1
|
Ongena R, Dierick M, Vanrompay D, Cox E, Devriendt B. Lactoferrin impairs pathogen virulence through its proteolytic activity. Front Vet Sci 2024; 11:1428156. [PMID: 39176399 PMCID: PMC11339958 DOI: 10.3389/fvets.2024.1428156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Antibiotics, often hailed as 'miracle drugs' in the 20th century, have revolutionised medicine by saving millions of lives in human and veterinary medicine, effectively combatting bacterial infections. However, the escalating global challenge of antimicrobial resistance and the appearance and spread of multidrug-resistant pathogens necessitates research into alternatives. One such alternative could be lactoferrin. Lactoferrin, an iron-binding multifunctional protein, is abundantly present in mammalian secretions and exhibits antimicrobial and immunomodulatory activities. An often overlooked aspect of lactoferrin is its proteolytic activity, which could contribute to its antibacterial activity. The proteolytic activity of lactoferrin has been linked to the degradation of virulence factors from several bacterial pathogens, impeding their colonisation and potentially limiting their pathogenicity. Despite numerous studies, the exact proteolytically active site of lactoferrin, the specific bacterial virulence factors it degrades and the underlying mechanism remain incompletely understood. This review gives an overview of the current knowledge concerning the proteolytic activity of lactoferrins and summarises the bacterial virulence factors degraded by lactoferrins. We further detail how a deeper understanding of the proteolytic activity of lactoferrin might position it as a viable alternative for antibiotics, being crucial to halt the spread of multi-drug resistant bacteria.
Collapse
Affiliation(s)
- Ruben Ongena
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Matthias Dierick
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Daisy Vanrompay
- Laboratory for Immunology and Animal Biotechnology, Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Eric Cox
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Bert Devriendt
- Laboratory of Immunology, Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
2
|
Gad El-Hak HN, Mohamed FH. Effect of lactoferrin supplement on cadmium chloride induced toxicity to male rats: Toxicopathological, ultrastructural and immunological studies. Int Immunopharmacol 2023; 125:111182. [PMID: 37944217 DOI: 10.1016/j.intimp.2023.111182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/21/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023]
Abstract
This study sought to determine whether lactoferrin supplementation could counteract the harm that cadmium (Cd) induced to the rats. The effect of Cd and lactoferrin were investigated in hematological, biochemical, histological, immunohistochemical expression and ultrastructural studies. After 30 days of treatment, rats exposed to Cd had significantly higher levels of Cd in their blood, more oxidized lipids, and less antioxidant capacity overall. Supplemental lactoferrin also significantly undoes that effect. Hematological and biochemical parameters changed along with the increase in blood Cd levels. The histological integrity of the liver, kidney, spleen, and (axillary, cervical, mesenteric and popliteal) lymph nodes that had been damaged by Cd exposure was also restored by lactoferrin supplementation. Moreover, the liver and spleen ultrastructure showed the same improvement. In addition, the spleen of Lf/Cd group showed less immunohistochemical expression of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in comparison to the Cd group. In conclusion, the current study showed that supplementing with lactoferrin improved immune response and restored biochemical and oxidative stability induced by Cd.
Collapse
|
3
|
Duarte-Mata DI, Salinas-Carmona MC. Antimicrobial peptides´ immune modulation role in intracellular bacterial infection. Front Immunol 2023; 14:1119574. [PMID: 37056758 PMCID: PMC10086130 DOI: 10.3389/fimmu.2023.1119574] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Intracellular bacteria cause a wide range of diseases, and their intracellular lifestyle makes infections difficult to resolve. Furthermore, standard therapy antibiotics are often unable to eliminate the infection because they have poor cellular uptake and do not reach the concentrations needed to kill bacteria. In this context, antimicrobial peptides (AMPs) are a promising therapeutic approach. AMPs are short cationic peptides. They are essential components of the innate immune response and important candidates for therapy due to their bactericidal properties and ability to modulate host immune responses. AMPs control infections through their diverse immunomodulatory effects stimulating and/or boosting immune responses. This review focuses on AMPs described to treat intracellular bacterial infections and the known immune mechanisms they influence.
Collapse
|
4
|
Li W, Liu B, Lin Y, Xue P, Lu Y, Song S, Li Y, Szeto IMY, Ren F, Guo H. The application of lactoferrin in infant formula: The past, present and future. Crit Rev Food Sci Nutr 2022; 64:5748-5767. [PMID: 36533432 DOI: 10.1080/10408398.2022.2157792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human milk is universally regarded as the gold standard to fulfill nutrition needs of infants. Lactoferrin (LF) is a major multiple bioactive glycoprotein in human milk but little is presented in infant formula. LF can resist digestion in the infant gastrointestinal tract and is absorbed into the bloodstream in an intact form to perform physiological functions. Evidence suggest that LF prevents pathogen infection, promotes immune system development, intestinal development, brain development and bone health, as well as ameliorates iron deficiency anemia. However, more clinical studies of LF need to be further elucidated to determine an appropriate dosage for application in infant formula. LF is sensitive to denaturation induced by processing of infant formula such as heat treatments and spay drying. Thus, further studies should be focus on maximizing the retention of LF activity in the infant formula process. This review summarizes the structural features of LF. Then the digestion, absorption and metabolism of LF in infants are discussed, followed by the function of LF for infants. Further, we summarize LF in infant formula and effects of processing of infant formula on bioactivities of LF, as well as future perspectives of LF research.
Collapse
Affiliation(s)
- Wusun Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Biao Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, PR China
| | - Yingying Lin
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Peng Xue
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yao Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Sijia Song
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
| | - Yixuan Li
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Ignatius Man-Yau Szeto
- Inner Mongolia Yili Industrial Group Co., Ltd, Hohhot, PR China
- National Center of Technology Innovation for Dairy, Hohhot, PR China
| | - Fazheng Ren
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| | - Huiyuan Guo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, PR China
- Key Laboratory of Functional Dairy, Department of Nutrition and Health, China Agricultural University, Beijing, PR China
| |
Collapse
|
5
|
Iron in immune cell function and host defense. Semin Cell Dev Biol 2020; 115:27-36. [PMID: 33386235 DOI: 10.1016/j.semcdb.2020.12.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/13/2022]
Abstract
The control over iron availability is crucial under homeostatic conditions and even more in the case of an infection. This results from diverse properties of iron: first, iron is an important trace element for the host as well as for the pathogen for various cellular and metabolic processes, second, free iron catalyzes Fenton reaction and is therefore producing reactive oxygen species as a part of the host defense machinery, third, iron exhibits important effects on immune cell function and differentiation and fourth almost every immune activation in turn impacts on iron metabolism and spatio-temporal iron distribution. The central importance of iron in the host and microbe interplay and thus for the course of infections led to diverse strategies to restrict iron for invading pathogens. In this review, we focus on how iron restriction to the pathogen is a powerful innate immune defense mechanism of the host called "nutritional immunity". Important proteins in the iron-host-pathogen interplay will be discussed as well as the influence of iron on the efficacy of innate and adaptive immunity. Recently described processes like ferritinophagy and ferroptosis are further covered in respect to their impact on inflammation and infection control and how they impact on our understanding of the interaction of host and pathogen.
Collapse
|
6
|
Li HY, Li P, Yang HG, Yao QQ, Huang SN, Wang JQ, Zheng N. Investigation and comparison of the protective activities of three functional proteins-lactoferrin, α-lactalbumin, and β-lactoglobulin-in cerebral ischemia reperfusion injury. J Dairy Sci 2020; 103:4895-4906. [PMID: 32229112 DOI: 10.3168/jds.2019-17725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/22/2020] [Indexed: 01/05/2023]
Abstract
The objective of this study was to evaluate the protection conferred by lactoferrin, α-lactalbumin, and β-lactoglobulin in cerebral ischemia reperfusion (I/R) injury. Rat pheochromocytoma (PC12) cells were used to construct an oxygen and glucose deprivation model in vitro, and ICR mice underwent carotid artery "ligation-relaxation" to construct a cerebral I/R injury model in vivo. The levels of toll-like receptor 4 (TLR4) and downstream factors including nuclear factor-κB, tumor necrosis factor-α, and IL-1β were measured. Metabonomics detection and data mining were conducted to identify the specific metabolic sponsor of the 3 proteins. The results showed that lactoferrin, α-lactalbumin, and β-lactoglobulin protected neurons from cerebral I/R injury by increasing the level of bopindolol and subsequently inhibiting the TLR4-related pathway to different degrees; β-lactoglobulin had the strongest activity of the 3 proteins. In summary, this study is the first to investigate and compare the protective effects of lactoferrin, α-lactalbumin, and β-lactoglobulin in a cerebral stroke model. The results implicate TLR4 as a novel target of the 3 bioactive proteins to prevent cerebral I/R injury.
Collapse
Affiliation(s)
- Hui-Ying Li
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Peng Li
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China; Key Laboratory of Quality and Safety Risk Assessment for Dairy Products, Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Huai-Gu Yang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Qian-Qian Yao
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Sheng-Nan Huang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Jia-Qi Wang
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.
| | - Nan Zheng
- Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China.
| |
Collapse
|
7
|
Niu Z, Loveday SM, Barbe V, Thielen I, He Y, Singh H. Protection of native lactoferrin under gastric conditions through complexation with pectin and chitosan. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.02.020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
8
|
Patras KA, Ha AD, Rooholfada E, Olson J, Ramachandra Rao SP, Lin AE, Nizet V. Augmentation of Urinary Lactoferrin Enhances Host Innate Immune Clearance of Uropathogenic Escherichia coli. J Innate Immun 2019; 11:481-495. [PMID: 31055580 DOI: 10.1159/000499342] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/26/2019] [Indexed: 12/31/2022] Open
Abstract
Urinary tract infection (UTI) is a prominent global health care burden. Although UTI is readily treated with antibiotics in healthy adults, complicated cases in immune-compromised individuals and the emerging antibiotic resistance of several uropathogens have accelerated the need for new treatment strategies. Here, we surveyed the composition of urinary exosomes in a mouse model of uropathgenic Escherichia coli (UPEC) UTI to identify specific urinary tract defense constituents for therapeutic development. We found an enrichment of the iron-binding glycoprotein lactoferrin in the urinary exosomes of infected mice. In subsequent in vitro studies, we identified human bladder epithelial cells as a source of lactoferrin during UPEC infection. We further established that exogenous treatment with human lactoferrin (hLf) reduces UPEC epithelial adherence and enhances neutrophil antimicrobial functions including bacterial killing and extracellular trap production. Notably, a single intravesicular dose of hLf drastically reduced bladder bacterial burden and neutrophil infiltration in our murine UTI model. We propose that lactoferrin is an important modulator of innate immune responses in the urinary tract and has potential application in novel therapeutic design for UTI.
Collapse
Affiliation(s)
- Kathryn A Patras
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA
| | - Albert D Ha
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA
| | - Emma Rooholfada
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA
| | - Joshua Olson
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA
| | - Satish P Ramachandra Rao
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, California, USA.,Division of Infectious Diseases, Department of Medicine, UC San Diego, La Jolla, California, USA.,Center for Clinical Research & Education, IAIM HealthCare Center, Yelahanka, India
| | - Ann E Lin
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, UC San Diego, La Jolla, California, USA, .,Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, USA,
| |
Collapse
|
9
|
Wang B, Timilsena YP, Blanch E, Adhikari B. Lactoferrin: Structure, function, denaturation and digestion. Crit Rev Food Sci Nutr 2017; 59:580-596. [DOI: 10.1080/10408398.2017.1381583] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Bo Wang
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Yakindra Prasad Timilsena
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
- Materials Science and Engineering, CSIRO Manufacturing Flagship, Clayton South, VIC, Australia
| | - Ewan Blanch
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
| | - Benu Adhikari
- Food Research and Innovation Centre, School of Science, RMIT University, Melbourne, VIC, Australia
- Materials Science and Engineering, CSIRO Manufacturing Flagship, Clayton South, VIC, Australia
| |
Collapse
|
10
|
Drago-Serrano ME, Campos-Rodríguez R, Carrero JC, de la Garza M. Lactoferrin: Balancing Ups and Downs of Inflammation Due to Microbial Infections. Int J Mol Sci 2017; 18:E501. [PMID: 28257033 PMCID: PMC5372517 DOI: 10.3390/ijms18030501] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/13/2017] [Accepted: 02/22/2017] [Indexed: 02/07/2023] Open
Abstract
Lactoferrin (Lf) is a glycoprotein of the primary innate immune-defense system of mammals present in milk and other mucosal secretions. This protein of the transferrin family has broad antimicrobial properties by depriving pathogens from iron, or disrupting their plasma membranes through its highly cationic charge. Noteworthy, Lf also exhibits immunomodulatory activities performing up- and down-regulation of innate and adaptive immune cells, contributing to the homeostasis in mucosal surfaces exposed to myriad of microbial agents, such as the gastrointestinal and respiratory tracts. Although the inflammatory process is essential for the control of invasive infectious agents, the development of an exacerbated or chronic inflammation results in tissue damage with life-threatening consequences. In this review, we highlight recent findings in in vitro and in vivo models of the gut, lung, oral cavity, mammary gland, and liver infections that provide experimental evidence supporting the therapeutic role of human and bovine Lf in promoting some parameters of inflammation and protecting against the deleterious effects of bacterial, viral, fungal and protozoan-associated inflammation. Thus, this new knowledge of Lf immunomodulation paves the way to more effective design of treatments that include native or synthetic Lf derivatives, which may be useful to reduce immune-mediated tissue damage in infectious diseases.
Collapse
Affiliation(s)
- Maria Elisa Drago-Serrano
- Departamento de Sistemas Biológicos, Universidad Autónoma Metropolitana Unidad Xochimilco (UAM-X), CdMx 04960, Mexico.
| | - Rafael Campos-Rodríguez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional (ESM-IPN), CdMx 11340, Mexico.
| | - Julio César Carrero
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México (IIB-UNAM), CdMx 70228, Mexico.
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), CdMx 07360, Mexico.
| |
Collapse
|
11
|
Wu J, Hu Y, Du C, Piao J, Yang L, Yang X. The effect of recombinant human lactoferrin from the milk of transgenic cows on Salmonella enterica serovar typhimurium infection in mice. Food Funct 2016; 7:308-14. [PMID: 26469086 DOI: 10.1039/c5fo00817d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Lactoferrin (LF) is a multifunctional protein with antibacterial and immunomodulatory activities. Given this beneficial effect, transgenic approaches have been used to produce lactoferrin. The aim of the current study was to investigate the in vivo effect of recombinant human lactoferrin (rhLF) from the milk of transgenic cows on Salmonella enterica serovar typhimurium (ST) infection in mice. Two hours before the infection with 0.3 ml at 2 × 10(5) CFU ml(-1) of ST, each animal in the ST + rhLF group received 0.3 ml of rhLF with 20 mg ml(-1) concentration while the ST group received PBS as placebos with the same volume through oral gavage. The mice were infected with ST once only on the first day. After the infection, the mice received 0.3 ml of rhLF with 20 mg ml(-1) (6 mg d(-1)) concentration or PBS, respectively, for 7 days. Mortality and weight were monitored daily. Bacterial enumeration in the blood, liver, and spleen and histopathological analysis of the liver, spleen, kidney and intestine were conducted. The results showed that rhLF decreased the bacterial load in the liver and spleen of mice, reduced the degree of mice hepatomegaly and splenomegaly, and attenuated infectious inflammation with less histopathological abnormalities in the liver, spleen and kidney of mice in the ST infection. This study showed that rhLF with 6 mg per day had antibacterial activity of alleviating the infection caused by ST bacteria, which indicated that rhLF could be used as a supplement in special products.
Collapse
Affiliation(s)
- Jinghuan Wu
- The Key Laboratory of Trace Element Nutrition MOH, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Room 103, 29 Nan Wei Road, Xicheng District, Beijing 100050, P.R. China.
| | - Yujie Hu
- Foodborne Disease Surveillance Department, China National Center for Food Safety Risk Assessment, 7 Panjiayuan Nanli, Chaoyang District, Beijing, 100050, P.R. China
| | - Chunming Du
- Foodborne Disease Surveillance Department, China National Center for Food Safety Risk Assessment, 7 Panjiayuan Nanli, Chaoyang District, Beijing, 100050, P.R. China
| | - Jianhua Piao
- The Key Laboratory of Trace Element Nutrition MOH, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Room 103, 29 Nan Wei Road, Xicheng District, Beijing 100050, P.R. China.
| | - Lichen Yang
- The Key Laboratory of Trace Element Nutrition MOH, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Room 103, 29 Nan Wei Road, Xicheng District, Beijing 100050, P.R. China.
| | - Xiaoguang Yang
- The Key Laboratory of Trace Element Nutrition MOH, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Room 103, 29 Nan Wei Road, Xicheng District, Beijing 100050, P.R. China.
| |
Collapse
|
12
|
Hernández-Ledesma B, García-Nebot MJ, Fernández-Tomé S, Amigo L, Recio I. Dairy protein hydrolysates: Peptides for health benefits. Int Dairy J 2014. [DOI: 10.1016/j.idairyj.2013.11.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Protective effects of human lactoferrin during Aggregatibacter actinomycetemcomitans-induced bacteremia in lactoferrin-deficient mice. Antimicrob Agents Chemother 2013; 58:397-404. [PMID: 24189260 DOI: 10.1128/aac.00020-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans, a periodontopathogen, has been associated with several systemic diseases. Herein, we report the protective effect of human lactoferrin (hLF) during A. actinomycetemcomitans bacteremia in lactoferrin knockout (LFKO(-/-)) mice. The prophylactic, concurrent, and therapeutic intravenous (i.v.) administrations of hLF significantly cleared the bacteria from blood and organs. Nevertheless, all modes of hLF administration significantly decreased the concentrations of serum proinflammatory cytokines, such as interferon gamma (IFN-γ), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10, and IL-12p70. Additionally, hLF administration significantly decreased hepatic and splenic proinflammatory cytokine expression levels compared to those in the non-hLF-treated group. Furthermore, administration of hLF decreased the serum C-reactive protein level, inducible nitric oxide synthase (iNOS) and myeloperoxidase (MPO) gene expression levels in liver and spleen. hLF treatment has also resulted in a 6-fold decrease in spleen weight with the migration of typical inflammatory cells in infected mice as a result of decreased inflammatory response. These results reveal that hLF protects against A. actinomycetemcomitans bacteremia, as indicated by rapid bacterial clearance and decreased host proinflammatory mediators.
Collapse
|
14
|
Hoelzer K, Chen Y, Dennis S, Evans P, Pouillot R, Silk BJ, Walls I. New data, strategies, and insights for Listeria monocytogenes dose-response models: summary of an interagency workshop, 2011. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2013; 33:1568-1581. [PMID: 23311571 DOI: 10.1111/risa.12005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Listeria monocytogenes is a leading cause of hospitalization, fetal loss, and death due to foodborne illnesses in the United States. A quantitative assessment of the relative risk of listeriosis associated with the consumption of 23 selected categories of ready-to-eat foods, published by the U.S. Department of Health and Human Services and the U.S. Department of Agriculture in 2003, has been instrumental in identifying the food products and practices that pose the greatest listeriosis risk and has guided the evaluation of potential intervention strategies. Dose-response models, which quantify the relationship between an exposure dose and the probability of adverse health outcomes, were essential components of the risk assessment. However, because of data gaps and limitations in the available data and modeling approaches, considerable uncertainty existed. Since publication of the risk assessment, new data have become available for modeling L. monocytogenes dose-response. At the same time, recent advances in the understanding of L. monocytogenes pathophysiology and strain diversity have warranted a critical reevaluation of the published dose-response models. To discuss strategies for modeling L. monocytogenes dose-response, the Interagency Risk Assessment Consortium (IRAC) and the Joint Institute for Food Safety and Applied Nutrition (JIFSAN) held a scientific workshop in 2011 (details available at http://foodrisk.org/irac/events/). The main findings of the workshop and the most current and relevant data identified during the workshop are summarized and presented in the context of L. monocytogenes dose-response. This article also discusses new insights on dose-response modeling for L. monocytogenes and research opportunities to meet future needs.
Collapse
Affiliation(s)
- K Hoelzer
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Hoelzer K, Pouillot R, Dennis S. Animal models of listeriosis: a comparative review of the current state of the art and lessons learned. Vet Res 2012; 43:18. [PMID: 22417207 PMCID: PMC3384455 DOI: 10.1186/1297-9716-43-18] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/14/2012] [Indexed: 12/13/2022] Open
Abstract
Listeriosis is a leading cause of hospitalization and death due to foodborne illness in the industrialized world. Animal models have played fundamental roles in elucidating the pathophysiology and immunology of listeriosis, and will almost certainly continue to be integral components of the research on listeriosis. Data derived from animal studies helped for example characterize the importance of cell-mediated immunity in controlling infection, allowed evaluation of chemotherapeutic treatments for listeriosis, and contributed to quantitative assessments of the public health risk associated with L. monocytogenes contaminated food commodities. Nonetheless, a number of pivotal questions remain unresolved, including dose-response relationships, which represent essential components of risk assessments. Newly emerging data about species-specific differences have recently raised concern about the validity of most traditional animal models of listeriosis. However, considerable uncertainty about the best choice of animal model remains. Here we review the available data on traditional and potential new animal models to summarize currently recognized strengths and limitations of each model. This knowledge is instrumental for devising future studies and for interpreting current data. We deliberately chose a historical, comparative and cross-disciplinary approach, striving to reveal clues that may help predict the ultimate value of each animal model in spite of incomplete data.
Collapse
Affiliation(s)
- Karin Hoelzer
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5100 Paint Branch Parkway, College Park, MD 20707, USA
| | - Régis Pouillot
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5100 Paint Branch Parkway, College Park, MD 20707, USA
| | - Sherri Dennis
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition, 5100 Paint Branch Parkway, College Park, MD 20707, USA
| |
Collapse
|
16
|
García-Montoya IA, Cendón TS, Arévalo-Gallegos S, Rascón-Cruz Q. Lactoferrin a multiple bioactive protein: an overview. Biochim Biophys Acta Gen Subj 2012; 1820:226-36. [PMID: 21726601 PMCID: PMC7127262 DOI: 10.1016/j.bbagen.2011.06.018] [Citation(s) in RCA: 288] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 12/16/2022]
Abstract
BACKGROUND Lactoferrin (Lf) is an 80kDa iron-binding glycoprotein of the transferrin family. It is abundant in milk and in most biological fluids and is a cell-secreted molecule that bridges innate and adaptive immune function in mammals. Its protective effects range from anticancer, anti-inflammatory and immune modulator activities to antimicrobial activities against a large number of microorganisms. This wide range of activities is made possible by mechanisms of action involving not only the capacity of Lf to bind iron but also interactions of Lf with molecular and cellular components of both hosts and pathogens. SCOPE OF REVIEW This review summarizes the activities of Lf, its regulation and potential applications. MAJOR CONCLUSIONS The extensive uses of Lf in the treatment of various infectious diseases in animals and humans has been the driving force in Lf research however, a lot of work is required to obtain a better understanding of its activity. GENERAL SIGNIFICANCE The large potential applications of Lf have led scientists to develop this nutraceutical protein for use in feed, food and pharmaceutical applications. This article is part of a Special Issue entitled Molecular Mechanisms of Iron Transport and Disorders.
Collapse
Affiliation(s)
- Isui Abril García-Montoya
- Laboratorio de Biotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito 1, Nuevo Campus Universitario, CP 31125, Chihuahua, Mexico
| | | | | | | |
Collapse
|
17
|
Brouwer CPJM, Rahman M, Welling MM. Discovery and development of a synthetic peptide derived from lactoferrin for clinical use. Peptides 2011; 32:1953-63. [PMID: 21827807 DOI: 10.1016/j.peptides.2011.07.017] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 07/22/2011] [Accepted: 07/22/2011] [Indexed: 01/11/2023]
Abstract
There is an urgent need to develop new antimicrobial drugs especially for combating the rise of infections caused by multi-resistant pathogens such as MRSA and VRSA. The problem of antibiotic resistant micro-organisms is expected to increase disproportionally and controlling of infections is becoming difficult because of the rapid spread of those micro-organisms. Primary therapy with classical antibiotics is becoming more ineffective. Combinational therapy of antibiotics with antimicrobial peptides (AMP's) has been suggested as an alternative approach to improve treatment outcome. Their unique mechanism of action and safety profile makes AMP's appealing candidates for simultaneous or sequential use in different cases of infections. In this review, for antimicrobial treatment the application of synthetic antimicrobial peptide hLF(1-11), derived from the first 11 amino acids of human lactoferrin is evaluated in both pre-clinical and clinical settings. Present information indicates that this derivate from lactoferrin is well tolerated in pre-clinical tests and clinical trials and thus hLF(1-11) is an interesting candidate for further exploration in various clinical indications of obscure infections, including meningitis. Another approach of using AMP's is their use in prevention of infections e.g. as coating for dental or bone implants or in biosensing applications or useful as infection specific radiopharmaceutical.
Collapse
Affiliation(s)
- Carlo P J M Brouwer
- Department of Radiology, Section of Nuclear Medicine, Leiden University Medical Center, Room C4-R-77, Leiden, The Netherlands
| | | | | |
Collapse
|
18
|
Lactoferrin increases both resistance to Salmonella typhimurium infection and the production of antibodies in mice. Immunol Lett 2010; 134:35-46. [PMID: 20727369 DOI: 10.1016/j.imlet.2010.08.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2009] [Revised: 07/16/2010] [Accepted: 08/10/2010] [Indexed: 02/06/2023]
Abstract
Lactoferrin (Lf) is a multifunctional iron-binding glycoprotein with antibacterial and immunomodulatory activities. The antibacterial influence of orally administered bovine Lf (bLf) against murine infection caused by Salmonella typhimurium (S. typhimurium) has scarcely been explored. In the current study, Balb/c mice were treated orally for 7 days with either 5 or 100mg of bovine lactoferrin (bLf). On day 7 of treatment, mice were intragastrically infected with a lethal or sublethal dose of colony forming units (CFU) of S. typhimurium. During treatment with bLf, feces from mice sublethally infected were harvested daily to prepare fecal suspensions, which were serially diluted and plated onto Salmonella Shigella agar to estimate CFU/g of feces. After sacrificing the animals on day 7, 14 or 21 post-infection, samples of intestinal fluid, Peyer's patches (PP), liver and spleen were collected to count the number of CFU by plate dilution. Intestinal secretions were also employed, along with serum samples, to evaluate total IgA, IgG and IgM antibodies, and those against Salmonella surface proteins and bLf by ELISA assay. In lethally infected mice both bLf doses decreased mortality. In sublethally infected mice, both bLf doses decreased bacterial shedding in feces and intestinal fluid, and also reduced bacterial colonization at PP and bacterial translocation in the liver and spleen. Levels of total and those IgG and IgM in serum and IgA in intestinal secretions against Salmonella surface proteins and bLf were enhanced with both doses of bLf. These findings suggest that the effect of bLf against the infection by S. typhimurium in mice may be the result of an antimicrobial activity linked with its modulatory effect on immunocompetent cells (from intestinal and peripheral organs) involved in antibody production.
Collapse
|
19
|
Wu WZ, Wang XQ, Wu GY, Kim SW, Chen F, Wang JJ. Differential composition of proteomes in sow colostrum and milk from anterior and posterior mammary glands. J Anim Sci 2010; 88:2657-64. [PMID: 20418458 DOI: 10.2527/jas.2010-2972] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Piglets obtaining milk from anterior and middle mammary glands (MG) grow faster than those suckling posterior MG, but the underlying mechanisms are not clear. The purpose of this study was to investigate the differential proteomes of colostrum and milk secreted by anterior and posterior MG. Six healthy primiparous sows with 7 pairs of MG were used; the first and the second pairs were defined as anterior MG and the sixth and seventh pairs as posterior MG. Colostrum and milk were collected at d 1 and 14 after parturition, respectively. Comparative proteomics analysis was performed to identify the differentially expressed proteins in colostrum and milk secreted by anterior and posterior MG. Results show that protein composition in colostrum and milk varied markedly with the anatomical location of MG. Immunoglobulins, lactadherin, and haptoglobin were upregulated (P < 0.05) in colostrum from anterior MG compared with posterior MG. Concentrations of immunoglobulins and lactoferrin in milk from anterior MG were greater (P < 0.05) than milk from posterior MG. Moreover, concentration of proteins from somatic cells was greater (P < 0.05) in milk from posterior MG compared with anterior MG. Most proteins, in which abundance was upregulated in colostrum and milk from anterior MG, contribute to passive immunity, intestinal development of suckling piglets and epithelial integrity, and the health of MG. Collectively, these results indicate that in comparison with posterior MG, anterior MG are more active in protein synthesis and produce more immunoglobulins and lactoferrin in colostrum and milk.
Collapse
Affiliation(s)
- W Z Wu
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China 100193
| | | | | | | | | | | |
Collapse
|
20
|
A transferrin-like homolog in amphioxus Branchiostoma belcheri: Identification, expression and functional characterization. Mol Immunol 2009; 46:3117-24. [DOI: 10.1016/j.molimm.2009.06.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 05/22/2009] [Accepted: 06/03/2009] [Indexed: 12/12/2022]
|
21
|
Mazumdar K, Dastidar SG, Park JH, Dutta NK. The anti-inflammatory non-antibiotic helper compound diclofenac: an antibacterial drug target. Eur J Clin Microbiol Infect Dis 2009; 28:881-91. [PMID: 19399540 DOI: 10.1007/s10096-009-0739-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2009] [Accepted: 03/24/2009] [Indexed: 11/26/2022]
Abstract
Diclofenac sodium (Dc) was found to possess antibacterial activity against both drug-sensitive and drug-resistant clinical isolates of Staphylococcus aureus, Listeria monocytogenes, Escherichia coli, and Mycobacterium spp., in addition to its potent anti-inflammatory activity. The time-kill curve study indicates that this non-steroidal drug exhibits bactericidal activity against Listeria, E. coli, and M. tuberculosis. The antibacterial activity of Dc comes, in part, from its ability to inhibit the DNA synthesis of E. coli and L. monocytogenes. Dc could protect murine listeriosis, salmonellosis, and tuberculosis at doses ranged within its maximum recommended human or non-toxic ex-vivo dose. Dc possesses anti-plasmid activity and acts as a 'helper compound' in synergistic combination with streptomycin against E. coli and Mycobacterium or gentamicin against Listeria. This review focuses on the possible use of Dc, a non-antibiotic helper compound, in infections and inflammatory conditions, rationalized on the basis of the activities of the compounds.
Collapse
Affiliation(s)
- K Mazumdar
- Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70433, USA
| | | | | | | |
Collapse
|
22
|
Yen CC, Lin CY, Chong KY, Tsai TC, Shen CJ, Lin MF, Su CY, Chen HL, Chen CM. Lactoferrin as a natural regimen for selective decontamination of the digestive tract: recombinant porcine lactoferrin expressed in the milk of transgenic mice protects neonates from pathogenic challenge in the gastrointestinal tract. J Infect Dis 2009; 199:590-8. [PMID: 19125673 DOI: 10.1086/596212] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Nosocomial infection with antibiotic-resistant strains is a major threat to critical care medicine. Selective decontamination of the digestive tract (SDD) is one of the strategies used to reduce ventilator-associated pneumonia and sepsis in critically ill patients. In the present study, we performed pathogenic challenges of the digestive tract in a transgenic milk-fed animal model to test whether porcine lactoferrin (pLF) is an effective SDD regimen. METHODS Transgenic mice expressing recombinant pLF in their milk at a mean+/-SD concentration of 120+/-13.6 mg/L during the lactation stage fed normal CD-1 mice pups for 4 weeks. The pups were subsequently challenged with pathogenic Escherichia coli, Staphylococcus aureus, and Candida albicans. RESULTS Compared with the control groups fed wild-type (normal) milk, the groups fed pLF-enriched milk demonstrated statistically significant improvements in weight gain; lower bacterial numbers in intestinal fluid, blood, and liver; healthier microvilli in the small intestine; and alveoli in the lungs. CONCLUSIONS Our results showed that oral administration of pLF-enriched milk to mice led to broad-spectrum antimicrobial activity in the digestive tract and protected the mucosa of the small intestine from injury, implying that pLF can be used as an effective SDD regimen.
Collapse
Affiliation(s)
- Chih-Ching Yen
- Department of Life Sciences, National Chung Hsing University, China Medical University Hospital, Taichung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
González-Chávez SA, Arévalo-Gallegos S, Rascón-Cruz Q. Lactoferrin: structure, function and applications. Int J Antimicrob Agents 2009; 33:301.e1-8. [DOI: 10.1016/j.ijantimicag.2008.07.020] [Citation(s) in RCA: 390] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Revised: 07/17/2008] [Accepted: 07/21/2008] [Indexed: 12/19/2022]
|
24
|
Rodrigues L, Teixeira J, Schmitt F, Paulsson M, Månsson HL. Lactoferrin and cancer disease prevention. Crit Rev Food Sci Nutr 2009; 49:203-17. [PMID: 19093266 DOI: 10.1080/10408390701856157] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Lactoferrin (LF) is an iron-binding glycoprotein that is composed of the transferrin family and is predominantly found in the products of the exocrine glands located in the gateways of the digestive, respiratory, and reproductive systems, suggesting a role in the non-specific defence against invading pathogens. Additionally, several physiological roles have been attributed to LF, namely regulation of iron homeostasis, host defence against infection and inflammation, regulation of cellular growth, and differentiation and protection against cancer development and metastasis. These findings have suggested LF's great potential therapeutic use in cancer disease prevention and/or treatment, namely as a chemopreventive agent. This review looks at the recent advances in understanding the mechanisms underlying the multifunctional roles of LF and future perspectives on its potential therapeutic applications.
Collapse
Affiliation(s)
- Lígia Rodrigues
- IBB-Institute for Biotechnology and Bioengineering, Centre of Biological Engineering, Campus de Gualtar, 4710-057 Braga, Portugal.
| | | | | | | | | |
Collapse
|
25
|
del Olmo A, Morales P, Nuñez M. Bactericidal effect of lactoferrin and its amidated and pepsin-digested derivatives on Pseudomonas fluorescens: influence of environmental and physiological factors. J Food Prot 2008; 71:2468-74. [PMID: 19244900 DOI: 10.4315/0362-028x-71.12.2468] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The influence of environmental and physiological factors such as substrate composition and inoculum characteristics on the bactericidal activity of bovine lactoferrin (LF) and its amidated and pepsin-digested derivatives against Pseudomonas fluorescens was investigated. Amidated LF (AMILF) exerted the most potent bactericidal activity, with a 5.8-log decrease in P. fluorescens counts, and LF the lowest, with just a 1-log decrease, whereas pepsin-digested LF (PDLF) reduced bacterial counts by 2.7 log, after 1 h at 30 degrees C. Amidation of PDLF increased effectiveness by 1.2 log, whereas pepsin digestion of AMILF decreased effectiveness by 2.8 log. Bactericidal activity of LF and its derivatives was higher in Tris buffer than in phosphate buffer. The bactericidal effect of AMILF and PDLF was enhanced as medium pH was increased from 5.5 to 8.5, whereas LF showed higher activity under acidic or basic conditions than at neutral pH. The presence of cations affected the activity of LF and its derivatives, from a concentration of 10 mM for K+, 1 mM for Na+, and 0.1 mM for Ca2+, Co2+, CU2+, Mg2+, Zn2+, and Fe3+. Bactericidal effectiveness diminished as the bacterial inoculum was increased. Log-phase cultures (10-h incubation) were less sensitive to the bactericidal activity of LF and its derivatives than stationary cultures (20- and 30-h incubation). All these factors should be considered when applications of LF and its derivatives in foods and other complex systems are investigated.
Collapse
Affiliation(s)
- Ana del Olmo
- Departamento de Tecnología de los Alimentos, INIA, Carretera de la Coruña Km 7, Madrid 28040, Spain
| | | | | |
Collapse
|
26
|
Conesa C, Rota MC, Pérez MD, Calvo M, Sánchez L. Antimicrobial activity of recombinant human lactoferrin from Aspergillus awamori, human milk lactoferrin and their hydrolysates. Eur Food Res Technol 2008. [DOI: 10.1007/s00217-008-0924-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Dutta NK, Mazumdar K, Seok SH, Park JH. The anti-inflammatory drug Diclofenac retains anti-listerial activity in vivo. Lett Appl Microbiol 2008; 47:106-11. [PMID: 18643914 DOI: 10.1111/j.1472-765x.2008.02391.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
AIMS The interactions between nonsteroidal anti-inflammatory drugs (NSAID) and Listeria monocytogenes have not been sufficiently documented to date. The aim of this study was to investigate the possible effects of Diclofenac (Dc) in a murine listerial infection model. METHODS AND RESULTS Dc was administered orally at 2.5 mug g(-1) to female albino strain of laboratory mouse (BALB/c) thrice postinfection (1 x 10(8) CFU ml(-1) oral challenge with L. monocytogenes ATCC 51774), which resulted in significantly (P < 0.01) reduced bacterial counts in liver and spleen, decreased (10-fold, P < 0.05) hepatic colonization and necrosis, and caused up-regulation of the expression of inflammatory cytokines (interferon-gamma, interleukin-1beta, tumour necrosis factor-alpha), compared with drug-free control. CONCLUSIONS Dc may be useful as a promising adjuvant to the existing therapies in controlling systemic listerial infection. Further, quantitative structure-activity relationship studies might contribute in manipulating it as a lead compound for the synthesis of new, more effective nonantibiotics, perhaps, devoid of side-effects that could be recommended as a compassionate therapy for listeriosis. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first in vivo study designed to evaluate the antilisterial effect of the NSAID Dc with special emphasis on the immunological mechanism of action of the drug.
Collapse
Affiliation(s)
- N K Dutta
- College of Veterinary Medicine and KRF Zoonotic Disease Priority Research Institute, Seoul National University, Seoul, Korea
| | | | | | | |
Collapse
|
28
|
Brouwer CPJM, Wulferink M, Welling MM. The Pharmacology of Radiolabeled Cationic Antimicrobial Peptides. J Pharm Sci 2008; 97:1633-51. [PMID: 17786940 DOI: 10.1002/jps.21034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Cationic antimicrobial peptides are good candidates for new diagnostics and antimicrobial agents. They can rapidly kill a broad range of microbes and have additional activities that have impact on the quality and effectiveness of innate responses and inflammation. Furthermore, the challenge of bacterial resistance to conventional antibiotics and the unique mode of action of antimicrobial peptides have made such peptides promising candidates for the development of a new class of antibiotics. This review focuses on antimicrobial peptides as a topic for molecular imaging, infection detection, treatment monitoring and additionally, displaying microbicidal activities. A scintigraphic approach to studying the pharmacokinetics of antimicrobial peptides in laboratory animals has been developed. The peptides were labeled with technetium-99m and, after intravenous injection into laboratory animals, scintigraphy allowed real-time, whole body imaging and quantitative biodistribution studies of delivery of the peptides to the various body compartments. Antimicrobial peptides rapidly accumulated at sites of infection but not at sites of sterile inflammation, indicating that radiolabeled cationic antimicrobial peptides could be used for the detection of infected sites. As the number of viable micro-organisms determines the rate of accumulation of these peptides, radiolabeled antimicrobial peptides enabled to determine the efficacy of antibacterial therapy in animals to be monitored as well to quantify the delivery of antimicrobial peptides to the site of infection. The scintigraphic approach provides to be a reliable method for investigating the pharmacokinetics of small cationic antimicrobial peptides in animals and offers perspective for diagnosis of infections, monitoring antimicrobial therapy, and most important, alternative antimicrobial treatment infections with multi-drug resistant micro-organisms in humans.
Collapse
|
29
|
Protective Effect of Milk Peptides: Antibacterial and Antitumor Properties. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 606:271-93. [DOI: 10.1007/978-0-387-74087-4_11] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|