1
|
Ma L, Chen X, Zhu S, Chen W, Ma Q, Fan W, Zhang J, Guo L. New β-carboline derivatives containing imidazolium as potential VEGFR2 inhibitors: synthesis, X-ray structure, antiproliferative evaluations, and molecular modeling. RSC Med Chem 2022; 13:1064-1076. [PMID: 36324492 PMCID: PMC9491354 DOI: 10.1039/d2md00065b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/12/2022] [Indexed: 09/19/2023] Open
Abstract
A series of new β-carboline derivatives containing an imidazolium moiety were designed and synthesized via the reaction of β-carboline-1-carboxaldehydes, acetyl chloride, primary amine, and formaldehyde. The antitumor activity of the synthesized compounds was examined against lung carcinoma (A549), gastric carcinoma (BGC-823), murine colon carcinoma (CT-26), liver carcinoma (Bel-7402) and breast carcinoma (MCF-7) cells. The results indicated that most compounds exhibited significant antiproliferative activity, in some cases greater than that of cisplatin, and compound 3z was found to be the most potent antiproliferative agent against A549, BGC823, CT-26, Bel-7402 and MCF-7 cell lines with an IC50 value of 2.7 ± 0.4, 2.7 ± 0.6, 2.4 ± 0.2, 3.2 ± 0.2, and 5.6 ± 0.3 μM, respectively. Combined with favorable in vitro potency, the antitumor efficacies of the selected compounds in mice were also evaluated. Compound 3z exhibited potent antitumor activity with a tumor inhibition rate of 48.6% in sarcoma 180 models. Preliminary investigations on the mechanisms of action revealed that compound 3z could dramatically inhibit EA.hy926 cell tube formation in a dose-dependent manner. Further investigation of the preliminary mechanism of action demonstrated that compound 3z had obvious angiogenesis inhibitory effects in the chicken chorioallantoic membrane (CAM) assay. The results of the docking study showed a good fitting of the new compounds 3o and 3z to the active site of VEGFR-2 with a docking score energy of -11.31 kcal per mole and -11.26 kcal per mole, respectively.
Collapse
Affiliation(s)
- Ling Ma
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of XinJiang Bingtuan, Shihezi University Shihezi China
| | - Xiaofei Chen
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of XinJiang Bingtuan, Shihezi University Shihezi China
| | - Siyu Zhu
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of XinJiang Bingtuan, Shihezi University Shihezi China
| | - Wei Chen
- XinJiang Huashidan Pharmaceutical Research Co. Ltd. Urumqi China
| | - Qin Ma
- XinJiang Huashidan Pharmaceutical Research Co. Ltd. Urumqi China
| | - Wenxi Fan
- XinJiang Huashidan Pharmaceutical Research Co. Ltd. Urumqi China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of XinJiang Bingtuan, Shihezi University Shihezi China
| | - Liang Guo
- School of Chemistry and Chemical Engineering/Key Laboratory for Green Processing of Chemical Engineering of XinJiang Bingtuan, Shihezi University Shihezi China
| |
Collapse
|
2
|
Kurhekar JV. Antimicrobial lead compounds from marine plants. PHYTOCHEMICALS AS LEAD COMPOUNDS FOR NEW DRUG DISCOVERY 2020. [PMCID: PMC7153345 DOI: 10.1016/b978-0-12-817890-4.00017-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Marine environment is a home to a very wide diversity of flora and fauna, which includes an array of genetically diverse coastline and under seawater plant species, animal species, microbial species, their habitats, ecosystems, and supporting ecological processes. The Earth is home to an estimated 10 million species, of which a large chunk belongs to marine environment. Marine plants are a store house of a variety of antimicrobial compounds like classes of marine flavonoids—flavones and flavonols, terpenoids, alkaloids, peptides, carbohydrates, fatty acids, polyketides, polysaccharides, phenolic compounds, and steroids. Lot of research today is directed toward marine species, which have proved to be a potent source of structurally widely diverse and yet highly bioactive secondary metabolites. Varied species of phylum Porifera, algae including diatoms, Chlorophyta, Euglenophyta, Dinoflagellata, Chrysophyta, cyanobacteria, Rhodophyta, and Phaeophyta, bacteria, fungi, and weeds have been exploited by mankind for their inherent indigenous biological antimicrobial compounds, produced under the extreme stressful underwater conditions of temperature, atmospheric pressure, light, and nutrition. The present study aims at presenting a brief review of bioactive marine compounds possessing antimicrobial potency.
Collapse
|
3
|
Tukhtaev DB, Saidov AS, Turgunov KK, Vinogradova VI, Tashkhodzhaev B. Synthesis of N-Containing Heterocycles Based on α-Amino Acids. 1. 8,9-Dimethoxy-5,6-Dihydro-3-Phenyl-1-Alkylimidazo[5,1-a]Isoquinolines. Chem Nat Compd 2019. [DOI: 10.1007/s10600-019-02908-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
4
|
Synthesis and biological evaluation of 2-chloro-3-[(thiazol-2-yl)amino]-1,4-naphthoquinones. Bioorg Med Chem Lett 2019; 29:1572-1575. [DOI: 10.1016/j.bmcl.2019.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/30/2019] [Accepted: 05/02/2019] [Indexed: 11/22/2022]
|
5
|
Anjum K, Abbas SQ, Shah SAA, Akhter N, Batool S, Hassan SSU. Marine Sponges as a Drug Treasure. Biomol Ther (Seoul) 2016; 24:347-62. [PMID: 27350338 PMCID: PMC4930278 DOI: 10.4062/biomolther.2016.067] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 04/28/2016] [Accepted: 05/19/2016] [Indexed: 12/22/2022] Open
Abstract
Marine sponges have been considered as a drug treasure house with respect to great potential regarding their secondary metabolites. Most of the studies have been conducted on sponge's derived compounds to examine its pharmacological properties. Such compounds proved to have antibacterial, antiviral, antifungal, antimalarial, antitumor, immunosuppressive, and cardiovascular activity. Although, the mode of action of many compounds by which they interfere with human pathogenesis have not been clear till now, in this review not only the capability of the medicinal substances have been examined in vitro and in vivo against serious pathogenic microbes but, the mode of actions of medicinal compounds were explained with diagrammatic illustrations. This knowledge is one of the basic components to be known especially for transforming medicinal molecules to medicines. Sponges produce a different kind of chemical substances with numerous carbon skeletons, which have been found to be the main component interfering with human pathogenesis at different sites. The fact that different diseases have the capability to fight at different sites inside the body can increase the chances to produce targeted medicines.
Collapse
Affiliation(s)
- Komal Anjum
- Ocean College, Zhejiang University, Hangzhou 310058,
China
| | - Syed Qamar Abbas
- Faculty of Pharmacy, Gomal University D.I.Khan, K.P.K. 29050,
Pakistan
| | | | - Najeeb Akhter
- Ocean College, Zhejiang University, Hangzhou 310058,
China
| | - Sundas Batool
- Department of Molecular Biology, University of Heidelberg,
Germany
| | | |
Collapse
|
6
|
Hamšíková Z, Kazimírová M, Haruštiaková D, Mahríková L, Slovák M, Berthová L, Kocianová E, Schnittger L. Babesia spp. in ticks and wildlife in different habitat types of Slovakia. Parasit Vectors 2016; 9:292. [PMID: 27207099 PMCID: PMC4874003 DOI: 10.1186/s13071-016-1560-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/02/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Babesiosis is an emerging and potentially zoonotic disease caused by tick-borne piroplasmids of the Babesia genus. New genetic variants of piroplasmids with unknown associations to vectors and hosts are recognized. Data on the occurrence of Babesia spp. in ticks and wildlife widen the knowledge on the geographical distribution and circulation of piroplasmids in natural foci. Questing and rodent-attached ticks, rodents, and birds were screened for the presence of Babesia-specific DNA using molecular methods. Spatial and temporal differences of Babesia spp. prevalence in ticks and rodents from two contrasting habitats of Slovakia with sympatric occurrence of Ixodes ricinus and Haemaphysalis concinna ticks and co-infections of Candidatus N. mikurensis and Anaplasma phagocytophilum were investigated. RESULTS Babesia spp. were detected in 1.5 % and 6.6 % of questing I. ricinus and H. concinna, respectively. Prevalence of Babesia-infected I. ricinus was higher in a natural than an urban/suburban habitat. Phylogenetic analysis showed that Babesia spp. from I. ricinus clustered with Babesia microti, Babesia venatorum, Babesia canis, Babesia capreoli/Babesia divergens, and Babesia odocoilei. Babesia spp. amplified from H. concinna segregated into two monophyletic clades, designated Babesia sp. 1 (Eurasia) and Babesia sp. 2 (Eurasia), each of which represents a yet undescribed novel species. The prevalence of infection in rodents (with Apodemus flavicollis and Myodes glareolus prevailing) with B. microti was 1.3 % in an urban/suburban and 4.2 % in a natural habitat. The majority of infected rodents (81.3 %) were positive for spleen and blood and the remaining for lungs and/or skin. Rodent-attached I. ricinus (accounting for 96.3 %) and H. concinna were infected with B. microti, B. venatorum, B. capreoli/B. divergens, Babesia sp. 1 (Eurasia), and Babesia sp. 2 (Eurasia). All B. microti and B. venatorum isolates were identical to known zoonotic strains from Europe. Less than 1.0 % of Babesia-positive ticks and rodents carried Candidatus N. mikurensis or A. phagocytophilum. CONCLUSION Our findings suggest that I. ricinus and rodents play important roles in the epidemiology of zoonotic Babesia spp. in south-western Slovakia. Associations with vertebrate hosts and the pathogenicity of Babesia spp. infecting H. concinna ticks need to be further explored.
Collapse
Affiliation(s)
- Zuzana Hamšíková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Mária Kazimírová
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia.
| | - Danka Haruštiaková
- Institute of Biostatistics and Analyses, Faculty of Medicine and Faculty of Science, Masaryk University, Kamenice 3, 625 00, Brno, Czech Republic
| | - Lenka Mahríková
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Mirko Slovák
- Institute of Zoology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 06, Bratislava, Slovakia
| | - Lenka Berthová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Elena Kocianová
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05, Bratislava, Slovakia
| | - Leonhard Schnittger
- Instituto de Patobiología, CICVyA, INTA-Castelar, 1686 Hurlingham, Prov. de Buenos Aires, Argentina.,CONICET (National Research Council of Argentina), C1033AAJ, Buenos Aires, Argentina
| |
Collapse
|
7
|
Mihorianu M, Franz MH, Jones PG, Freytag M, Kelter G, Fiebig HH, Tamm M, Neda I. N-Heterocyclic carbenes derived from imidazo-[1,5-a]pyridines related to natural products: synthesis, structure and potential biological activity of some corresponding gold(I) and silver(I) complexes. Appl Organomet Chem 2016. [DOI: 10.1002/aoc.3474] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Monica Mihorianu
- Institut für Anorganische und Analytische Chemie; Technische Universität Carola Wilhelmina; Hagenring 30 D-38106 Braunschweig Germany
| | - M Heiko Franz
- InnoChemTech GmbH; Hagenring 30 D-38106 Braunschweig Germany
- Institutul National de Cercetare Dezvoltare pentru Electrochimie si Materie Condensata; Str. Dr A. Paunescu Podeanu Nr 144 Ro-300569 Timisoara Romania
| | - Peter G Jones
- Institut für Anorganische und Analytische Chemie; Technische Universität Carola Wilhelmina; Hagenring 30 D-38106 Braunschweig Germany
| | - Matthias Freytag
- Institut für Anorganische und Analytische Chemie; Technische Universität Carola Wilhelmina; Hagenring 30 D-38106 Braunschweig Germany
| | - Gerhard Kelter
- Oncotest GmbH; Am Flughafen 12-14 D-79108 Freiburg Germany
| | | | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie; Technische Universität Carola Wilhelmina; Hagenring 30 D-38106 Braunschweig Germany
| | - Ion Neda
- Institut für Anorganische und Analytische Chemie; Technische Universität Carola Wilhelmina; Hagenring 30 D-38106 Braunschweig Germany
- Institutul National de Cercetare Dezvoltare pentru Electrochimie si Materie Condensata; Str. Dr A. Paunescu Podeanu Nr 144 Ro-300569 Timisoara Romania
| |
Collapse
|
8
|
Kundu N, Bhattacharya K, Abtab SMT, Chaudhury M. ‘One-pot’ synthesis of multi-ring heteroaromatic compounds involving a pair of imidazo[1,5-a]pyridine moiety: reporting an interesting bis-bidentate ligand capable of forming helicates. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.03.078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
9
|
Knueppel D, Martin SF. Tandem Electrocyclic Ring Opening/Radical Cyclization: Application to the Total Synthesis of Cribrostatin 6. Tetrahedron 2011; 67:9765-9770. [PMID: 22125344 PMCID: PMC3224041 DOI: 10.1016/j.tet.2011.08.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A concise total synthesis ofcribrostatin 6 (1), an antimicrobial and antineoplastic agent,was accomplished using a tandem electrocyclic ring opening/radical cyclization sequence. Specifically, intermediate4 underwent a 4π-electrocyclic ring opening, radical cyclization, and homolytic aromatic substitution sequence followed by an oxidation to afford the natural product1in one pot. Owing to the rapid buildup of complexity in the key step, 1 could be synthesized from commercially available starting materials in only four linear steps. Application of this chemistry to the concise syntheses of analogs of cribrostatin 6 (1) is also reported.
Collapse
Affiliation(s)
| | - Stephen F. Martin
- Department of Chemistry and Biochemistry and The Texas Institute for Drug and Diagnostic Development, The University of Texas at Austin, 1 University Station A5300, Austin, TX 78712-0165
| |
Collapse
|
10
|
Mohamed M, Gonçalves TP, Whitby RJ, Sneddon HF, Harrowven DC. New Insights into Cyclobutenone Rearrangements: A Total Synthesis of the Natural ROS-Generating Anti-Cancer Agent Cribrostatin 6. Chemistry 2011; 17:13698-705. [DOI: 10.1002/chem.201102263] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Indexed: 11/07/2022]
|
11
|
Lisboa CDS, Santos VG, Vaz BG, de Lucas NC, Eberlin MN, Garden SJ. C−H Functionalization of 1,4-Naphthoquinone by Oxidative Coupling with Anilines in the Presence of a Catalytic Quantity of Copper(II) Acetate. J Org Chem 2011; 76:5264-73. [DOI: 10.1021/jo200354u] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Cinthia da S. Lisboa
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária CT bloco A, Ilha do Fundão, RJ 21941-909, Brazil
| | - Vanessa G. Santos
- Laboratório ThoMSon de Espectrometria de Massas, Instituto de Química, Universidade Estadual de Campinas − UNICAMP, 13084-971, Campinas SP, Brazil
| | - Boniek G. Vaz
- Laboratório ThoMSon de Espectrometria de Massas, Instituto de Química, Universidade Estadual de Campinas − UNICAMP, 13084-971, Campinas SP, Brazil
| | - Nanci C. de Lucas
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária CT bloco A, Ilha do Fundão, RJ 21941-909, Brazil
| | - Marcos N. Eberlin
- Laboratório ThoMSon de Espectrometria de Massas, Instituto de Química, Universidade Estadual de Campinas − UNICAMP, 13084-971, Campinas SP, Brazil
| | - Simon J. Garden
- Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária CT bloco A, Ilha do Fundão, RJ 21941-909, Brazil
| |
Collapse
|
12
|
Pancewicz S, Moniuszko A, Bieniarz E, Puciło K, Grygorczuk S, Zajkowska J, Czupryna P, Kondrusik M, Świerzbińska-Pijanowska R. Anti-Babesia microti antibodies in foresters highly exposed to tick bites in Poland. ACTA ACUST UNITED AC 2010; 43:197-201. [DOI: 10.3109/00365548.2010.538930] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Abstract
The ocean contains a host of macroscopic life in a great microbial soup. Unlike the terrestrial environment, an aqueous environment provides perpetual propinquity and blurs spatial distinctions. Marine organisms are under a persistent threat of infection by resident pathogenic microbes including bacteria, and in response they have engineered complex organic compounds with antibacterial activity from a diverse set of biological precursors. The diluting effect of the ocean drives the construction of potent molecules that are stable to harsh salty conditions. Members of each class of metabolite-ribosomal and non-ribosomal peptides, alkaloids, polyketides, and terpenes-have been shown to exhibit antibacterial activity. The sophistication and diversity of these metabolites points to the ingenuity and flexibility of biosynthetic processes in Nature. Compared with their terrestrial counterparts, antibacterial marine natural products have received much less attention. Thus, a concerted effort to discover new antibacterials from marine sources has the potential to contribute significantly to the treatment of the ever increasing drug-resistant infectious diseases.
Collapse
Affiliation(s)
- Chambers C. Hughes
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, UCSD, 9500 Gilman Dr. La Jolla, CA 92093-0204 (USA)
| | - William Fenical
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, UCSD, 9500 Gilman Dr. La Jolla, CA 92093-0204 (USA)
| |
Collapse
|
14
|
Hoyt MT, Palchaudhuri R, Hergenrother PJ. Cribrostatin 6 induces death in cancer cells through a reactive oxygen species (ROS)-mediated mechanism. Invest New Drugs 2010; 29:562-73. [PMID: 20169400 DOI: 10.1007/s10637-010-9390-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 01/13/2010] [Indexed: 01/06/2023]
Abstract
Cribrostatin 6 is a quinone-containing natural product that induces the death of cancer cell lines in culture, and its mechanism of action and scope of activity are unknown. Here we show that cribrostatin 6 has broad anticancer activity, potently inducing apoptotic cell death that is not preceded by any defined cell cycle arrest. Consistent with this data, we find that cribrostatin 6 treated cells have large amounts of reactive oxygen species (ROS) and, based on transcript profiling experiments and other data, this ROS generation is likely the primary mechanism by which cribrostatin 6 induces apoptosis. Given the success of certain ROS producers as anticancer agents, cribrostatin 6 has potential as a novel chemotherapeutic agent.
Collapse
Affiliation(s)
- Mirth T Hoyt
- Department of Chemistry, Roger Adams Laboratory, University of Illinois, Urbana, IL, 61801, USA
| | | | | |
Collapse
|
15
|
Paziewska A, Zwolińska L, Harris PD, Bajer A, Siński E. Utilisation of rodent species by larvae and nymphs of hard ticks (Ixodidae) in two habitats in NE Poland. EXPERIMENTAL & APPLIED ACAROLOGY 2010; 50:79-91. [PMID: 19421876 DOI: 10.1007/s10493-009-9269-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2009] [Accepted: 04/21/2009] [Indexed: 05/27/2023]
Abstract
The impact of host identity and habitat type on the density of hard ticks (Ixodes ricinus and Dermacentor reticulatus) infections on rodents in forest and abandoned field habitats in NE Poland was investigated. Ixodes ricinus was most abundant in the forest system, but D. reticulatus, although rarer, was most abundant in the field system. Environmental humidity and the much lower density of rodents probably limited the abundance of I. ricinus larvae in the field system, although this tick was still common on Microtus oeconomus from around small ponds. Nymphs of I. ricinus were comparatively rare in the forest, probably because of infection of non-rodent hosts. Dermacentor reticulatus nymphs on the other hand were very much more common in the ears of Microtus species than would have been predicted based on larval densities. The impact of habitat change (in this case successional change following field abandonment) on tick densities is emphasised, and the role of Apodemus as an epidemiological bridge, linking woodland and field habitats, is highlighted.
Collapse
|
16
|
Abstract
Fast and furious: Cribrostatin 6, an antimicrobial and antineoplastic agent, was the target of a total synthesis where the longest linear sequence was only four steps. The key step involves a tandem 4pi electrocyclic ring opening, radical cyclization, and homolytic aromatic substitution sequence to afford the tricyclic core of the natural product.
Collapse
Affiliation(s)
- Daniel Knueppel
- Department of Chemistry and Biochemistry, The University of Texas at Austin, 1 University Station-A5300, Austin, TX 78712-1167, USA
| | | |
Collapse
|
17
|
|
18
|
Abstract
The synthesis of cribrostatin 6 (1) is described. A regioselective bromination, a biaryl coupling, and an intramolecular cyclization are the key steps in the synthesis.
Collapse
Affiliation(s)
- Michael D Markey
- Department of Chemistry, Eugene F. Merkert Chemistry Center, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | |
Collapse
|
19
|
Mayer AMS, Rodríguez AD, Berlinck RGS, Hamann MT. Marine pharmacology in 2003-4: marine compounds with anthelmintic antibacterial, anticoagulant, antifungal, anti-inflammatory, antimalarial, antiplatelet, antiprotozoal, antituberculosis, and antiviral activities; affecting the cardiovascular, immune and nervous systems, and other miscellaneous mechanisms of action. Comp Biochem Physiol C Toxicol Pharmacol 2007; 145:553-81. [PMID: 17392033 PMCID: PMC2151674 DOI: 10.1016/j.cbpc.2007.01.015] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2006] [Revised: 01/29/2007] [Accepted: 01/30/2007] [Indexed: 10/23/2022]
Abstract
The current marine pharmacology review that covers the peer-reviewed literature during 2003 and 2004 is a sequel to the authors' 1998-2002 reviews, and highlights the preclinical pharmacology of 166 marine chemicals derived from a diverse group of marine animals, algae, fungi and bacteria. Anthelmintic, antibacterial, anticoagulant, antifungal, antimalarial, antiplatelet, antiprotozoal, antituberculosis or antiviral activities were reported for 67 marine chemicals. Additionally 45 marine compounds were shown to have significant effects on the cardiovascular, immune and nervous system as well as possessing anti-inflammatory effects. Finally, 54 marine compounds were reported to act on a variety of molecular targets and thus may potentially contribute to several pharmacological classes. Thus, during 2003-2004, research on the pharmacology of marine natural products which involved investigators from Argentina, Australia, Brazil, Belgium, Canada, China, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Morocco, the Netherlands, New Zealand, Norway, Panama, the Philippines, Portugal, Russia, Slovenia, South Korea, Spain, Thailand, Turkey, United Kingdom, and the United States, contributed numerous chemical leads for the continued global search for novel therapeutic agents with broad spectrum activity.
Collapse
Affiliation(s)
- Alejandro M S Mayer
- Department of Pharmacology, Chicago College of Osteopathic Medicine, Midwestern University, 555 31st Street, Downers Grove, Illinois 60515, USA.
| | | | | | | |
Collapse
|
20
|
Antimicrobial and Antimycobacterial Activity of Cyclostellettamine Alkaloids from Sponge Pachychalina sp. Mar Drugs 2006. [DOI: 10.3390/md401001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|