1
|
Gourari-Bouzouina K, Boucherit-Otmani Z, Halla N, Seghir A, Baba Ahmed-Kazi Tani ZZ, Boucherit K. Exploring the dynamics of mixed-species biofilms involving Candida spp. and bacteria in cystic fibrosis. Arch Microbiol 2024; 206:255. [PMID: 38734793 DOI: 10.1007/s00203-024-03967-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/17/2024] [Indexed: 05/13/2024]
Abstract
Cystic fibrosis (CF) is an inherited disease that results from mutations in the gene responsible for the cystic fibrosis transmembrane conductance regulator (CFTR). The airways become clogged with thick, viscous mucus that traps microbes in respiratory tracts, facilitating colonization, inflammation and infection. CF is recognized as a biofilm-associated disease, it is commonly polymicrobial and can develop in biofilms. This review discusses Candida spp. and both Gram-positive and Gram-negative bacterial biofilms that affect the airways and cause pulmonary infections in the CF context, with a particular focus on mixed-species biofilms. In addition, the review explores the intricate interactions between fungal and bacterial species within these biofilms and elucidates the underlying molecular mechanisms that govern their dynamics. Moreover, the review addresses the multifaceted issue of antimicrobial resistance in the context of CF-associated biofilms. By synthesizing current knowledge and research findings, this review aims to provide insights into the pathogenesis of CF-related infections and identify potential therapeutic approaches to manage and combat these complex biofilm-mediated infections.
Collapse
Affiliation(s)
- Karima Gourari-Bouzouina
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria.
| | - Zahia Boucherit-Otmani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Noureddine Halla
- Laboratory of Biotoxicology, Pharmacognosy and Biological Recovery of Plants, Department of Biology, Faculty of Sciences, University of Moulay-Tahar, 20000, Saida, Algeria
| | - Abdelfettah Seghir
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Zahira Zakia Baba Ahmed-Kazi Tani
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| | - Kebir Boucherit
- Antibiotics Antifungal Laboratory, Physical Chemistry, Synthesis and Biological Activity (LapSab), Department of Biology, Faculty of Sciences, University of Tlemcen, BP 119, 13000, Tlemcen, Algeria
| |
Collapse
|
2
|
Sabra W, Wang W, Goepfert C, Zeng AP. Food-web and metabolic interactions of the lung inhabitants Streptococcus pneumoniae and Pseudomonas aeruginosa. Environ Microbiol 2022; 24:4885-4898. [PMID: 35706134 DOI: 10.1111/1462-2920.16105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/29/2022]
Abstract
Bacteria that successfully adapt to different substrates and environmental niches within the lung and overcome the immune defence can cause serious lung infections. Such infections are generally complex, and recognised as polymicrobial in nature. Both Pseudomonas aeruginosa and Streptococcus pneumoniae can cause chronic lung infections and were both detected in cystic fibrosis (CF) lung at different stages. In this study, single and dual species cultures of Pseudomonas aeruginosa and Streptococcus pneumoniae were studied under well controlled planktonic growth conditions. Under pH-controlled conditions, both species apparently benefited from the presence of the other. In co-culture with P. aeruginosa, S. pneumoniae grew efficiently under aerobic conditions, whereas in pure S. pneumoniae culture, growth inhibition occurred in bioreactors with dissolved oxygen concentrations above the microaerobic range. Lactic acid and acetoin that are produced by S. pneumoniae was efficiently utilised by P. aeruginosa. In pH-uncontrolled co-cultures, the low pH triggered by S. pneumoniae assimilation of glucose and lactic acid production negatively affected the growth of both strains. Nevertheless, ammonia production improved significantly, and P. aeruginosa growth dominated at later growth stages. This study revealed unreported metabolic interactions of two important pathogenic microorganisms and shed new lights into pathophysiology of bacterial lung infection. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Wael Sabra
- Faculty of life science, Rheine-Waal University of applied sciences, Marie-Curie-Straße 1, Kleve.,Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany
| | - Christiane Goepfert
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany
| | - An-Ping Zeng
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Denickestrasse 15, Hamburg, Germany.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering
| |
Collapse
|
3
|
Iwahashi J, Kamei K, Watanabe H. Disruption of Aspergillus fumigatus biofilm by Streptococcus pneumoniae: Mycelial fragmentation by hydrogen peroxide. J Infect Chemother 2020; 26:831-837. [PMID: 32414689 DOI: 10.1016/j.jiac.2020.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/07/2020] [Accepted: 03/24/2020] [Indexed: 01/06/2023]
Abstract
Biofilm is a complex structure consisting of microorganisms such as bacteria, fungi and an extracellular matrix (ECM). Biofilms are involved in most microbial infections and show persistent resistance to antibiotic treatment and immune response. Both Aspergillus fumigatus and Streptococcus pneumoniae are colonizers that can form biofilms in the respiratory tract. These pathogens have been simultaneously isolated from the same patient, but their interaction is poorly understood. We observed morphological changes in single- and mixed-species biofilms prepared for confocal laser scanning microscopy and scanning electron microscopy (SEM). Pneumococci suppressed the development of a fungal biofilm, and it even disrupted a preformed fungal biofilm. When a preformed fungal biofilm was treated with pneumococci, the mycelial network was fragmented, and only bacteria could develop. SEM revealed that the fragmented mycelium was further disrupted into fine filaments as treatment time progressed, and that the ECM of the preformed fungal biofilm had disappeared. The pneumococcal culture supernatant contained mycelial fragmentation activity that was heat-sensitive. The culture supernatant of a mutant pneumococcal strain deficient in pneumolysin (Δply) also exhibited the mycelial fragmentation activity. Enolase and lactate oxidase, which are involved in glycolysis and hydrogen peroxide production, were identified in the culture supernatant of the Δply mutant. Neither the wild type nor the mutant strain could fragment the mycelium in the presence of catalase. These data suggest that hydrogen peroxide could fragment the mycelium and would terminate the co-existence of A. fumigatus and S. pneumoniae in biofilm.
Collapse
Affiliation(s)
- Jun Iwahashi
- Department of Infection Control and Prevention, Kurume University School of Medicine, 67 Asahi-machi, Kurume City, Fukuoka 830-0011, Japan.
| | - Katsuhiko Kamei
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba City, Chiba 260-8673, Japan
| | - Hiroshi Watanabe
- Department of Infection Control and Prevention, Kurume University School of Medicine, 67 Asahi-machi, Kurume City, Fukuoka 830-0011, Japan
| |
Collapse
|
4
|
Lommatzsch ST. Infection prevention and chronic disease management in cystic fibrosis and noncystic fibrosis bronchiectasis. Ther Adv Respir Dis 2020; 14:1753466620905272. [PMID: 32160809 PMCID: PMC7068740 DOI: 10.1177/1753466620905272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bronchiectasis is a chronic lung disease (CLD) characterized by irreversible bronchial dilatation noted on computed tomography associated with chronic cough, ongoing viscid sputum production, and recurrent pulmonary infections. Patients with bronchiectasis can be classified into two groups: those with cystic fibrosis and those without cystic fibrosis. Individuals with either cystic fibrosis related bronchiectasis (CFRB) or noncystic fibrosis related bronchiectasis (NCFRB) experience continuous airway inflammation and suffer airway architectural changes that foster the acquisition of a unique polymicrobial community. The presence of microorganisms increases airway inflammation, triggers pulmonary exacerbations (PEx), reduces quality of life (QOL), and, in some cases, is an independent risk factor for increased mortality. As there is no cure for either condition, prevention and control of infection is paramount. Such an undertaking incorporates patient/family and healthcare team education, immunoprophylaxis, microorganism source control, antimicrobial chemoprophylaxis, organism eradication, daily pulmonary disease management, and, in some cases, thoracic surgery. This review is a summary of recommendations aimed to thwart patient acquisition of pathologic organisms, and those therapies known to mitigate the effects of chronic airway infection. A thorough discussion of airway clearance techniques and treatment of or screening for nontuberculous mycobacteria (NTM) is beyond the scope of this discussion.
Collapse
|
5
|
Pompilio A, Geminiani C, Mantini P, Siriwardena TN, Di Bonaventura I, Reymond JL, Di Bonaventura G. Peptide dendrimers as "lead compounds" for the treatment of chronic lung infections by Pseudomonas aeruginosa in cystic fibrosis patients: in vitro and in vivo studies. Infect Drug Resist 2018; 11:1767-1782. [PMID: 30349334 PMCID: PMC6188189 DOI: 10.2147/idr.s168868] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aim In the present work, the potential of the D-enantiomeric dendrimers dG3KL and dTNS18 was evaluated in relation to tobramycin (Tob), for the development of novel antibacterials to treat Pseudomonas aeruginosa chronic lung infections in patients with cystic fibrosis. Results The activity of dendrimers against planktonic P. aeruginosa cells was less than Tob against three of the four strains tested (median minimum inhibitory concentration [MIC] 8 vs 1 µg/mL, respectively), but 32-fold higher against the PaPh32 strain isolated at posttransplantation stage. Results from comparative minimum bactericidal concentration/MIC evaluation and time-kill assay suggested a bactericidal mechanism for all test agents. Subinhibitory concentrations of both dendrimers and Tob significantly affected biofilm formation by all strains in a dose-dependent manner, although the PaPh26 strain, isolated during the chronic stage of infection, was particularly susceptible to dendrimers. The activity of dendrimers against preformed P. aeruginosa biofilm was generally comparable to Tob, considering both dispersion and viability of biofilm. Particularly, exposure to the test agent at 10 × MIC caused significant biofilm death (>90%, even to eradication), though with strain-specific differences. Single administration of dendrimers or Tob at 10 × MIC was not toxic in Galleria mellonella wax-moth larvae over 96 hours. However, contrarily to Tob, dendrimers were not protective against systemic infection caused by P. aeruginosa in G. mellonella. Kinetics of P. aeruginosa growth in hemolymph showed that bacterial load increased over time in the presence of dendrimers. Conclusion Overall, our findings indicated that dG3KL and dTNS18 peptide dendrimers show in vitro activity comparable to Tob against both P. aeruginosa planktonic and biofilm cells at concentrations not toxic in vivo. Further studies are warranted to explore different dosages and to increase the bioavailability of the peptides to solve the lack of protective effect observed in G. mellonella larvae.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral, and Biotechnological Sciences, G d'Annunzio University of Chieti-Pescara, Chieti 66100, Italy, .,Center of Excellence on Aging and Translational Medicine, G d'Annunzio University of Chieti-Pescara, Chieti, Italy,
| | - Cristina Geminiani
- Department of Medical, Oral, and Biotechnological Sciences, G d'Annunzio University of Chieti-Pescara, Chieti 66100, Italy, .,Center of Excellence on Aging and Translational Medicine, G d'Annunzio University of Chieti-Pescara, Chieti, Italy,
| | - Paolo Mantini
- Department of Medical, Oral, and Biotechnological Sciences, G d'Annunzio University of Chieti-Pescara, Chieti 66100, Italy, .,Center of Excellence on Aging and Translational Medicine, G d'Annunzio University of Chieti-Pescara, Chieti, Italy,
| | | | - Ivan Di Bonaventura
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Jean Louis Reymond
- Department of Chemistry and Biochemistry, University of Bern, Bern, Switzerland
| | - Giovanni Di Bonaventura
- Department of Medical, Oral, and Biotechnological Sciences, G d'Annunzio University of Chieti-Pescara, Chieti 66100, Italy, .,Center of Excellence on Aging and Translational Medicine, G d'Annunzio University of Chieti-Pescara, Chieti, Italy,
| |
Collapse
|
6
|
Long Persistence of a Streptococcus pneumoniae 23F Clone in a Cystic Fibrosis Patient. mSphere 2017; 2:mSphere00201-17. [PMID: 28596991 PMCID: PMC5463027 DOI: 10.1128/msphere.00201-17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/01/2017] [Indexed: 02/07/2023] Open
Abstract
Streptococcus pneumoniae is a common resident in the human nasopharynx. However, carriage can result in severe diseases due to a unique repertoire of pathogenicity factors that are rare in closely related commensal streptococci. We investigated a penicillin-resistant S. pneumoniae clone of serotype 23F isolated from a cystic fibrosis patient on multiple occasions over an unusually long period of over 3 years that was present without causing disease. Genome comparisons revealed an apparent nonfunctional pneumococcus-specific gene encoding a hyaluronidase, supporting the view that this enzyme adds to the virulence potential of the bacterium. The 23F clone harbored unique mosaic genes encoding penicillin resistance determinants, the product of horizontal gene transfer involving the commensal S. mitis as donor species. Sequences identical to one such mosaic gene were identified in an S. mitis strain from the same patient, suggesting that in this case S. pneumoniae played the role of donor. Streptococcus pneumoniae isolates of serotype 23F with intermediate penicillin resistance were recovered on seven occasions over a period of 37 months from a cystic fibrosis patient in Berlin. All isolates expressed the same multilocus sequence type (ST), ST10523. The genome sequences of the first and last isolates, D122 and D141, revealed the absence of two phage-related gene clusters compared to the genome of another ST10523 strain, D219, isolated earlier at a different place in Germany. Genomes of all three strains carried the same novel mosaic penicillin-binding protein (PBP) genes, pbp2x, pbp2b, and pbp1a; these genes were distinct from those of other penicillin-resistant S. pneumoniae strains except for pbp1a of a Romanian S. pneumoniae isolate. All PBPs contained mutations that have been associated with the penicillin resistance phenotype. Most interestingly, a mosaic block identical to an internal pbp2x sequence of ST10523 was present in pbp2x of Streptococcus mitis strain B93-4, which was isolated from the same patient. This suggests interspecies gene transfer from S. pneumoniae to S. mitis within the host. Nearly all genes expressing surface proteins, which represent major virulence factors of S. pneumoniae and are typical for this species, were present in the genome of ST10523. One exception was the hyaluronidase gene hlyA, which contained a 12-nucleotide deletion within the promoter region and an internal stop codon. The lack of a functional hyaluronidase might contribute to the ability to persist in the host for an unusually long period of time. IMPORTANCEStreptococcus pneumoniae is a common resident in the human nasopharynx. However, carriage can result in severe diseases due to a unique repertoire of pathogenicity factors that are rare in closely related commensal streptococci. We investigated a penicillin-resistant S. pneumoniae clone of serotype 23F isolated from a cystic fibrosis patient on multiple occasions over an unusually long period of over 3 years that was present without causing disease. Genome comparisons revealed an apparent nonfunctional pneumococcus-specific gene encoding a hyaluronidase, supporting the view that this enzyme adds to the virulence potential of the bacterium. The 23F clone harbored unique mosaic genes encoding penicillin resistance determinants, the product of horizontal gene transfer involving the commensal S. mitis as donor species. Sequences identical to one such mosaic gene were identified in an S. mitis strain from the same patient, suggesting that in this case S. pneumoniae played the role of donor.
Collapse
|
7
|
Wijers CD, Chmiel JF, Gaston BM. Bacterial infections in patients with primary ciliary dyskinesia: Comparison with cystic fibrosis. Chron Respir Dis 2017; 14:392-406. [PMID: 29081265 PMCID: PMC5729729 DOI: 10.1177/1479972317694621] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Primary ciliary dyskinesia (PCD) is an autosomal recessive disorder associated with severely impaired mucociliary clearance caused by defects in ciliary structure and function. Although recurrent bacterial infection of the respiratory tract is one of the major clinical features of this disease, PCD airway microbiology is understudied. Despite the differences in pathophysiology, assumptions about respiratory tract infections in patients with PCD are often extrapolated from cystic fibrosis (CF) airway microbiology. This review aims to summarize the current understanding of bacterial infections in patients with PCD, including infections with Pseudomonas aeruginosa, Staphylococcus aureus, and Moraxella catarrhalis, as it relates to bacterial infections in patients with CF. Further, we will discuss current and potential future treatment strategies aimed at improving the care of patients with PCD suffering from recurring bacterial infections.
Collapse
Affiliation(s)
- Christiaan Dm Wijers
- 1 Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - James F Chmiel
- 1 Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Benjamin M Gaston
- 1 Department of Pediatrics, Rainbow Babies and Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
8
|
Le Moigne V, Gaillard JL, Herrmann JL. Vaccine strategies against bacterial pathogens in cystic fibrosis patients. Med Mal Infect 2016; 46:4-9. [DOI: 10.1016/j.medmal.2015.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 11/27/2015] [Indexed: 12/12/2022]
|
9
|
Nasopharyngeal Bacterial Carriage in the Conjugate Vaccine Era with a Focus on Pneumococci. J Immunol Res 2015; 2015:394368. [PMID: 26351646 PMCID: PMC4553195 DOI: 10.1155/2015/394368] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/29/2015] [Accepted: 06/10/2015] [Indexed: 12/17/2022] Open
Abstract
Seven-valent pneumococcal conjugate vaccine (PCV7) was included in the UK national immunisation program in 2006, and this was replaced by thirteen-valent PCV in 2010. During this time, the carriage of vaccine-type Streptococcus pneumoniae decreased but pneumococcal carriage remained stable due to increases in non-vaccine-type S. pneumoniae. Carriage studies have been undertaken in various countries to monitor vaccine-type replacement and to help predict the serotypes, which may cause invasive disease. There has been less focus on how conjugate vaccines indirectly affect colonization of other nasopharyngeal bacteria. If the nasopharynx is treated as a niche, then bacterial dynamics are accepted to occur. Alterations in these dynamics have been shown due to seasonal changes, antibiotic use, and sibling/day care interaction. It has been shown that, following PCV7 introduction, an eradication of pneumococcal vaccine types has resulted in increases in the abundance of other respiratory pathogens including Haemophilus influenzae and Staphylococcus aureus. These changes are difficult to attribute to PCV7 introduction alone and these studies do not account for further changes due to PCV13 implementation. This review aims to describe nasopharyngeal cocarriage of respiratory pathogens in the PCV era.
Collapse
|
10
|
Esposito S, Colombo C, Tosco A, Montemitro E, Volpi S, Ruggiero L, Lelii M, Bisogno A, Pelucchi C, Principi N. Streptococcus pneumoniae oropharyngeal colonization in children and adolescents with cystic fibrosis. J Cyst Fibros 2015; 15:366-71. [PMID: 26049740 DOI: 10.1016/j.jcf.2015.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/19/2022]
Abstract
BACKGROUND This study was designed to evaluate Streptococcus pneumoniae (S. pneumoniae) carriage rates in patients with cystic fibrosis (CF). METHODS An oropharyngeal swab was obtained from 212 CF children and adolescents enrolled during routine clinical visits. DNA from swabs was analyzed by real-time polymerase chain reaction. RESULTS A total of 42 (19.8%) CF patients (mean age±standard deviation [SD], 12.0±3.3years) were colonized by S. pneumoniae. Carriage was more common in younger patients and tended to decline with age. Administration of systemic and/or inhaled antibiotics in the last 3months significantly correlated with a reduced carrier state [odds ratio (OR) 0.23, 95% confidence interval (CI) 0.07-0.69, and OR 0.26, 95% CI 0.08-0.77, respectively]. Vitamin D serum levels ≥30ng/mL were less common in carriers than that in non-carriers (OR 0.35; 95% CI 0.08-1.49). In both the vaccinated and unvaccinated subjects, serotypes 19F, 5, 4, and 9V were the most commonly carried serotypes. CONCLUSIONS S. pneumoniae carrier state of school-age children and adolescents with CF is more prevalent than previously thought, and pneumococcal conjugate vaccination administered in the first year of life does not reduce the risk of re-colonization in later childhood and adolescence.
Collapse
Affiliation(s)
- Susanna Esposito
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - Carla Colombo
- Cystic Fibrosis Center, Lombardia Region, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Antonella Tosco
- Cystic Fibrosis Center, Campania Region, Pediatric Section, Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Enza Montemitro
- Cystic Fibrosis Center, IRCCS Bambino Gesù Hospital, Rome, Italy
| | - Sonia Volpi
- Cystic Fibrosis Center, Veneto Region, University and Hospital Trust of Verona, Verona, Italy
| | - Luca Ruggiero
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Mara Lelii
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Arianna Bisogno
- Cystic Fibrosis Center, Lombardia Region, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudio Pelucchi
- Department of Epidemiology, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milan, Italy
| | - Nicola Principi
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | | |
Collapse
|
11
|
Prevalence and impact of Streptococcus pneumoniae in adult cystic fibrosis patients: a retrospective chart review and capsular serotyping study. BMC Pulm Med 2015; 15:49. [PMID: 25930152 PMCID: PMC4434824 DOI: 10.1186/s12890-015-0041-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 04/16/2015] [Indexed: 11/20/2022] Open
Abstract
Background Cystic fibrosis (CF) is a genetic disease characterized by complex polymicrobial communities within the lower respiratory tract. S. pneumoniae, while a well-defined pathogen in the general population, has rarely been identified in CF. Furthermore, prevalence studies on Pneumococcus in CF have predominantly focused on the infant and pediatric populations, and outcome data is lacking. Methods Through a review of our comprehensive clinical and microbiologic database from a single adult CF center in Canada from 1978–2013 we sought to determine the incidence, prevalence, serotype and clinical impact of Pneumococcus in adults with CF. Results Only fifteen of 318 adult CF patients (5%) were ever found to have transient Pneumococcus colonization, and none developed persistent infection although length of carriage varied. As all isolates were stored, capsular serotyping could be performed using a multiplex PCR panel. Capsular serotyping revealed a varied distribution of several serotypes within these isolates. Lung function testing at time of incident Pneumococcus isolation was compared with values before and after isolation and showed no significant reduction in spirometry values, nor was there an increased need for rescue antibacterial therapy. Conclusion Within our center, incident Pneumococcus infection is neither common, associated with a disproportionate clinical deterioration nor results in chronic infection.
Collapse
|