORTC/MSG. Nucleic acid detection is currently used as a complementary tool for diagnosis. However, PCR can be very useful in mould invasive mycoses. Finally, the combined detection using biomarkers can improve the diagnosis. However, their applicability in the microbiology laboratory is not so easy and further studies are required for the appropriate evaluation of its clinical usefulness.
Collapse
Affiliation(s)
- Guillermo Quindós
- Departamento de Inmunología, Microbiología y Parasitología, Facultad de Medicina y Odontología, Universidad del País Vasco, Bilbao, España.
| | | | | | | |
Collapse
|
27
|
Prospective multicenter study of the epidemiology, molecular identification, and antifungal susceptibility of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis isolated from patients with candidemia. Antimicrob Agents Chemother 2011; 55:5590-6. [PMID: 21930869 DOI: 10.1128/aac.00466-11] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
A 13-month prospective multicenter study including 44 hospitals was carried out to evaluate the epidemiology of Candida parapsilosis complex candidemia in Spain. Susceptibility to amphotericin B, flucytosine, fluconazole, itraconazole, voriconazole, posaconazole, anidulafungin, caspofungin, and micafungin was tested by the microdilution colorimetric method. A total of 364 C. parapsilosis complex isolates were identified by molecular methods: C. parapsilosis (90.7%), Candida orthopsilosis (8.2%), and Candida metapsilosis (1.1%). Most candidemias (C. parapsilosis, 76.4%; C. orthopsilosis, 70.0%; C. metapsilosis, 100%) were observed in adults. No C. orthopsilosis or C. metapsilosis candidemias occurred in neonates. C. parapsilosis was most frequent in adult intensive care unit (28.8%), surgery (20.9%), and internal medicine (19.7%) departments; and C. orthopsilosis was most frequent in hematology (28.6%), pediatrics (12.0%), and neonatology (11.5%) departments. The geographic distribution of C. orthopsilosis and C. metapsilosis was not uniform. According to CLSI clinical breakpoints, all C. orthopsilosis and C. metapsilosis isolates were susceptible to the nine agents tested. Resistance (MICs > 1 mg/liter) was observed only in C. parapsilosis: amphotericin B, posaconazole, itraconazole, and caspofungin (0.3% each), anidulafungin (1.9%), and micafungin (2.5%). Applying the new species-specific fluconazole and echinocandin breakpoints, the rates of resistance to fluconazole for C. parapsilosis and C. orthopsilosis increased to 4.8% and 0.3%, respectively; conversely, for C. parapsilosis they shifted from 1.9 to 0.6% (anidulafungin) and from 2.5 to 0.6% (micafungin). Our study confirms the different prevalence of C. parapsilosis complex candidemia among age groups: neither C. orthopsilosis nor C. metapsilosis was isolated from neonates; interestingly, C. metapsilosis was isolated only from adults and the elderly. The disparity in antifungal susceptibility among species could be important for therapy.
Collapse
|
28
|
Miranda-Zapico I, Eraso E, Hernandez-Almaraz JL, Lopez-Soria LM, Carrillo-Munoz AJ, Hernandez-Molina JM, Quindos G. Prevalence and antifungal susceptibility patterns of new cryptic species inside the species complexes Candida parapsilosis and Candida glabrata among blood isolates from a Spanish tertiary hospital. J Antimicrob Chemother 2011; 66:2315-22. [DOI: 10.1093/jac/dkr298] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
29
|
|
30
|
Anandakumar S, Boosi KN, Bugatha H, Padmanabhan B, Sadhale PP. Phage displayed short peptides against cells of Candida albicans demonstrate presence of species, morphology and region specific carbohydrate epitopes. PLoS One 2011; 6:e16868. [PMID: 21364990 PMCID: PMC3043061 DOI: 10.1371/journal.pone.0016868] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 01/17/2011] [Indexed: 12/31/2022] Open
Abstract
Candida albicans is a commensal opportunistic pathogen, which can cause superficial infections as well as systemic infections in immuocompromised hosts. Among nosocomial fungal infections, infections by C. albicans are associated with highest mortality rates even though incidence of infections by other related species is on the rise world over. Since C. albicans and other Candida species differ in their susceptibility to antifungal drug treatment, it is crucial to accurately identify the species for effective drug treatment. Most diagnostic tests that differentiate between C. albicans and other Candida species are time consuming, as they necessarily involve laboratory culturing. Others, which employ highly sensitive PCR based technologies often, yield false positives which is equally dangerous since that leads to unnecessary antifungal treatment. This is the first report of phage display technology based identification of short peptide sequences that can distinguish C. albicans from other closely related species. The peptides also show high degree of specificity towards its different morphological forms. Using fluorescence microscopy, we show that the peptides bind on the surface of these cells and obtained clones that could even specifically bind to only specific regions of cells indicating restricted distribution of the epitopes. What was peculiar and interesting was that the epitopes were carbohydrate in nature. This gives insight into the complexity of the carbohydrate composition of fungal cell walls. In an ELISA format these peptides allow specific detection of relatively small numbers of C. albicans cells. Hence, if used in combination, such a test could help accurate diagnosis and allow physicians to initiate appropriate drug therapy on time.
Collapse
Affiliation(s)
- Soshee Anandakumar
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Harigopalarao Bugatha
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Bhavna Padmanabhan
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Parag P. Sadhale
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| |
Collapse
|
31
|
PCR diagnosis of invasive candidiasis: systematic review and meta-analysis. J Clin Microbiol 2010; 49:665-70. [PMID: 21106797 DOI: 10.1128/jcm.01602-10] [Citation(s) in RCA: 260] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Invasive candidiasis (IC) is a significant cause of morbidity and mortality. Diagnosis relies on culture-based methods, which lack sensitivity and delay diagnosis. We conducted a systematic review assessing the diagnostic accuracy of PCR-based methods to detect Candida spp. directly in blood samples. We searched electronic databases for prospective or retrospective cohort and case-control studies. Two reviewers abstracted data independently. Meta-analysis was performed using a hierarchical logistic regression model. Random-effects metaregression was performed to assess the effects of study methods and infection characteristics on sensitivity or specificity values. We included 54 studies with 4,694 patients, 963 of whom had proven/probable or possible IC. Perfect (100%) sensitivity and specificity for PCR in whole-blood samples was observed when patients with cases had candidemia and controls were healthy people. When PCR was performed to evaluate patients with suspected invasive candidiasis, the pooled sensitivity for the diagnosis of candidemia was 0.95 (confidence interval, 0.88 to 0.98) and the pooled specificity was 0.92 (0.88 to 0.95). A specificity of >90% was maintained in several analyses considering different control groups. The use of whole-blood samples, rRNA, or P450 gene targets and a PCR detection limit of ≤ 10 CFU/ml were associated with improved test performance. PCR positivity rates among patients with proven or probable IC were 85% (78 to 91%), while blood cultures were positive for 38% (29 to 46%). We conclude that direct PCR using blood samples had good sensitivity and specificity for the diagnosis of IC and offers an attractive method for early diagnosis of specific Candida spp. Its effects on clinical outcomes should be investigated.
Collapse
|
32
|
Prospective survey of (1→3)-beta-D-glucan and its relationship to invasive candidiasis in the surgical intensive care unit setting. J Clin Microbiol 2010; 49:58-61. [PMID: 21048005 DOI: 10.1128/jcm.01240-10] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Non-culture-based diagnostic strategies are needed for diagnosing invasive candidiasis (IC). We evaluated serial serum (1→3)-β-d-glucan (BG) levels in patients in the surgical trauma intensive care unit (SICU) patients with clinical evidence of IC. Serum samples from patients admitted to the SICU for a minimum of 3 days were collected twice weekly and analyzed for BG by using a Fungitell kit with a positive cutoff of ≥ 80 pg/ml. Diagnosis of IC was done using a set of predefined and validated clinical practice-based criteria. A total of 57 patients consented to participate and were enrolled. The median ICU stay was 16 days (range, 3 to 51). A total of 14 of 57 (25%) false positives were observed in the first sample (ICU day 3) and, overall, 73% of the day 3 samples had higher BG levels than subsequent samples. On the date of clinical diagnosis of IC, the sensitivity of a positive BG for identifying invasive candidiasis was 87%, with a 73% specificity. In patients with evidence of IC, the median BG value was significantly higher than those without evidence of IC (171 versus 48 pg/ml, P = 0.02), respectively. In the three patients with proven IC, BG was detected 4 to 8 days prior to diagnosis. BG serum detection may be a useful tool to aid in the early diagnosis of IC in SICU patients, particularly after day 3 and in patients with at least two positive samples drawn several days apart. Elevated BG levels within the first 3 days need to be further characterized.
Collapse
|
33
|
Diagnosis of invasive fungal infections by a real-time panfungal PCR assay in immunocompromised pediatric patients. Leukemia 2010; 24:2032-8. [DOI: 10.1038/leu.2010.209] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Fricke S, Fricke C, Schimmelpfennig C, Oelkrug C, Schönfelder U, Blatz R, Zilch C, Faber S, Hilger N, Ruhnke M, Rodloff AC. A real-time PCR assay for the differentiation of Candida species. J Appl Microbiol 2010; 109:1150-8. [PMID: 20456528 DOI: 10.1111/j.1365-2672.2010.04736.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIMS We established a real-time PCR assay for the detection and strain identification of Candida species and demonstrated the ability to differentiate between Candida albicans the most common species, and also Candida parapsilosis, Candida glabrata, Candida tropicalis and Candida dubliniensis by LightCycler PCR and melting curve analysis. METHODS AND RESULTS The DNA isolation from cultures and serum was established using the QIAmp Tissue Kit. The sensitivity of the assay was ≥ 2 genome equivalents/assay. It was possible to differentiate all investigated Candida species by melting curve analysis, and no cross-reaction to human DNA or Aspergillus species could be observed. CONCLUSIONS The established real-time PCR assay is a useful tool for the rapid identification of Candida species and a base technology for more complex PCR assays. SIGNIFICANCE AND IMPACT OF THE STUDY We carried out initial steps in validation of a PCR assay for the detection and differentiation of medically relevant Candida species. The PCR was improved by generating PCR standards, additional generation of melting curves for species identification and the possibility to investigate different specimens simultaneously.
Collapse
Affiliation(s)
- S Fricke
- Fraunhofer Institute for Cell Therapy and Immunology (IZI), Leipzig, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
The era of molecular and other non-culture-based methods in diagnosis of sepsis. Clin Microbiol Rev 2010; 23:235-51. [PMID: 20065332 DOI: 10.1128/cmr.00043-09] [Citation(s) in RCA: 259] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Sepsis, a leading cause of morbidity and mortality throughout the world, is a clinical syndrome with signs and symptoms relating to an infectious event and the consequent important inflammatory response. From a clinical point of view, sepsis is a continuous process ranging from systemic inflammatory response syndrome (SIRS) to multiple-organ-dysfunction syndrome (MODS). Blood cultures are the current "gold standard" for diagnosis, and they are based on the detection of viable microorganisms present in blood. However, on some occasions, blood cultures have intrinsic limitations in terms of sensitivity and rapidity, and it is not expected that these drawbacks will be overcome by significant improvements in the near future. For these principal reasons, other approaches are therefore needed in association with blood culture to improve the overall diagnostic yield for septic patients. These considerations have represented the rationale for the development of highly sensitive and fast laboratory methods. This review addresses non-culture-based techniques for the diagnosis of sepsis, including molecular and other non-culture-based methods. In particular, the potential clinical role for the sensitive and rapid detection of bacterial and fungal DNA in the development of new diagnostic algorithms is discussed.
Collapse
|
36
|
Rapid and direct quantification of viable Candida species in whole blood by use of immunomagnetic separation and solid-phase cytometry. J Clin Microbiol 2010; 48:1126-31. [PMID: 20129966 DOI: 10.1128/jcm.00035-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Candida species are a common source of nosocomial bloodstream infections in critically ill patients. The sensitivity of the traditional diagnostic procedure based on blood culture is variable, and it usually takes 2 to 4 days before growth of Candida species is detected. We developed a 4-h method for the quantification of Candida species in blood, combining immunomagnetic separation (IMS) with solid-phase cytometry (SPC) using viability labeling. Additionally, Candida albicans cells could be identified in real time by using fluorescent in situ hybridization. By analysis of spiked blood samples, our method was shown to be sensitive and specific, with a low detection limit (1 cell/ml of blood). In a proof-of-concept study, we applied the IMS/SPC method to 16 clinical samples and compared it to traditional blood culture. Our method proved more sensitive than culture (seven samples were positive with IMS/SPC but negative with blood culture), and identification results were in agreement. The IMS/SPC data also suggest that mixed infections might occur frequently, as C. albicans and at least one other Candida species were found in five samples. Additionally, in two cases, high numbers of cells (175 to 480 cells/ml of blood) were associated with an endovascular source of infection.
Collapse
|
37
|
Comparison of whole blood, serum, and plasma for early detection of candidemia by multiplex-tandem PCR. J Clin Microbiol 2009; 48:811-6. [PMID: 20042634 DOI: 10.1128/jcm.01650-09] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
We applied multiplex-tandem PCR (MT-PCR) to 255 EDTA whole-blood specimens, 29 serum specimens, and 24 plasma specimens from 109 patients with Candida bloodstream infection (candidemia) to determine whether a diagnosis could be expedited in comparison with the time to diagnosis by the use of standard blood culture. Overall, the MT-PCR performed better than blood culture with DNA extracted from whole blood from 52/74 (70%) patients, accelerating the time to detection (blood culture flagging) and determination of the pathogenic species (by use of the API 32C system [bioMérieux, Marcy l'Etoile, France]) by up to 4 days (mean, 2.2 days; range, 0.5 to 8 days). Candida DNA was detected more often in serum (71%) and plasma (75%) than in whole blood (54%), although relatively small numbers of serum and plasma specimens were tested. The sensitivity, specificity, positive predictive value, and negative predictive value of the assay with whole blood were 75%, 97%, 95%, and 85%, respectively. Fungal DNA was not detected by MT-PCR in 6/24 (25%) whole-blood samples drawn simultaneously with the positive blood culture sample. MT-PCR performed better with whole-blood specimens stored at -20 degrees C (75%) and when DNA was extracted within 1 week of sampling (66%). The molecular and culture identification results correlated for 61 of 66 patients (92%); one discrepant result was due to misidentification by culture. All but one sample from 53 patients who were at high risk of candidemia but did not have proven disease were negative by MT-PCR. The results demonstrate the good potential of MT-PCR to detect candidemia, to provide Candida species identification prior to blood culture positivity, and to provide improved sensitivity when applied to with serum and plasma specimens.
Collapse
|
38
|
Lau A, Chen S, Sleiman S, Sorrell T. Current status and future perspectives on molecular and serological methods in diagnostic mycology. Future Microbiol 2009; 4:1185-222. [DOI: 10.2217/fmb.09.70] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Invasive fungal infections are an important cause of infectious morbidity. Nonculture-based methods are increasingly used for rapid, accurate diagnosis to improve patient outcomes. New and existing DNA amplification platforms have high sensitivity and specificity for direct detection and identification of fungi in clinical specimens. Since laboratories are increasingly reliant on DNA sequencing for fungal identification, measures to improve sequence interpretation should support validation of reference isolates and quality control in public gene repositories. Novel technologies (e.g., isothermal and PNA FISH methods), platforms enabling high-throughput analyses (e.g., DNA microarrays and Luminex® xMAP™) and/or commercial PCR assays warrant further evaluation for routine diagnostic use. Notwithstanding the advantages of molecular tests, serological assays remain clinically useful for patient management. The serum Aspergillus galactomannan test has been incorporated into diagnostic algorithms of invasive aspergillosis. Both the galactomannan and the serum β-D-glucan test have value for diagnosing infection and monitoring therapeutic response.
Collapse
Affiliation(s)
- Anna Lau
- Centre for Infectious Diseases & Microbiology, University of Sydney, Sydney, Australia
| | - Sharon Chen
- Centre for Infectious Diseases & Microbiology, University of Sydney, Sydney, Australia and Centre for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Sue Sleiman
- Centre for Infectious Diseases & Microbiology Laboratory Services, Institute of Clinical Pathology & Medical Research, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Tania Sorrell
- Centre for Infectious Diseases & Microbiology, Westmead Hospital, Darcy and Hawkesbury Roads, Westmead, NSW 2145, Australia
| |
Collapse
|
39
|
Khlif M, Mary C, Sellami H, Sellami A, Dumon H, Ayadi A, Ranque S. Evaluation of nested and real-time PCR assays in the diagnosis of candidaemia. Clin Microbiol Infect 2009; 15:656-61. [DOI: 10.1111/j.1469-0691.2009.02762.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
|
41
|
Simpson VR, Davison NJ, Borman AM, Linton CJ, Everest D. Fatal candidiasis in a wild red squirrel (Sciurus vulgaris
). Vet Rec 2009; 164:342-4. [DOI: 10.1136/vr.164.11.342] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- V. R. Simpson
- Wildlife Veterinary Investigation Centre, Chacewater; Truro Cornwall TR4 8PB
| | - N. J. Davison
- Veterinary Laboratories Agency - Truro, Polwhele; Truro Cornwall TR4 9AD
| | - A. M. Borman
- Mycology Reference Laboratory; South West Health Protection Agency; Myrtle Road Bristol BS2 8EL
| | - C. J. Linton
- Mycology Reference Laboratory; South West Health Protection Agency; Myrtle Road Bristol BS2 8EL
| | - D. Everest
- Molecular Pathogenesis and Genetics Department; Veterinary Laboratories Agency - Weybridge; Woodham Lane, New Haw Addlestone Surrey KT15 3NB
| |
Collapse
|
42
|
Species-specific identification of a wide range of clinically relevant fungal pathogens by use of Luminex xMAP technology. J Clin Microbiol 2009; 47:1063-73. [PMID: 19244466 DOI: 10.1128/jcm.01558-08] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
In immunocompromised patients suffering from invasive fungal infection, rapid identification of the fungal species is a prerequisite for selection of the most appropriate antifungal treatment. We present an assay permitting reliable identification of a wide range of clinically relevant fungal pathogens based on the high-throughput Luminex microbead hybridization technology. The internal transcribed spacer (ITS2) region, which is highly variable among genomes of individual fungal species, was used to generate oligonucleotide hybridization probes for specific identification. The spectrum of pathogenic fungi covered by the assay includes the most commonly occurring species of the genera Aspergillus and Candida and a number of important emerging fungi, such as Cryptococcus, Fusarium, Trichosporon, Mucor, Rhizopus, Penicillium, Absidia, and Acremonium. Up to three different probes are employed for the detection of each fungal species. The redundancy in the design of the assay should ensure unambiguous fungus identification even in the presence of mutations in individual target regions. The current set of hybridization oligonucleotides includes 75 species- and genus-specific probes which had been carefully tested for specificity by repeated analysis of multiple reference strains. To provide adequate sensitivity for clinical application, the assay includes amplification of the ITS2 region by a seminested PCR approach prior to hybridization of the amplicons to the probe panel using the Luminex technology. A variety of fungal pathogens were successfully identified in clinical specimens that included peripheral blood, samples from biopsies of pulmonary infiltrations, and bronchotracheal secretions derived from patients with documented invasive fungal infections. Our observations demonstrate that the Luminex-based technology presented permits rapid and reliable identification of fungal species and may therefore be instrumental in routine clinical diagnostics.
Collapse
|
43
|
Identification of fungal species by fragment length analysis of the internally transcribed spacer 2 region. Eur J Clin Microbiol Infect Dis 2008; 28:613-22. [DOI: 10.1007/s10096-008-0683-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Accepted: 11/29/2008] [Indexed: 11/26/2022]
|
44
|
Arancia S, Sandini S, Cassone A, De Bernardis F. Use of 65-kDa mannoprotein gene primers for real-time identification of Candida albicans. CURRENT FUNGAL INFECTION REPORTS 2008. [DOI: 10.1007/s12281-008-0031-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Apaire-Marchais V, Kempf M, Lefrançois C, Marot A, Licznar P, Cottin J, Poulain D, Robert R. Evaluation of an immunomagnetic separation method to capture Candida yeasts cells in blood. BMC Microbiol 2008; 8:157. [PMID: 18808691 PMCID: PMC2556679 DOI: 10.1186/1471-2180-8-157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2008] [Accepted: 09/22/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Candida species have become the fourth most-frequent cause of nosocomial bloodstream infections in immunocompromised patients. Therefore, rapid identification of pathogenic fungi to species level has been considered critical for treatment. Conventional diagnostic procedures such as blood culture or biochemical tests are lacking both sensitivity and species specificity, so development of rapid diagnostic is essential. RESULTS An immunomagnetic method involving anti-Candida monoclonal antibodies was developed to capture and concentrate in human blood four different species of Candida cells responsible for invasive yeast infections. In comparison with an automated blood culture, processing time of immunomagnetic separation is shorter, saving at least 24 hours to obtain colonies before identification. CONCLUSION Thus, this easy to use method provides a promising basis for concentrating all Candida species in blood to improve sensitivity before identification.
Collapse
Affiliation(s)
- Véronique Apaire-Marchais
- Groupe d'Etude des Interactions Hôte-Parasite, UPRES EA 3142, UFR des Sciences Pharmaceutiques et d'Ingénierie de la Santé, Angers Cedex, France.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
McMullan R, Metwally L, Coyle PV, Hedderwick S, McCloskey B, O'Neill HJ, Patterson CC, Thompson G, Webb CH, Hay RJ. A Prospective Clinical Trial of a Real-Time Polymerase Chain Reaction Assay for the Diagnosis of Candidemia in Nonneutropenic, Critically Ill Adults. Clin Infect Dis 2008; 46:890-6. [DOI: 10.1086/528690] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
47
|
Bennett J. Editorial Commentary:Is Real‐Time Polymerase Chain Reaction Ready for Real Use in Detecting Candidemia? Clin Infect Dis 2008; 46:897-8. [DOI: 10.1086/528692] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
48
|
Metwally L, Fairley DJ, Coyle PV, Hay RJ, Hedderwick S, McCloskey B, O'Neill HJ, Webb CH, Elbaz W, McMullan R. Improving molecular detection of Candida DNA in whole blood: comparison of seven fungal DNA extraction protocols using real-time PCR. J Med Microbiol 2008; 57:296-303. [DOI: 10.1099/jmm.0.47617-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The limitations of classical diagnostic methods for invasive Candida infections have led to the development of molecular techniques such as real-time PCR to improve diagnosis. However, the detection of low titres of Candida DNA in blood from patients with candidaemia requires the use of extraction methods that efficiently lyse yeast cells and recover small amounts of DNA suitable for amplification. In this study, a Candida-specific real-time PCR assay was used to detect Candida albicans DNA in inoculated whole blood specimens extracted using seven different extraction protocols. The yield and quality of total nucleic acids were estimated using UV absorbance, and specific recovery of C. albicans genomic DNA was estimated quantitatively in comparison with a reference (Qiagen kit/lyticase) method currently in use in our laboratory. The extraction protocols were also compared with respect to sensitivity, cost and time required for completion. The TaqMan PCR assay used to amplify the DNA extracts achieved high levels of specificity, sensitivity and reproducibility. Of the seven extraction protocols evaluated, only the MasterPure yeast DNA extraction reagent kit gave significantly higher total nucleic acid yields than the reference method, although nucleic acid purity was highest using either the reference or YeaStar genomic DNA kit methods. More importantly, the YeaStar method enabled C. albicans DNA to be detected with highest sensitivity over the entire range of copy numbers evaluated, and appears to be an optimal method for extracting Candida DNA from whole blood.
Collapse
Affiliation(s)
- L. Metwally
- Department of Medical Microbiology, Royal Victoria Hospital, Belfast, Northern Ireland
| | - D. J. Fairley
- Department of Medical Microbiology, Royal Victoria Hospital, Belfast, Northern Ireland
| | - P. V. Coyle
- Department of Medical Microbiology, Royal Victoria Hospital, Belfast, Northern Ireland
| | - R. J. Hay
- Queen's University of Belfast, School of Medicine and Dentistry, Belfast, Northern Ireland
| | - S. Hedderwick
- Department of Infectious Diseases, Royal Victoria Hospital, Belfast, Northern Ireland
| | - B. McCloskey
- Regional Intensive Care Unit, Royal Victoria Hospital, Belfast, Northern Ireland
| | - H. J. O'Neill
- Department of Medical Microbiology, Royal Victoria Hospital, Belfast, Northern Ireland
| | - C. H. Webb
- Department of Medical Microbiology, Royal Victoria Hospital, Belfast, Northern Ireland
| | - W. Elbaz
- Department of Infectious Diseases, Royal Victoria Hospital, Belfast, Northern Ireland
| | - R. McMullan
- Department of Medical Microbiology, Royal Victoria Hospital, Belfast, Northern Ireland
| |
Collapse
|
49
|
Tamion F, Richard V, Renet S, Thuillez C. Intestinal preconditioning prevents inflammatory response by modulating heme oxygenase-1 expression in endotoxic shock model. Am J Physiol Gastrointest Liver Physiol 2007; 293:G1308-14. [PMID: 17823216 DOI: 10.1152/ajpgi.00154.2007] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Gut mucosal injury observed during ischemia-reperfusion is believed to trigger a systemic inflammatory response leading to multiple organ failure. It should be interesting to demonstrate this relationship between gut and multiple organ failure in a sepsis model. Intestinal preconditioning (PC) can be used as a tool to assess the effect of intestinal ischemia in inflammatory response after LPS challenge. The aim of this study was to investigate the protective effect of PC against LPS-induced systemic inflammatory and intestinal heme oxygenase-1 (HO-1) expression. ES was performed with LPS (10 mg/kg iv) with or without PC, which was done before LPS. Rats were first subjected to sham surgery or PC with four cycles of 1 min ischemia and 4 min of reperfusion 24 h before LPS challenge or saline administration. PC significantly reduced fluid requirements, lung edema, intestinal lactate production, and intestinal injury. Inflammatory mRNA expressions for intestine and lung ICAM and TNF were significantly reduced after PC, and these effects were significantly abolished by zinc-protoporphyrin (a specific HO-1 activity inhibitor) and mimicked by bilirubin administration. Intestinal PC selectively increased HO-1 mRNA expression in intestine, but we have observed no expression in lungs. These findings demonstrate that intestinal injury is a important event for inflammatory response and multiple organ injury after LPS challenge. Intestinal HO-1 expression attenuates LPS-induced multiple organ failure by modulating intestine injury and its consequences on inflammatory response. Identification of the exact mechanisms responsible for intestine HO-1 induction may lead to the development of new pharmacological interventions.
Collapse
Affiliation(s)
- Fabienne Tamion
- Institut National de la Santé et de la Recherche Médicale U644, Rouen University Medical School, Rouen, France.
| | | | | | | |
Collapse
|
50
|
Detection and identification of Candida spp. in human serum by LightCycler real-time polymerase chain reaction. Diagn Microbiol Infect Dis 2007; 60:263-71. [PMID: 18036761 DOI: 10.1016/j.diagmicrobio.2007.09.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2007] [Revised: 09/05/2007] [Accepted: 09/13/2007] [Indexed: 10/22/2022]
Abstract
The aim of this work was to develop LightCycler real-time polymerase chain reaction method to allow rapid detection and identification of Candida spp. in human serum with panfungal primers (internal transcribed spacer [ITS] and L18). Melting-curve analysis of the ITS sequences showed that each amplicon presented a specific melting point and enabled identification of 5 Candida spp. After parameters optimization, 58 sera were preliminary analyzed from 23 patients. For L18 primers, the LightCycler system enabled detection of DNA in 92% of patients with positive blood culture. These primers were not able to differentiate between species of Candida. By using ITS primers, the LightCycler system enabled detection of DNA in sera from 76.9% of patients with positive blood culture. With ITS primers, the species responsible for the infection was identified for 11 patients. These data revealed the LightCycler as a potential tool for early detection and identification of Candida.
Collapse
|