1
|
Sheck E, Romanov A, Shapovalova V, Shaidullina E, Martinovich A, Ivanchik N, Mikotina A, Skleenova E, Oloviannikov V, Azizov I, Vityazeva V, Lavrinenko A, Kozlov R, Edelstein M. Acinetobacter Non- baumannii Species: Occurrence in Infections in Hospitalized Patients, Identification, and Antibiotic Resistance. Antibiotics (Basel) 2023; 12:1301. [PMID: 37627721 PMCID: PMC10451542 DOI: 10.3390/antibiotics12081301] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Acinetobacter species other than A. baumannii are becoming increasingly more important as opportunistic pathogens for humans. The primary aim of this study was to assess the prevalence, species distribution, antimicrobial resistance patterns, and carbapenemase gene content of clinical Acinetobacter non-baumannii (Anb) isolates that were collected as part of a sentinel surveillance program of bacterial infections in hospitalized patients. The secondary aim was to evaluate the performance of MALDI-TOF MS systems for the species-level identification of Anb isolates. METHODS Clinical bacterial isolates were collected from multiple sites across Russia and Kazakhstan in 2016-2022. Species identification was performed by means of MALDI-TOF MS, with the Autobio and Bruker systems used in parallel. The PCR detection of the species-specific blaOXA-51-like gene was used as a means of differentiating A. baumannii from Anb species, and the partial sequencing of the rpoB gene was used as a reference method for Anb species identification. The susceptibility of isolates to antibiotics (amikacin, cefepime, ciprofloxacin, colistin, gentamicin, imipenem, meropenem, sulbactam, tigecycline, tobramycin, and trimethoprim-sulfamethoxazole) was determined using the broth microdilution method. The presence of the most common in Acinetobacter-acquired carbapenemase genes (blaOXA-23-like, blaOXA-24/40-like, blaOXA-58-like, blaNDM, blaIMP, and blaVIM) was assessed using real-time PCR. RESULTS In total, 234 isolates were identified as belonging to 14 Anb species. These comprised 6.2% of Acinetobacter spp. and 0.7% of all bacterial isolates from the observations. Among the Anb species, the most abundant were A. pittii (42.7%), A. nosocomialis (13.7%), the A. calcoaceticus/oleivorans group (9.0%), A. bereziniae (7.7%), and A. geminorum (6.0%). Notably, two environmental species, A. oleivorans and A. courvalinii, were found for the first time in the clinical samples of patients with urinary tract infections. The prevalence of resistance to different antibiotics in Anb species varied from <4% (meropenem and colistin) to 11.2% (gentamicin). Most isolates were susceptible to all antibiotics; however, sporadic isolates of A. bereziniae, A. johnsonii, A. nosocomialis, A. oleivorans, A. pittii, and A. ursingii were resistant to carbapenems. A. bereziniae was more frequently resistant to sulbactam, aminoglycosides, trimethoprim-sulfamethoxazole, and tigecycline than the other species. Four (1.7%) isolates of A. bereziniae, A. johnsonii, A. pittii were found to carry carbapenemase genes (blaOXA-58-like and blaNDM, either alone or in combination). The overall accuracy rates of the species-level identification of Anb isolates with the Autobio and Bruker systems were 80.8% and 88.5%, with misidentifications occurring in 5 and 3 species, respectively. CONCLUSIONS This study provides important new insights into the methods of identification, occurrence, species distribution, and antibiotic resistance traits of clinical Anb isolates.
Collapse
Affiliation(s)
- Eugene Sheck
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Andrey Romanov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Valeria Shapovalova
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Elvira Shaidullina
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Alexey Martinovich
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Natali Ivanchik
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Anna Mikotina
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Elena Skleenova
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Vladimir Oloviannikov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Ilya Azizov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Vera Vityazeva
- Republican Children’s Hospital, 185000 Petrozavodsk, Republic of Karelia, Russia
| | - Alyona Lavrinenko
- Shared Resource Laboratory, Karaganda Medical University, 100008 Karaganda, Kazakhstan
| | - Roman Kozlov
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| | - Mikhail Edelstein
- Institute of Antimicrobial Chemotherapy, Smolensk State Medical University, 214019 Smolensk, Russia; (E.S.); (I.A.)
| |
Collapse
|
2
|
Murata M, Kosai K, Akamatsu N, Matsuyama Y, Oda M, Wakamatsu A, Izumikawa K, Mukae H, Yanagihara K. Diagnostic Performance of BD Phoenix CPO Detect Panels for Detection and Classification of Carbapenemase-Producing Gram-Negative Bacteria. Microbiol Spectr 2023; 11:e0089723. [PMID: 37162344 PMCID: PMC10269800 DOI: 10.1128/spectrum.00897-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/11/2023] [Indexed: 05/11/2023] Open
Abstract
BD Phoenix CPO Detect panels can identify and classify carbapenemase-producing organisms (CPOs) simultaneously with antimicrobial susceptibility testing (AST) for Gram-negative bacteria. Detection and classification of carbapenemase producers were performed using the BD Phoenix CPO Detect panels NMIC/ID-441 for Enterobacterales, NMIC/ID-442 for nonfermenting bacteria, and NMIC-440 for both. The results were compared with those obtained using comparator methods. A total of 133 strains (32 Klebsiella pneumoniae, 37 Enterobacter cloacae complex, 33 Pseudomonas aeruginosa, and 31 Acinetobacter baumannii complex strains), including 60 carbapenemase producers (54 imipenemases [IMPs] and 6 OXA type), were analyzed. Using panels NMIC-440 and NMIC/ID-441 or NMIC/ID-442, all 54 IMP producers were accurately identified as CPOs (positive percent agreement [PPA], 100.0%; 54/54). Among the 54 IMP producers identified as CPOs using panels NMIC-440 and NMIC/ID-441, 12 and 14 Enterobacterales were not resistant to carbapenem, respectively. Among all 54 IMP producers, 48 (88.9%; 48/54) were correctly classified as Ambler class B using panel NMIC-440. Using panels NMIC-440 and NMIC/ID-442, all four OXA-23-like carbapenemase-producing A. baumannii complex strains (100.0%, 4/4) were correctly identified as CPOs, and three (75.0%, 3/4) were precisely classified as class D using panel NMIC-440. Both carbapenemase producers harboring the blaISAba1-OXA-51-like gene were incorrectly identified as non-CPOs using panels NMIC-440 and NMIC/ID-442. For detecting carbapenemase producers, the overall PPA and negative percent agreement (NPA) between panel NMIC-440 and the comparator methods were 96.7% (58/60) and 71.2% (52/73), respectively, and the PPA and NPA between panels NMIC/ID-441 or NMIC/ID-442 and the comparator methods were 96.7% (58/60) and 74.0% (54/73), respectively. BD Phoenix CPO Detect panels can successfully screen carbapenemase producers, particularly IMP producers, regardless of the presence of carbapenem resistance and can be beneficial in routine AST workflows. IMPORTANCE Simple and efficient screening methods of detecting carbapenemase producers are required. BD Phoenix CPO Detect panels effectively screened carbapenemase producers, particularly IMP producers, with a high overall PPA. As the panels enable automatic screening for carbapenemase producers simultaneously with AST, the workflow from AST to confirmatory testing for carbapenemase production can be shortened. In addition, because carbapenem resistance varies among carbapenemase producers, the BD Phoenix CPO Detect panels, which can screen carbapenemase producers regardless of carbapenem susceptibility, can contribute to the accurate detection of carbapenemase producers. Our results report that these panels can help streamline the AST workflow before confirmatory testing for carbapenemase production in routine microbiological tests.
Collapse
Affiliation(s)
- Mika Murata
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Norihiko Akamatsu
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | | | - Mitsuharu Oda
- Nippon Becton, Dickinson Company, Ltd., Minato, Tokyo, Japan
| | | | - Koichi Izumikawa
- Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
3
|
Alam M, Rasool MH, Khan I, Khurshid M, Aslam B. Multilocus Sequence Typing of Carbapenem-Resistant Acinetobacter baumannii Isolates Harboring blaOXA-23 and blaIMP in Cattle from Punjab, Pakistan. Microb Drug Resist 2022; 28:997-1002. [PMID: 35985003 DOI: 10.1089/mdr.2022.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Acinetobacter baumannii is a notorious bacterial pathogen that can cause an array of nosocomial infections in clinical settings. However, the data from the veterinary settings is limited and especially in Pakistan, no such study is conducted so far. To investigate the prevalence, antimicrobial resistance, and distribution of specific sequence types of A. baumannii in cattle, a total of 1,960 samples were collected from cattle over 18 months from Punjab, Pakistan. The isolates obtained were identified using the API20NE system and confirmed through PCR. The isolated A. baumannii isolates were further screened for antimicrobial susceptibility and the presence of resistance genes. Multilocus sequence typing was carried out to characterize the carbapenem-resistant A. baumannii (CRAB) isolates. Results revealed an overall prevalence of A. baumannii at 3.31% (65/1,960) with a higher prevalence of 7.38% (54/731) in dairy cattle compared to beef cattle at 4.41% (11/249). Among 65 A. baumannii isolates, 27.7% (18/65) were CRAB. All CRAB isolates harbor class D β-lactamases genes blaOXA-23 and blaOXA-51, whereas 94.4% (17/18) CRAB isolates carried class B β-lactamases gene blaIMP, and only one isolate had blaNDM-1 gene. The commonly found sequence types for CRAB isolates were ST2 and ST642 corresponding to 10 and 05 isolates, respectively. The presence of CRAB in cattle indicates an alarming situation that necessitates an urgent and efficient surveillance system to limit the transmission of CRAB among the cattle population and its possible transmission to humans and the environment.
Collapse
Affiliation(s)
- Minhas Alam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Iahtasham Khan
- Department of Clinical Sciences, College of Veterinary and Animal Sciences, Jhang, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mohsin Khurshid
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Bilal Aslam
- Department of Microbiology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
4
|
Leelapsawas C, Yindee J, Nittayasut N, Chueahiran S, Boonkham P, Suanpairintr N, Chanchaithong P. Emergence and multi-lineages of carbapenemase-producing Acinetobacter baumannii-calcoaceticus complex from canine and feline origins. J Vet Med Sci 2022; 84:1377-1384. [PMID: 36031361 PMCID: PMC9586037 DOI: 10.1292/jvms.22-0276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The carbapenemase-producing Acinetobacter baumannii is an important
opportunistic bacterium and frequently causes hospital-acquired infections in humans. It
also has increasingly been reported in veterinary medicine. This study illustrates
multiple clones of carbapenemase-producing A. baumannii disseminating and
causing diseases in dogs and cats in Thailand. Between 2016 and 2020, 44 A.
baumannii and two A. pittii isolates exhibiting imipenem
resistance (MIC≥16 μg/mL) from diagnostic samples were characterized by Pasteur multilocus
sequence typing (MLST), sequence grouping (SG), repetitive extragenic palindromic element
(rep)-PCR fingerprint analysis and antimicrobial resistance (AMR)
profiling. All isolates contained blaOXA-23 in the
Tn2006 family, and A. baumannii showed the sequence
type (ST) 16 (14/44), ST149 (12/44), ST25 (6/44), ST2 (4/44), ST1581 (3/44), ST23 (2/44),
ST1575 (1/44) and ST1576 (1/44). DNA fingerprint analysis and SG illustrated clonal
relationships in the STs and its single locus variants, and AMR gene profiles, including
tetracycline and aminoglycoside resistance genes, showed minor variations in the clones.
The findings suggest that blaOXA-23 has been spread in
multiple clones of A. baumannii and A. pittii from
canine and feline hosts. With the collection of multiple AMR genes and intrinsic
resistance, antimicrobial options are limited for treatment, and pets can be a potential
reservoir of extensively drug-resistant, carbapenemase-producing A.
baumannii in the community. Epidemiological tracking by passive and active
surveillance in animals, veterinary personnel and hospital environment and preventive
measurements should be promoted to decrease the risk of infection and transmission to
humans.
Collapse
Affiliation(s)
- Chavin Leelapsawas
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University
| | - Jitrapa Yindee
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University
| | - Naiyaphat Nittayasut
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University
| | - Surawit Chueahiran
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University
| | - Pongthai Boonkham
- Veterinary Diagnostic Laboratory, Faculty of Veterinary Science, Chulalongkorn University
| | | | - Pattrarat Chanchaithong
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University.,Research Unit in Microbial Food Safety and Antimicrobial Resistance, Faculty of Veterinary Science, Chulalongkorn University
| |
Collapse
|
5
|
Genomic Characterization of Clinical Extensively Drug-Resistant Acinetobacter pittii Isolates. Microorganisms 2021; 9:microorganisms9020242. [PMID: 33503968 PMCID: PMC7912037 DOI: 10.3390/microorganisms9020242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 01/26/2023] Open
Abstract
Carbapenem-resistant Acinetobacter pittii (CRAP) is a causative agent of nosocomial infections. This study aimed to characterize clinical isolates of CRAP from a tertiary hospital in Northeast Thailand. Six isolates were confirmed as extensively drug-resistant Acinetobacter pittii (XDRAP). The blaNDM-1 gene was detected in three isolates, whereas blaIMP-14 and blaIMP-1 were detected in the others. Multilocus sequence typing with the Pasteur scheme revealed ST220 in two isolates, ST744 in two isolates, and ST63 and ST396 for the remaining two isolates, respectively. Genomic characterization revealed that six XDRAP genes contained antimicrobial resistance genes: ST63 (A436) and ST396 (A1) contained 10 antimicrobial resistance genes, ST220 (A984 and A864) and ST744 (A56 and A273) contained 9 and 8 antimicrobial resistance genes, respectively. The single nucleotide polymorphism (SNP) phylogenetic tree revealed that the isolates A984 and A864 were closely related to A. pittii YB-45 (ST220) from China, while A436 was related to A. pittii WCHAP100020, also from China. A273 and A56 isolates (ST744) were clustered together; these isolates were closely related to strains 2014S07-126, AP43, and WCHAP005069, which were isolated from Taiwan and China. Strict implementation of infection control based upon the framework of epidemiological analyses is essential to prevent outbreaks and contain the spread of the pathogen. Continued surveillance and close monitoring with molecular epidemiological tools are needed.
Collapse
|
6
|
Ogbolu DO, Alli OAT, Oluremi AS, Ogunjimi YT, Ojebode DI, Dada V, Alaka OO, Foster-Nyarko E, Webber MA. Contribution of NDM and OXA-type carbapenemases to carbapenem resistance in clinical Acinetobacter baumannii from Nigeria. Infect Dis (Lond) 2020; 52:644-650. [PMID: 32516021 DOI: 10.1080/23744235.2020.1775881] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Objective: Acinetobacter baumannii infections are rarely diagnosed in many hospitals in Nigeria due to a lack of capacity for the identification of the organism in spite of the clinical significance of this opportunistic nosocomial organism. We assembled a panel of presumptive isolates of A. baumannii from tertiary hospitals in Nigeria and analysed mechanisms of resistance phenotypically and by whole genome sequencing.Materials and methods: Twenty-one clinical isolates of A. baumannii identified using standard microbiological tests were tested for susceptibility to a panel of antibiotics by the agar dilution method, and production of ESBLs using phenotypic tests. Whole genome sequencing and comparative genomic analysis were used to determine the antimicrobial resistance genes, strain types, phylogenetic relationships and genetic context of resistance genes.Results: The MIC50 and MIC90 of most antibiotics were very high with no difference between MIC50 and MIC90 values apart for amikacin, meropenem and colistin where MIC50 and MIC90 ranged between 1-4 µg/ml and 64->64 µg/ml, respectively. Multiple resistance genes were detected in most of the isolates including blaNDM-1, various blaOXA-51 family alleles and blaOXA-23. Interestingly, blaNDM-1 carriage did not always result in phenotypic carbapenem resistance. Whole genome alignments typing showed strains belonged to three major clades. Strains within these clades had different resistance genes and resistance patterns.Conclusions: This report shows a high level of resistance to important antibiotics and carbapenem resistance in A. baumannii in Nigeria. We hope this work will serve as a reference for future study in the sub-Saharan region of Africa.
Collapse
Affiliation(s)
- David O Ogbolu
- Department of Biomedical Sciences, Ladoke Akintola University of Technology, Osogbo Campus, Ogbomoso, Nigeria.,Antimicrobials Research Group, Institute for Microbiology and Infection, School of Immunity and Infection, University of Birmingham, Birmingham, UK.,The Quadram Institute, Norwich Research Park, Colney, Norwich, UK
| | - Oyebode A Terry Alli
- Department of Biomedical Sciences, Ladoke Akintola University of Technology, Osogbo Campus, Ogbomoso, Nigeria
| | - Adeolu S Oluremi
- Department of Biomedical Sciences, Ladoke Akintola University of Technology, Osogbo Campus, Ogbomoso, Nigeria
| | - Y Temilola Ogunjimi
- Department of Biomedical Sciences, Ladoke Akintola University of Technology, Osogbo Campus, Ogbomoso, Nigeria
| | - D Iyanu Ojebode
- Department of Biomedical Sciences, Ladoke Akintola University of Technology, Osogbo Campus, Ogbomoso, Nigeria
| | - Veronica Dada
- Department of Medical Microbiology, University College Hospital, Ibadan, Nigeria
| | - Olubunmi O Alaka
- Department of Medical Microbiology, Obafemi Awolowo University Teaching Hospitals Complex, Ile-Ife, Nigeria
| | - Ebenezer Foster-Nyarko
- The Quadram Institute, Norwich Research Park, Colney, Norwich, UK.,Norwich Medical School, Norwich Research Park, Colney, Norwich, UK
| | - Mark A Webber
- The Quadram Institute, Norwich Research Park, Colney, Norwich, UK.,Norwich Medical School, Norwich Research Park, Colney, Norwich, UK
| |
Collapse
|
7
|
Singkham-In U, Chatsuwan T. Mechanisms of carbapenem resistance in Acinetobacter pittii and Acinetobacter nosocomialis isolates from Thailand. J Med Microbiol 2018; 67:1667-1672. [PMID: 30311872 DOI: 10.1099/jmm.0.000845] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
PURPOSE The emergence of carbapenem resistance in non-baumannii Acinetobacter has increased in clinical settings worldwide. We investigated the prevalence and mechanisms of carbapenem resistance in A. pittii and A. nosocomialis Thai isolates. METHODOLOGY Acinetobacter calcoaceticus-Acinetobacter baumannii (Acb) complex isolates were identified by gyrB mulitplex PCR. Carbapenem susceptibilities were studied by the agar dilution method and carbapenemase genes were detected by multiplex PCR. Reductions of the outer membrane proteins (OMPs) were evaluated by SDS-PAGE. Overexpressions of efflux pumps were detected by using efflux pump inhibitors and RT-PCR. RESULTS Of the 346 Acb isolates, 22 and 19 were A. pittii and A. nosocomialis, respectively. The carbapenem resistance rates were 22.7 % in A. pittii and 26.3 % in A. nosocomialis. Three carbapenem-resistant A. pittii carried blaOXA-23. One carbapenem-resistant A. pittii harboured blaOXA-58, while another isolate co-harboured blaOXA-58 and blaIMP-14a. blaOXA-58 was also found in three carbapenem-susceptible A. pittii. Five carbapenem-resistant A. nosocomialis carried blaOXA-23. Eighteen A. pittii isolates carried blaOXA-213-like. Reduced OMPs were found in carbapenem-resistant and -susceptible A. pittii carrying blaOXA-58, but were not detected in carbapenem-resistant A. nosocomialis isolates. Overexpression of adeE was found in carbapenem-resistant A. pittii. No efflux pump genes were present in carbapenem-resistant A. nosocomialis. CONCLUSION The major mechanisms of carbapenem resistance in A. pittii and A. nosocomialis were the production of OXA-23 and OXA-58. Overexpression of adeE played a role in carbapenem resistance in A. pittii. Since blaOXA-58 was found in carbapenem-susceptible A. pittii, using carbapenems in the treatment of A. pittii infection should be considered.
Collapse
Affiliation(s)
- Uthaibhorn Singkham-In
- 1Interdisciplinary Program of Medical Microbiology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Tanittha Chatsuwan
- 2Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
8
|
Distribution and Molecular Characterization of Acinetobacter baumannii International Clone II Lineage in Japan. Antimicrob Agents Chemother 2018; 62:AAC.02190-17. [PMID: 29203489 DOI: 10.1128/aac.02190-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 11/28/2017] [Indexed: 12/22/2022] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter spp. have been globally disseminated in association with the successful clonal lineage Acinetobacter baumannii international clone II (IC II). Because the prevalence of MDR Acinetobacter spp. in Japan remains very low, we characterized all Acinetobacter spp. (n = 866) from 76 hospitals between October 2012 and March 2013 to describe the entire molecular epidemiology of Acinetobacter spp. The most prevalent species was A. baumannii (n = 645; 74.5%), with A. baumannii IC II (n = 245) accounting for 28.3% of the total. Meropenem-resistant isolates accounted for 2.0% (n = 17) and carried ISAba1-blaOXA-23-like (n = 10), blaIMP (n = 4), or ISAba1-blaOXA-51-like (n = 3). Multilocus sequence typing of 110 representative A. baumannii isolates revealed the considerable prevalence of domestic sequence types (STs). A. baumannii IC II isolates were divided into the domestic sequence type 469 (ST469) (n = 18) and the globally disseminated STs ST208 (n = 14) and ST219 (n = 4). ST469 isolates were susceptible to more antimicrobial agents, while ST208 and ST219 overproduced the intrinsic AmpC β-lactamase. A. baumannii IC II and some A. baumannii non-IC II STs (e.g., ST149 and ST246) were associated with fluoroquinolone resistance. This study revealed that carbapenem-susceptible A. baumannii IC II was moderately disseminated in Japan. The low prevalence of acquired carbapenemase genes and presence of domestic STs could contribute to the low prevalence of MDR A. baumannii A similar epidemiology might have appeared before the global dissemination of MDR epidemic lineages. In addition, fluoroquinolone resistance associated with A. baumannii IC II may provide insight into the significance of A. baumannii epidemic clones.
Collapse
|
9
|
Rapid species identification and epidemiological analysis of carbapenem-resistant Acinetobacter spp. by a PCR-based open reading frame typing method. J Med Microbiol 2016; 65:923-927. [DOI: 10.1099/jmm.0.000314] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
10
|
Fujikura Y, Yuki A, Hamamoto T, Kawana A, Ohkusu K, Matsumoto T. Blood stream infections caused by Acinetobacter baumannii group in Japan - Epidemiological and clinical investigation. J Infect Chemother 2016; 22:366-71. [PMID: 26993173 DOI: 10.1016/j.jiac.2016.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 01/06/2016] [Accepted: 02/17/2016] [Indexed: 11/18/2022]
Abstract
Acinetobacter calcoaceticus-Acinetobacter baumannii complex, especially A. baumannii, Acinetobacter pittii and Acinetobacter nosocomialis, constitutes an important group of nosocomial pathogens; however, epidemiological or clinical characteristics and prognosis is limited in Japan. From 2009 to 2013, 47 blood stream infection cases resulting from A. baumannii group were reviewed at the National Defense Medical College, an 800-bed tertiary hospital. To determine the genospecies, further comparative nucleotide sequence analyses of the RNA polymerase b-subunit (rpoB) gene were performed. Sequence analysis of rpoB gene showed that 25 (49.0%), 17 (33.3%) and 5 (9.8%) cases were caused by A. baumannii, A. pittii and A. nosocomialis, respectively. The 30-day and in-hospital mortality rates of A. baumannii were 8.5% and 25.5%, respectively, and there were no significant differences between Acinetobacter species. Clinical characteristics were statistically insignificant. Multidrug-resistant Acinetobacter species were detected in 3 cases (5.9%) with same pulsed-field gel electrophoresis (PFGE) pattern and A. baumannii was less susceptible to amikacin and levofloxacin. In this study, the mortality and clinical characteristics were similar among A. baumannii group isolate cases despite some showing drug resistance. However, identification of Acinetobacter species helps to initiate appropriate antibiotic therapy in earlier treatment phase, because A. baumannii shows some drug resistance.
Collapse
Affiliation(s)
- Yuji Fujikura
- Department of Microbiology, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo 160-8402, Japan; Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan.
| | - Atsushi Yuki
- Department of Clinical Laboratory, National Defense Medical College Hospital, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Takaaki Hamamoto
- Department of Clinical Laboratory, National Defense Medical College Hospital, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Akihiko Kawana
- Division of Infectious Diseases and Respiratory Medicine, Department of Internal Medicine, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Kiyofumi Ohkusu
- Department of Microbiology, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo 160-8402, Japan
| | - Tetsuya Matsumoto
- Department of Microbiology, Tokyo Medical University, 6-1-1 Shinjyuku, Shinjyuku-ku, Tokyo 160-8402, Japan
| |
Collapse
|
11
|
El-Shazly S, Dashti A, Vali L, Bolaris M, Ibrahim AS. Molecular epidemiology and characterization of multiple drug-resistant (MDR) clinical isolates of Acinetobacter baumannii. Int J Infect Dis 2015; 41:42-9. [PMID: 26518066 DOI: 10.1016/j.ijid.2015.10.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 10/05/2015] [Accepted: 10/22/2015] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES The aim of this study was to identify the genetic relatedness of multiple drug-resistant (MDR) Acinetobacter baumannii clinical isolates recovered from a hospital in Los Angeles. METHODS Twenty-one MDR A. baumannii isolates were collected and their antibiotic susceptibilities determined according to Clinical and Laboratory Standards Institute guidelines. Genes coding for antibiotic resistance were identified by PCR, and their identities were confirmed by DNA sequencing. Clonal relationships were studied by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). RESULTS MDR consistently correlated with the presence of oxacillinases, mostly in the form of the plasmid-mediated OXA-23 enzyme, which was detected in 12 (57.1%) isolates. GES-type carbapenemases were found in 20 (95.2%) strains, AAC in all 21 (100%) strains, and PER in seven (33.3%) strains, and ISAba1 was detected in 16 (76.2%) isolates. The association between ISAba1 and resistance genes confirms insertion elements as a source of β-lactamase production. Of the 21 clinical isolates, five were found to be related to sequence type 1 (ST1) and 16 to ST2, as analyzed by MLST. PFGE demonstrated that the majority of clinical isolates were highly related (>85%). CONCLUSIONS This study supports a more complete understanding of genotyping of antibiotic resistance for better assessment of MDR strain transmission.
Collapse
Affiliation(s)
- Sherief El-Shazly
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Kuwait; Division of Adult Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles (UCLA) Medical Center, 1124 West Carson St., St. John's Cardiovascular Research Center, Torrance, CA 90502, USA
| | - Ali Dashti
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Kuwait
| | - Leila Vali
- Department of Medical Laboratory Sciences, Faculty of Allied Health Sciences, Health Sciences Center, Kuwait University, Kuwait
| | - Michael Bolaris
- Division of Pediatric Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles (UCLA) Medical Center, Torrance, California, USA
| | - Ashraf S Ibrahim
- Division of Adult Infectious Diseases, Los Angeles Biomedical Research Institute at Harbor-University of California Los Angeles (UCLA) Medical Center, 1124 West Carson St., St. John's Cardiovascular Research Center, Torrance, CA 90502, USA; David Geffen School of Medicine at UCLA, Los Angeles, California, USA.
| |
Collapse
|
12
|
Diversity of Acinetobacter baumannii strains isolated in humans, companion animals, and the environment in Reunion Island: an exploratory study. Int J Infect Dis 2015; 37:64-9. [DOI: 10.1016/j.ijid.2015.05.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/07/2015] [Accepted: 05/08/2015] [Indexed: 11/21/2022] Open
|