1
|
Watanuki S, Shoji K, Izawa M, Okami M, Ye Y, Bao A, Liu Y, Saitou E, Sugiyama K, Endo M, Matsumoto Y, Aida Y. Development of Dry and Liquid Duplex Reagent Mix-Based Polymerase Chain Reaction Assays as Novel Tools for the Rapid and Easy Quantification of Bovine Leukemia Virus (BLV) Proviral Loads. Viruses 2024; 16:1016. [PMID: 39066179 PMCID: PMC11281531 DOI: 10.3390/v16071016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Bovine leukemia virus (BLV) is prevalent worldwide, causing serious problems in the cattle industry. The BLV proviral load (PVL) is a useful index for estimating disease progression and transmission risk. We previously developed a quantitative real-time PCR (qPCR) assay to measure the PVL using the coordination of common motif (CoCoMo) degenerate primers. Here, we constructed a novel duplex BLV-CoCoMo qPCR assay that can amplify two genes simultaneously using a FAM-labeled MGB probe for the BLV LTR gene and a VIC-labeled MGB probe for the BoLA-DRA gene. This liquid duplex assay maintained its original sensitivity and reproducibility in field samples. Furthermore, we developed a dry duplex assay composed of PCR reagents necessary for the optimized liquid duplex assay. We observed a strong positive correlation between the PVLs measured using the dry and liquid duplex assays. Validation analyses showed that the sensitivity of the dry duplex assay was slightly lower than that of the other methods for the detection of a BLV molecular clone, but it showed similar sensitivity to the singleplex assay and slightly higher sensitivity than the liquid duplex assay for the PVL quantification of 82 field samples. Thus, our liquid and dry duplex assays are useful for measuring the BLV PVL in field samples, similar to the original singleplex assay.
Collapse
Affiliation(s)
- Sonoko Watanuki
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Kazuyuki Shoji
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Masaki Izawa
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Mitsuaki Okami
- Molecular Diagnosis Division, Nippon Gene Co., Ltd., 2-8-16 Toiya-machi, Toyama 930-0834, Japan
| | - Yingbao Ye
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Aronggaowa Bao
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Yulin Liu
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| | - Etsuko Saitou
- Hyogo Prefectural Awaji Meat Inspection Center, 49-18 Shitoorinagata, Minamiawaji 656-0152, Japan
| | | | - Michiru Endo
- Kumagaya Livestock Hygiene Service Center, Kumagaya 360-0813, Japan
| | - Yasunobu Matsumoto
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
- Laboratory of Global Animal Resource Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Yoko Aida
- Laboratory of Global Infectious Diseases Control Science, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan; (S.W.)
| |
Collapse
|
2
|
Kaymaz SV, Elitas M. Optimization of Loop-Mediated Isothermal Amplification (LAMP) reaction mixture for biosensor applications. MethodsX 2021; 8:101282. [PMID: 34434802 PMCID: PMC8374247 DOI: 10.1016/j.mex.2021.101282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 02/15/2021] [Indexed: 11/25/2022] Open
Abstract
Genetically Modified (GM) foods are becoming the future of agriculture on surviving global natural disasters and climate change by their enhanced production efficiency and improved functional properties. On the other hand, their adverse health and environmental effects, ample evidence on transgene leakage of Genetically Modified Organisms (GMOs) to crops have raised questions on their benefits and risks. Consequently, low-cost, reliable, rapid, and practical detection of GMOs have been important. GMO-detection platforms should be capable of stably storing detection reagents for long-delivery distances with varying ambient temperatures. In this study, we developed an event-specific, closed tube colorimetric GMO detection method based on Loop-Mediated Isothermal Amplification (LAMP) technique which can be integrated into GMO-detection platforms. The entire detection process optimized to 30 min and isothermally at 65 °C. The durability of the LAMP mixture in the test tubes showed that the LAMP reaction mixture, in which Bst polymerase and DNA sample was later included, yielded DNA amplicons for 3 days at room temperature, and for 6 days at 4 °C.•Simple, stable, and cheap storage method of LAMP reaction mixture for GMO-detection technologies.•GMO-detection platforms can stably store detection reagents for long-delivery distances with varying ambient temperatures.•Any DNA sample can be used in the field or resource-limited setting by untrained personnel.
Collapse
Affiliation(s)
- Sümeyra Vural Kaymaz
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| | - Meltem Elitas
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
3
|
Kulkarni RD, Mishra MN, Mohanraj J, Chandrasekhar A, Ajantha GS, Kulkani S, Bhat S. Development of a dry-reagent mix-based polymerase chain reaction as a novel tool for the identification of Acinetobacter species and its comparison with conventional polymerase chain reaction. J Lab Physicians 2020; 10:68-72. [PMID: 29403209 PMCID: PMC5784298 DOI: 10.4103/jlp.jlp_74_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND: Nosocomial infections are often caused by multidrug-resistant bacteria and the incidence is increasing. Acinetobacter, a Gram-negative bacillus, is commonly associated with the use of intravascular catheterization and airway intubation. Polymerase chain reaction (PCR) for identification of Acinetobacter baumannii from samples has been standardized that use conventional wet-reagent mix. We have designed and optimized a dry-reagent mix for identification of Acinetobacter species by PCR. The dry-reagent mix can be stored at room temperature, has less chances of contamination, and thus can be used at point-of-care diagnosis. AIM AND OBJECTIVE: The present work was focused on comparing the sensitivity and specificity of dry-reagent PCR mix over conventional wet-reagent PCR mix for identification of Acinetobacter species. MATERIALS AND METHODS: Conventional wet-reagent mix based and dry-reagent mix based PCR were carried out for the DNA isolated from Acinetobacter species. The latter was also applied directly on bacterial growth without prior DNA extraction process. Equal numbers of bacterial isolates other than Acinetobacter species were also subjected to identification by the same protocols for determining the sensitivity and specificity of the test. RESULTS: The Acinetobacter species showed amplification of the target rpoB gene and the band was observed at 397 bp. The dry-reagent PCR mix results matched completely with the conventional wet-reagent PCR mix assay. All the non-Acinetobacter isolates were negative for the PCR. This indicates that the test is highly specific. The dry-reagent mix also contained an enzyme resistant to PCR inhibitors and capable of amplifying DNA directly from cells. CONCLUSION: Performance of dry-reagent PCR mix without the need for DNA extraction and preparation of a PCR mix proved to be more sensitive and reduce the handling error, minimizes the time, manual work, and skilled labor.
Collapse
Affiliation(s)
- Raghavendra D Kulkarni
- Department of Microbiology, SDM College of Medical Sciences and Hospital, Dharwad, India
| | - Mukti Nath Mishra
- Department of Molecular Diagnostics, Bhat Biotech India Pvt. Ltd., Bengaluru, Karnataka, India
| | - Jeevanandam Mohanraj
- Department of Molecular Diagnostics, Bhat Biotech India Pvt. Ltd., Bengaluru, Karnataka, India
| | - Arun Chandrasekhar
- Department of Molecular Diagnostics, Bhat Biotech India Pvt. Ltd., Bengaluru, Karnataka, India
| | - G S Ajantha
- Department of Microbiology, SDM College of Medical Sciences and Hospital, Dharwad, India
| | - Sheetal Kulkani
- Department of Microbiology, SDM College of Medical Sciences and Hospital, Dharwad, India
| | - Shama Bhat
- Department of Molecular Diagnostics, Bhat Biotech India Pvt. Ltd., Bengaluru, Karnataka, India
| |
Collapse
|
4
|
Mishra MN, Kulkarni RD, Mohanraj J, Nisshanthini SD, Ajantha GS, Chandrasekhar A, Kenge P, Bhat S. A novel ready-to-use dry-reagent polymerase chain reaction for detection of Escherichia coli & Shigella species. Indian J Med Res 2019; 149:671-676. [PMID: 31417036 PMCID: PMC6702690 DOI: 10.4103/ijmr.ijmr_1394_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background & objectives: Polymerase chain reaction (PCR) has wide acceptance for rapid identification of pathogens and also for diagnosis of infectious conditions. However, because of economic and expertise constraints, a majority of small or peripheral laboratories do not use PCR. The objective of the present study was to develop a dry-reagent PCR assay as an alternative to conventional PCR to assess its applicability in routine laboratory practice using malB gene for identification of Escherichia coli as a model. Methods: A total of 184 isolates were selected for the study comprising clinical isolates of E. coli and non-E. coli including Shigella sp. and a few other control strains. The DNA was isolated from all the isolates. The isolated DNA as well as the overnight grown bacterial cultures were subjected to both conventional wet PCR and dry-reagent PCR. Results: The genomic DNA isolated from E. coli showed amplification of malB gene in both conventional wet and dry-reagent PCR and the band was observed at 491 bp. In dry-reagent PCR, the overnight grown E. coli cells also showed positive result. The non-E. coli strains other than Shigella sp. showed negative in both conventional wet and dry-reagent PCR. Shigella sp. showed positive in both conventional wet and dry-reagent PCR. Interpretation & conclusions: Considering the elimination of genomic DNA isolation step, and similar results with the conventional wet PCR, dry-reagent PCR may be a good alternative for the conventional wet PCR.
Collapse
Affiliation(s)
- Mukti Nath Mishra
- Department of Molecular Diagnostics, Bhat Biotech India Pvt. Ltd., Bengaluru, India
| | | | - Jeevanandam Mohanraj
- Department of Molecular Diagnostics, Bhat Biotech India Pvt. Ltd., Bengaluru, India
| | | | - G S Ajantha
- Department of Microbiology, SDM College of Medical Sciences & Hospital, Dharwad, India
| | - Arun Chandrasekhar
- Department of Molecular Diagnostics, Bhat Biotech India Pvt. Ltd., Bengaluru, India
| | - Prachee Kenge
- Department of Molecular Diagnostics, Bhat Biotech India Pvt. Ltd., Bengaluru, India
| | - Shama Bhat
- Department of Molecular Diagnostics, Bhat Biotech India Pvt. Ltd., Bengaluru, India
| |
Collapse
|
5
|
Leung V, Brooks M, Emerson S, Ali M, Filipe CDM. Ready-to-use thermally stable mastermix pills for molecular biology applications. Biotechnol Prog 2018; 35:e2764. [PMID: 30536873 DOI: 10.1002/btpr.2764] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/14/2018] [Accepted: 12/06/2018] [Indexed: 11/12/2022]
Abstract
Rolling circle amplification (RCA), polymerase chain reaction (PCR), and loop-mediated isothermal amplification (LAMP), are powerful tools that can be used for gene manipulation, pathogen detection, and infectious disease diagnostics. However, these techniques require trained personnel, as the pipetting steps involved can lead to contamination and, consequently, erroneous results. Furthermore, many of the reagents used in molecular biology are thermally labile and must be kept within a cold-chain. In this article, we present a simple and cost-effective method that allows molecular biology reagents to be thermally stabilized into ready-to-use mastermixes via drying in pullulan and trehalose films. Our experimental results demonstrate that this method is capable of preserving the activity of RCA, PCR, LAMP, ligase, polynucleotide kinase, and Klenow fragment mastermixes for at least 3 months at ambient conditions. Thus, stabilizing reagents via drying in pullulan and trehalose film may allow for a drastic reduction in the number of pipetting steps and the elimination of the need for a cold chain. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2764, 2019.
Collapse
Affiliation(s)
- Vincent Leung
- Dept. of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, L8S 4L7, Ontario, Canada
| | - Meredith Brooks
- Dept. of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, L8S 4L7, Ontario, Canada
| | - Sophia Emerson
- Dept. of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, L8S 4L7, Ontario, Canada
| | - Monsur Ali
- Biointerfaces Inst., McMaster University, Hamilton, L8S 4L7, Ontario, Canada
| | - Carlos D M Filipe
- Dept. of Chemical Engineering, 1280 Main Street West, McMaster University, Hamilton, L8S 4L7, Ontario, Canada
| |
Collapse
|
6
|
Effect of tris(2-carboxyethyl)phosphine and tertiary butyl alcohol on the performance of convection polymerase chain reaction. Mol Biol Rep 2018; 46:639-645. [PMID: 30484105 DOI: 10.1007/s11033-018-4519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 11/22/2018] [Indexed: 10/27/2022]
Abstract
Rapid and on-site DNA-based molecular detection has become increasingly important for sensitive, specific, and timely detection and treatment of various diseases. To prepare and store biomolecule-containing reagents stably, reducing agents are used during protein preparation, and freeze-drying technology has been applied to the protein reagents. Some of the additives used during these processes may affect subsequent processes such as polymerase chain reaction (PCR). In this study, we evaluated the impact of TCEP, a reducing agent, and TBA, a freeze-drying medium, on the performance of convection PCR (cPCR) using a battery-operable PCR device. Singleplex cPCR detection of a 249 bp amplicon from human genomic DNA suggested that approximately 82% of performance was achieved in the presence of 0.1 mM TCEP and 1% TBA. The limit of detection and the minimum number of cycles at which amplicons began to appear was a little lower (~ 82% efficiency) or higher (20 vs 15 cycles), respectively, in the chemical-treated group than in the control group. With larger amplicons of 500 bp, the chemical-treated group revealed approximately 78% of performance and amplicons started to appear at 20 cycles of cPCR in both groups. Similar results were obtained with multiplex cPCR amplification.
Collapse
|