1
|
Chen L, Zhang L, Li Y, Qiao L, Kumar S. Screening of promising molecules against potential drug targets in Yersinia pestis by integrative pan and subtractive genomics, docking and simulation approach. Arch Microbiol 2024; 206:415. [PMID: 39320535 DOI: 10.1007/s00203-024-04140-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/02/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024]
Abstract
This study focuses on Yersinia pestis, the bacterium responsible for plague, which posed a severe threat to public health in history. Despite the availability of antibiotics treatment, the emergence of antibiotic resistance in this pathogen has increased challenges of controlling the infections and plague outbreaks. The development of new drug targets and therapies is urgently needed. This research aims to identify novel protein targets from 28 Y. pestis strains by the integrative pan-genomic and subtractive genomics approach. Additionally, it seeks to screen out potential safe and effective alternative therapies against these targets via high-throughput virtual screening. Targets should lack homology to human, gut microbiota, and known human 'anti-targets', while should exhibit essentiality for pathogen's survival and virulence, druggability, antibiotic resistance, and broad spectrum across multiple pathogenic bacteria. We identified two promising targets: the aminotransferase class I/class II domain-containing protein and 3-oxoacyl-[acyl-carrier-protein] synthase 2. These proteins were modeled using AlphaFold2, validated through several structural analyses, and were subjected to molecular docking and ADMET analysis. Molecular dynamics simulations determined the stability of the ligand-target complexes, providing potential therapeutic options against Y. pestis.
Collapse
Affiliation(s)
- Lei Chen
- Jiangsu Vocational College of Medicine, Yancheng, China
- School of Graduate Studies, Management and Science University, Shah Alam, Malaysia
| | - Lihu Zhang
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Yanping Li
- Jiangsu Vocational College of Medicine, Yancheng, China
| | - Liang Qiao
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Suresh Kumar
- Faculty of Health and Life Sciences, Management and Science University, University Drive, Off Persiaran Olahraga, 40100, Shah Alam, Selangor, Malaysia.
| |
Collapse
|
2
|
Lyu D, Duan Q, Duan R, Qin S, Zheng X, Lu X, Bukai A, Zhang P, Han H, He Z, Sha H, Wu D, Xiao M, Jing H, Wang X. Symbiosis of a lytic bacteriophage and Yersinia pestis and characteristics of plague in Marmota himalayana. Appl Environ Microbiol 2024; 90:e0099524. [PMID: 39023266 PMCID: PMC11337824 DOI: 10.1128/aem.00995-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
Surveillance for animal plague was conducted in the Marmota himalayana plague focus of the Qinghai-Tibet Plateau from 2020 to 2023. A 22.89% positive rate of serum F1 antibody was detected in live-caught marmots, alongside a 43.40% incidence of Yersinia pestis isolation from marmot carcasses. Marmot carcasses infected with plague exhibited a significantly higher spleen-somatic index (P < 0.05). Twenty-one Y. pestis-specific phages were isolated, among which one Y. pestis lytic phage (AKS2022HT87GU_phi) was isolated from the bone marrow of a marmot carcass (no. AKS2022HT87) and was found to be symbiotic with Y. pestis. Microscopy revealed the coexistence of lysed and non-lysed colonies of Y. pestis AKS2022HT87. Genome-wide analysis showed that certain strains of the Y. pestis AKS2022HT87 carried phage DNA fragments consistent with phage AKS2022HT87GU_phi. The rare symbiotic relationship between a lytic phage and Y. pestis observed in vitro was highlighted in this study, laying the basis for further exploring the relationship between Y. pestis and its bacteriophages.IMPORTANCEBacteriophages and host bacteria commonly coexist in vivo or in soil environments through complex and interdependent microbial interactions. However, recapitulating this symbiotic state remains challenging in vitro due to limited medium nutrients. In this work, the natural symbiosis between Yersinia pestis and specific phages has been discovered in a Marmota himalayana specimen. Epidemiological analysis presented the characteristics of the Y. pestis and specific phages in the area with a strong plague epidemic. Crucially, comparative genomics has been conducted to analyze the genetic changes in both the Y. pestis and phages over different periods, revealing the dynamic and evolving nature of their symbiosis. These are the critical steps to study the mechanism of the symbiosis.
Collapse
Affiliation(s)
- Dongyue Lyu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qun Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ran Duan
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Shuai Qin
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaojin Zheng
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, Gansu, China
| | - Xinmin Lu
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, Gansu, China
| | - Asaiti Bukai
- Akesai Kazakh Autonomous County Center for Disease Control and Prevention, Jiuquan, Gansu, China
| | - Peng Zhang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haonan Han
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaokai He
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hanyu Sha
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Di Wu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meng Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Huaiqi Jing
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
3
|
Velappan N, Biryukov SS, Rill NO, Klimko CP, Rosario-Acevedo R, Shoe JL, Hunter M, Dankmeyer JL, Fetterer DP, Bedinger D, Phipps ME, Watt AJ, Abergel RJ, Dichosa A, Kozimor SA, Cote CK, Lillo AM. Characterization of two affinity matured Anti-Yersinia pestis F1 human antibodies with medical countermeasure potential. PLoS One 2024; 19:e0305034. [PMID: 38954719 PMCID: PMC11218954 DOI: 10.1371/journal.pone.0305034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
Yersinia pestis, the causative agent of plague and a biological threat agent, presents an urgent need for novel medical countermeasures due to documented cases of naturally acquired antibiotic resistance and potential person-to-person spread during a pneumonic infection. Immunotherapy has been proposed as a way to circumvent current and future antibiotic resistance. Here, we describe the development and characterization of two affinity matured human antibodies (αF1Ig AM2 and αF1Ig AM8) that promote survival of mice after exposure to aerosolized Y. pestis. We share details of the error prone PCR and yeast display technology-based affinity maturation process that we used. The resultant matured antibodies have nanomolar affinity for Y. pestis F1 antigen, are produced in high yield, and are resilient to 37°C stress for up to 6 months. Importantly, in vitro assays using a murine macrophage cell line demonstrated that αF1Ig AM2 and αF1Ig AM8 are opsonic. Even more importantly, in vivo studies using pneumonic plague mouse models showed that 100% of the mice receiving 500 μg of IgGs αF1Ig AM2 and αF1Ig AM8 survived lethal challenge with aerosolized Y. pestis CO92. Combined, these results provide evidence of the quality and robustness of αF1Ig AM2 and αF1Ig AM8 and support their development as potential medical countermeasures against plague.
Collapse
Affiliation(s)
- Nileena Velappan
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Sergei S. Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Nathaniel O. Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Christopher P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Raysa Rosario-Acevedo
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Jennifer L. Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - David P. Fetterer
- Biostatisitics Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | | | - Mary E. Phipps
- Los Alamos National Laboratory, Center Alamos for Integrated Nanotechnologies, Los Alamos, NM, United States of America
| | - Austin J. Watt
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Rebecca J. Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, United States of America
- Department of Nuclear Engineering, University of California, Berkeley, CA, United States of America
| | - Armand Dichosa
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Stosh A. Kozimor
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States of America
| | - Antonietta M. Lillo
- Biosciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States of America
| |
Collapse
|
4
|
Hartley L, Harold S, Hawe E. The efficacy, safety, and immunogenicity of plague vaccines: A systematic literature review. CURRENT RESEARCH IN IMMUNOLOGY 2023; 4:100072. [PMID: 37954941 PMCID: PMC10637890 DOI: 10.1016/j.crimmu.2023.100072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/25/2023] [Accepted: 09/29/2023] [Indexed: 11/14/2023] Open
Abstract
Plague remains endemic in many parts of the world, and despite efforts, no preventative vaccine is available. We performed a systemic review of available randomised controlled trials (RCTs) of live, attenuated, or killed plague vaccines vs. placebo, no intervention, or other plague vaccine to evaluate their efficacy, safety, and immunogenicity. Data sources included MEDLINE, Embase, and the Cochrane Library; clinical trial registers; and reference lists of included studies. Primary outcomes were efficacy, safety, and immunogenicity. Risk of bias was assessed using the Cochrane Collaborations tool. Only 2 RCTs, both on subunit vaccines, were included out of the 75 screened articles. The 2 trials included 240 participants with a follow-up of 3 months and 60 participants with a follow-up of 13 months, respectively. Safety evidence was limited, but both vaccines were well tolerated, with only mild to moderate adverse events. Both vaccines were immunogenic in a dose-dependent manner. However, given the limited data identified in this systematic review, we are unable to quantify the efficacy of vaccines to prevent plague, as well as their long-term safety and immunogenicity. More trials of plague vaccines are needed to generate additional evidence of their long-term effects.
Collapse
Affiliation(s)
- Louise Hartley
- RTI Health Solutions, The Pavilion, Towers Business Park, Wilmslow Road, Didsbury, Manchester, M20 2LS, UK
| | - Sydney Harold
- RTI Health Solutions, The Pavilion, Towers Business Park, Wilmslow Road, Didsbury, Manchester, M20 2LS, UK
| | - Emma Hawe
- RTI Health Solutions, The Pavilion, Towers Business Park, Wilmslow Road, Didsbury, Manchester, M20 2LS, UK
| |
Collapse
|
5
|
Ali H, Samad A, Ajmal A, Ali A, Ali I, Danial M, Kamal M, Ullah M, Ullah R, Kalim M. Identification of Drug Targets and Their Inhibitors in Yersinia pestis Strain 91001 through Subtractive Genomics, Machine Learning, and MD Simulation Approaches. Pharmaceuticals (Basel) 2023; 16:1124. [PMID: 37631039 PMCID: PMC10459760 DOI: 10.3390/ph16081124] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/27/2023] Open
Abstract
Yersinia pestis, the causative agent of plague, is a Gram-negative bacterium. If the plague is not properly treated it can cause rapid death of the host. Bubonic, pneumonic, and septicemic are the three types of plague described. Bubonic plague can progress to septicemic plague, if not diagnosed and treated on time. The mortality rate of pneumonic and septicemic plague is quite high. The symptom-defining disease is the bubo, which is a painful lymph node swelling. Almost 50% of bubonic plague leads to sepsis and death if not treated immediately with antibiotics. The host immune response is slow as compared to other bacterial infections. Clinical isolates of Yersinia pestis revealed resistance to many antibiotics such as tetracycline, spectinomycin, kanamycin, streptomycin, minocycline, chloramphenicol, and sulfonamides. Drug discovery is a time-consuming process. It always takes ten to fifteen years to bring a single drug to the market. In this regard, in silico subtractive proteomics is an accurate, rapid, and cost-effective approach for the discovery of drug targets. An ideal drug target must be essential to the pathogen's survival and must be absent in the host. Machine learning approaches are more accurate as compared to traditional virtual screening. In this study, k-nearest neighbor (kNN) and support vector machine (SVM) were used to predict the active hits against the beta-ketoacyl-ACP synthase III drug target predicted by the subtractive genomics approach. Among the 1012 compounds of the South African Natural Products database, 11 hits were predicted as active. Further, the active hits were docked against the active site of beta-ketoacyl-ACP synthase III. Out of the total 11 active hits, the 3 lowest docking score hits that showed strong interaction with the drug target were shortlisted along with the standard drug and were simulated for 100 ns. The MD simulation revealed that all the shortlisted compounds display stable behavior and the compounds formed stable complexes with the drug target. These compounds may have the potential to inhibit the beta-ketoacyl-ACP synthase III drug target and can help to combat Yersinia pestis-related infections. The dataset and the source codes are freely available on GitHub.
Collapse
Affiliation(s)
- Hamid Ali
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad 44000, Pakistan
| | - Abdus Samad
- Department of Biochemistry, Abdul Wali Khan University, Mardan 23200, Pakistan; (A.S.); (A.A.); (M.D.); (M.K.)
| | - Amar Ajmal
- Department of Biochemistry, Abdul Wali Khan University, Mardan 23200, Pakistan; (A.S.); (A.A.); (M.D.); (M.K.)
| | - Amjad Ali
- Faculty of Biological Sciences, Department of Biochemistry, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Ijaz Ali
- Centre for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, Hawally 32093, Kuwait;
| | - Muhammad Danial
- Department of Biochemistry, Abdul Wali Khan University, Mardan 23200, Pakistan; (A.S.); (A.A.); (M.D.); (M.K.)
| | - Masroor Kamal
- Department of Biochemistry, Abdul Wali Khan University, Mardan 23200, Pakistan; (A.S.); (A.A.); (M.D.); (M.K.)
| | - Midrar Ullah
- Department of Biotechnology, Shaheed Benazir Bhutto University Sheringal, Dir Upper 18050, Pakistan;
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy King Saud University, Riyadh 11451, Saudi Arabia;
| | - Muhammad Kalim
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA;
- Houston Methodist Cancer Center/Weill Cornel Medicine, Houston, TX 77030, USA
| |
Collapse
|
6
|
Xiao L, Qi Z, Song K, Lv R, Chen R, Zhao H, Wu H, Li C, Xin Y, Jin Y, Li X, Xu X, Tan Y, Du Z, Cui Y, Zhang X, Yang R, Zhao X, Song Y. Interplays of mutations in waaA, cmk, and ail contribute to phage resistance in Yersinia pestis. Front Cell Infect Microbiol 2023; 13:1174510. [PMID: 37305418 PMCID: PMC10254400 DOI: 10.3389/fcimb.2023.1174510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/04/2023] [Indexed: 06/13/2023] Open
Abstract
Plague caused by Yersinia pestis remains a public health threat worldwide. Because multidrug-resistant Y. pestis strains have been found in both humans and animals, phage therapy has attracted increasing attention as an alternative strategy against plague. However, phage resistance is a potential drawback of phage therapies, and the mechanism of phage resistance in Y. pestis is yet to be investigated. In this study, we obtained a bacteriophage-resistant strain of Y. pestis (S56) by continuously challenging Y. pestis 614F with the bacteriophage Yep-phi. Genome analysis identified three mutations in strain S56: waaA* (9-bp in-frame deletion 249GTCATCGTG257), cmk* (10-bp frameshift deletion 15CCGGTGATAA24), and ail* (1-bp frameshift deletion A538). WaaA (3-deoxy-D-manno-octulosonic acid transferase) is a key enzyme in lipopolysaccharide biosynthesis. The waaA* mutation leads to decreased phage adsorption because of the failure to synthesize the lipopolysaccharide core. The mutation in cmk (encoding cytidine monophosphate kinase) increased phage resistance, independent of phage adsorption, and caused in vitro growth defects in Y. pestis. The mutation in ail inhibited phage adsorption while restoring the growth of the waaA null mutant and accelerating the growth of the cmk null mutant. Our results confirmed that mutations in the WaaA-Cmk-Ail cascade in Y. pestis contribute to resistance against bacteriophage. Our findings help in understanding the interactions between Y. pestis and its phages.
Collapse
Affiliation(s)
- Lisheng Xiao
- Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
- School of Basic Medicine, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Zhizhen Qi
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Kai Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Ruichen Lv
- Hua Dong Research Institute for Medicine and Biotechniques, Nanjing, China
| | - Rong Chen
- Department of Laboratory Medicine, First Medical Center of Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
| | - Haihong Zhao
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Hailian Wu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Cunxiang Li
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Youquan Xin
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Yong Jin
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Xiang Li
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Xiaoqing Xu
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
| | - Xuefei Zhang
- Qinghai Institute for Endemic Disease Prevention and Control, Xining, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| | - Xilin Zhao
- Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yajun Song
- School of Basic Medicine, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Academy of Military Medical Sciences (AMMS), Beijing, China
- National Health Commission - Qinghai Co-construction Key Laboratory for Plague Control, Xining, China
| |
Collapse
|
7
|
Carboxylated Cellulose Nanocrystals Decorated with Varying Molecular Weights of Poly(diallyldimethylammonium chloride) as Sustainable Antibacterial Agents. Polymers (Basel) 2023; 15:polym15040865. [PMID: 36850150 PMCID: PMC9966959 DOI: 10.3390/polym15040865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/18/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Cationic nanomaterials are promising candidates for the development of effective antibacterial agents by taking advantage of the nanoscale effects as well as other exceptional physicochemical properties of nanomaterials. In this study, carboxylated cellulose nanocrystals (cCNCs) derived from softwood pulp were coated with cationic poly(diallyldimethylammonium chloride) of varying molecular weights. The resulting cationic carboxylated cellulose nanocrystals coated with poly(diallyldimethylammonium chloride) (cCNCs-PDDA) nanomaterials were characterized for their structural and morphological properties using Fourier transform infrared spectroscopy, dynamic light scattering, zeta potential, elemental analysis, transmission electron microscopy, and thermogravimetric analysis. Cationic cCNCs-PDDA were investigated for their antibacterial properties against Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli 23934 and Pseudomonas aeruginosa using a bacterial lawn growth inhibition assay. cCNC-PDDA materials displayed marked antibacterial activity, particularly against Gram-positive Staphylococcus aureus. Overall, our results indicated that cCNCs-PDDA could be a potential candidate for antibacterial applications such as antibacterial surfaces or coatings.
Collapse
|
8
|
Li J, Gao J, Feng B, Jing Y. PlagueKD: a knowledge graph-based plague knowledge database. Database (Oxford) 2022; 2022:baac100. [PMID: 36412326 PMCID: PMC10161524 DOI: 10.1093/database/baac100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/17/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
Abstract
Plague has been confirmed as an extremely horrific international quarantine infectious disease attributed to Yersinia pestis. It has an extraordinarily high lethal rate that poses a serious hazard to human and animal lives. With the deepening of research, there has been a considerable amount of literature related to the plague that has never been systematically integrated. Indeed, it makes researchers time-consuming and laborious when they conduct some investigation. Accordingly, integrating and excavating plague-related knowledge from considerable literature takes on a critical significance. Moreover, a comprehensive plague knowledge base should be urgently built. To solve the above issues, the plague knowledge base is built for the first time. A database is built from the literature mining based on knowledge graph, which is capable of storing, retrieving, managing and accessing data. First, 5388 plague-related abstracts that were obtained automatically from PubMed are integrated, and plague entity dictionary and ontology knowledge base are constructed by using text mining technology. Second, the scattered plague-related knowledge is correlated through knowledge graph technology. A multifactor correlation knowledge graph centered on plague is formed, which contains 9633 nodes of 33 types (e.g. disease, gene, protein, species, symptom, treatment and geographic location), as well as 9466 association relations (e.g. disease-gene, gene-protein and disease-species). The Neo4j graph database is adopted to store and manage the relational data in the form of triple. Lastly, a plague knowledge base is built, which can successfully manage and visualize a large amount of structured plague-related data. This knowledge base almost provides an integrated and comprehensive plague-related knowledge. It should not only help researchers to better understand the complex pathogenesis and potential therapeutic approaches of plague but also take on a key significance to reference for exploring potential action mechanisms of corresponding drug candidates and the development of vaccine in the future. Furthermore, it is of great significance to promote the field of plague research. Researchers are enabled to acquire data more easily for more effective research. Database URL: http://39.104.28.169:18095/.
Collapse
Affiliation(s)
- Jin Li
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Erdos East Street No. 29, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Jing Gao
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Erdos East Street No. 29, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Baiyang Feng
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Erdos East Street No. 29, Hohhot 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application of Agriculture and Animal Husbandry, Hohhot, Inner Mongolia Autonomous Region 010018, China
| | - Yi Jing
- Faculty of Science, University of New South Wales, Sydney, New Sales Wales 2020, Australia
| |
Collapse
|
9
|
Khan N, Sasmal A, Khedri Z, Secrest P, Verhagen A, Srivastava S, Varki N, Chen X, Yu H, Beddoe T, Paton AW, Paton JC, Varki A. Sialoglycan binding patterns of bacterial AB5 toxin B subunits correlate with host range and toxicity, indicating evolution independent of A subunits. J Biol Chem 2022; 298:101900. [PMID: 35398357 PMCID: PMC9120245 DOI: 10.1016/j.jbc.2022.101900] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 12/17/2022] Open
Abstract
Many pathogenic bacteria secrete AB5 toxins that can be virulence factors. Cytotoxic A subunits are delivered to the cytosol following B subunit binding to specific host cell surface glycans. Some B subunits are not associated with A subunits, for example, YpeB of Yersinia pestis, the etiologic agent of plague. Plague cannot be eradicated because of Y. pestis' adaptability to numerous hosts. We previously showed selective binding of other B5 pentamers to a sialoglycan microarray, with sialic acid (Sia) preferences corresponding to those prominently expressed by various hosts, for example, N-acetylneuraminic acid (Neu5Ac; prominent in humans) or N-glycolylneuraminic acid (Neu5Gc; prominent in ruminant mammals and rodents). Here, we report that A subunit phylogeny evolved independently of B subunits and suggest a future B subunit nomenclature based on bacterial species names. We also found via phylogenetic analysis of B subunits, which bind Sias, that homologous molecules show poor correlation with species phylogeny. These data indicate ongoing lateral gene transfers between species, including mixing of A and B subunits. Consistent with much broader host range of Y. pestis, we show that YpeB recognizes all mammalian Sia types, except for 4-O-acetylated ones. Notably, YpeB alone causes dose-dependent cytotoxicity, which is abolished by a mutation (Y77F) eliminating Sia recognition, suggesting that cell proliferation and death are promoted via lectin-like crosslinking of cell surface sialoglycoconjugates. These findings help explain the host range of Y. pestis and could be important for pathogenesis. Overall, our data indicate ongoing rapid evolution of both host Sias and pathogen toxin-binding properties.
Collapse
|
10
|
Lei C, Kumar S. Yersinia pestis antibiotic resistance: a systematic review. Osong Public Health Res Perspect 2022; 13:24-36. [PMID: 35255676 PMCID: PMC8907612 DOI: 10.24171/j.phrp.2021.0288] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Abstract
Yersinia pestis, the cause of plague and a potential biological weapon, has always been a threatening pathogen. Some strains of Y. pestis have varying degrees of antibiotic resistance. Thus, this systematic review was conducted to alert clinicians to this pathogen’s potential antimicrobial resistance. A review of the literature was conducted for experimental reports and systematic reviews on the topics of plague, Y. pestis, and antibiotic resistance. From 1995 to 2021, 7 Y. pestis isolates with 4 antibiotic resistance mechanisms were reported. In Y. pestis 17/95, 16/95, and 2180H, resistance was mediated by transferable plasmids. Each plasmid contained resistance genes encoded within specific transposons. Strain 17/95 presented multiple drug resistance, since plasmid 1202 contained 10 resistance determinants. Strains 16/95 and 2180H showed single antibiotic resistance because both additional plasmids in these strains carried only 1 antimicrobial determinant. Strains 12/87, S19960127, 56/13, and 59/13 exhibited streptomycin resistance due to an rpsl gene mutation, a novel mechanism that was discovered recently. Y. pestis can acquire antibiotic resistance in nature not only via conjugative transfer of antimicrobial-resistant plasmids from other bacteria, but also by gene point mutations. Global surveillance should be strengthened to identify antibiotic-resistant Y. pestis strains by whole-genome sequencing and drug susceptibility testing.
Collapse
|
11
|
Ma J, Li K, Gu S. Selective strategies for antibacterial regulation of nanomaterials. RSC Adv 2022; 12:4852-4864. [PMID: 35425473 PMCID: PMC8981418 DOI: 10.1039/d1ra08996j] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
Recalcitrant bacterial infection, as a worldwide challenge, causes large problems for human health and is attracting great attention. The excessive antibiotic-dependent treatment of infections is prone to induce antibiotic resistance. A variety of unique nanomaterials provide an excellent toolkit for killing bacteria and preventing drug resistance. It is of great importance to summarize the design rules of nanomaterials for inhibiting the growth of pathogenic bacteria. We completed a review involving the strategies for regulating antibacterial nanomaterials. First, we discuss the antibacterial manipulation of nanomaterials, including the interaction between the nanomaterial and the bacteria, the damage of the bacterial structure, and the inactivation of biomolecules. Next, we identify six main factors for controlling the antibacterial activity of nanomaterials, including their element composition, size dimensions, surface charge, surface topography, shape selection and modification density. Every factor possesses a preferable standard for maximizing antibacterial activity, providing universal rules for antibacterial regulation of nanomaterials. We hope this comprehensive review will help researchers to precisely design and synthesize nanomaterials, developing intelligent antibacterial agents to address bacterial infections.
Collapse
Affiliation(s)
- Jinliang Ma
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University Shanghai 200127 China
| | - Kexin Li
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
| | - Shaobin Gu
- College of Food and Bioengineering, Henan University of Science and Technology Luoyang Henan 471023 China
| |
Collapse
|
12
|
Isolation and Partial Characterization of Salmonella Gallinarum Bacteriophage. Saudi J Biol Sci 2022; 29:3308-3312. [PMID: 35844409 PMCID: PMC9280255 DOI: 10.1016/j.sjbs.2022.02.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 01/15/2023] Open
Abstract
Infections caused by Salmonella remain a major public health problem worldwide. Animal food products, including poultry meat and eggs, are considered essential components in the individual’s daily nutrition. However, chicken continues to be the main reservoir for Salmonella spp. Poultry farmers use several types of antibiotics to treat pathogens. This can pose a health risk as pathogens can build antibiotic resistance in addition to the possibility of accumulation of these antibiotics in food products. The use of phages in treating poultry pathogens is increasing worldwide due to its potential use as an effective alternative to antibiotics. Phages have several advantages over antibiotics; phages are very specific to target bacteria, less chances of developing secondary infections, and they only replicate at the site of infection. Here we report the isolation of a bacteriophage from chicken feces. The isolated bacteriophage hosts on Salmonella Gallinarum, a common zoonotic infection that causes fowl typhoid, known to cause major losses to poultry sector. The isolated bacteriophage was partially characterized as a DNA virus resistant to RNase digestion with approximately 20 Kb genome. SDS-PAGE analysis of total viral proteins showed at least five major bands (21, 28, 42, 55 and 68 kDa), indicating that this virus is relatively small compared to other known poultry phages. The isolated bacteriophage has the potential to be an alternative to antibiotics and possibly reducing antibiotic resistance in poultry farms.
Collapse
|
13
|
Crane SD, Banerjee SK, Pechous RD. Treatment with Fluticasone Propionate Increases Antibiotic Efficacy during Treatment of Late-Stage Primary Pneumonic Plague. Antimicrob Agents Chemother 2022; 66:e0127521. [PMID: 34780267 PMCID: PMC8765263 DOI: 10.1128/aac.01275-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/04/2021] [Indexed: 12/15/2022] Open
Abstract
Severe and late-stage pneumonias are often difficult to treat with antibiotics alone due to overwhelming host inflammatory responses mounted to clear infection. These host responses contribute to pulmonary damage leading to acute lung injury, acute respiratory distress syndrome, and death. In order to effectively treat severe and late-stage pneumonias, use of adjunctive therapies must be considered to reduce pulmonary damage when antimicrobial agents can be administered. Pneumonic plague, a severe pneumonia caused by inhalation of Yersinia pestis, is a fatal disease that causes death within 6 days without antibiotic intervention. Late-stage pneumonic plague is difficult to treat, as antibiotics must be delivered within 24 h after onset of symptoms to be effective. Here, we use a murine model of primary pneumonic plague to examine how host inflammatory responses impact antibiotic treatment of late-stage pneumonic plague. We developed a murine infection model demonstrating the poor outcomes associated with delayed delivery of antibiotics. We show that pretreatment of mice with intranasal fluticasone propionate increased the efficacy of delayed antibiotic delivery and enhanced murine survival. Mice receiving fluticasone propionate also showed decreased bacterial burden and reduced inflammatory pathology in the lungs. Further, we show that treatment and survival correlated with decreased levels of interleukin-6 (IL-6) and reduced neutrophil infiltration to the lungs. This work demonstrates how host inflammatory responses complicate treatment of late-stage pneumonic plague and suggests that targeting of host inflammatory responses may improve treatment of severe, late-stage pneumonia.
Collapse
Affiliation(s)
- Samantha D. Crane
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Srijon K. Banerjee
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Roger D. Pechous
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| |
Collapse
|
14
|
Wang D, Kuzma ML, Tan X, He TC, Dong C, Liu Z, Yang J. Phototherapy and optical waveguides for the treatment of infection. Adv Drug Deliv Rev 2021; 179:114036. [PMID: 34740763 PMCID: PMC8665112 DOI: 10.1016/j.addr.2021.114036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/11/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
With rapid emergence of multi-drug resistant microbes, it is imperative to seek alternative means for infection control. Optical waveguides are an auspicious delivery method for precise administration of phototherapy. Studies have shown that phototherapy is promising in fighting against a myriad of infectious pathogens (i.e. viruses, bacteria, fungi, and protozoa) including biofilm-forming species and drug-resistant strains while evading treatment resistance. When administered via optical waveguides, phototherapy can treat both superficial and deep-tissue infections while minimizing off-site effects that afflict conventional phototherapy and pharmacotherapy. Despite great therapeutic potential, exact mechanisms, materials, and fabrication designs to optimize this promising treatment option are underexplored. This review outlines principles and applications of phototherapy and optical waveguides for infection control. Research advances, challenges, and outlook regarding this delivery system are rigorously discussed in a hope to inspire future developments of optical waveguide-mediated phototherapy for the management of infection and beyond.
Collapse
Affiliation(s)
- Dingbowen Wang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle Laurel Kuzma
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Xinyu Tan
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA; Academy of Orthopedics, Provincial Key Laboratory of Bone and Joint Degenerative Diseases, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province 510280, China
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Orthopaedic Surgery and Rehabilitation Medicine, The University of Chicago Medical Center, Chicago, IL 60637, USA; Department of Surgery, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Cheng Dong
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Zhiwen Liu
- Department of Electrical Engineering, Materials Research Institute, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jian Yang
- Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
15
|
Nelson CA, Meaney-Delman D, Fleck-Derderian S, Cooley KM, Yu PA, Mead PS. Antimicrobial Treatment and Prophylaxis of Plague: Recommendations for Naturally Acquired Infections and Bioterrorism Response. MMWR Recomm Rep 2021; 70:1-27. [PMID: 34264565 PMCID: PMC8312557 DOI: 10.15585/mmwr.rr7003a1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This report provides CDC recommendations to U.S. health care providers regarding treatment, pre-exposure prophylaxis, and postexposure prophylaxis of plague. Yersinia pestis, the bacterium that causes plague, leads to naturally occurring disease in the United States and other regions worldwide and is recognized as a potential bioterrorism weapon. A bioweapon attack with Y. pestis could potentially infect thousands, requiring rapid and informed decision making by clinicians and public health agencies. The U.S. government stockpiles a variety of medical countermeasures to mitigate the effects of a bioterrorism attack (e.g., antimicrobials, antitoxins, and vaccines) for which the 21st Century Cures Act mandates the development of evidence-based guidelines on appropriate use. Guidelines for treatment and postexposure prophylaxis of plague were published in 2000 by a nongovernmental work group; since then, new human clinical data, animal study data, and U.S. Food and Drug Administration approvals of additional countermeasures have become available. To develop a comprehensive set of updated guidelines, CDC conducted a series of systematic literature reviews on human treatment of plague and other relevant topics to collect a broad evidence base for the recommendations in this report. Evidence from CDC reviews and additional sources were presented to subject matter experts during a series of forums. CDC considered individual expert input while developing these guidelines, which provide recommended best practices for treatment and prophylaxis of human plague for both naturally occurring disease and following a bioterrorism attack. The guidelines do not include information on diagnostic testing, triage decisions, or logistics involved in dispensing medical countermeasures. Clinicians and public health officials can use these guidelines to prepare their organizations, hospitals, and communities to respond to a plague mass-casualty event and as a guide for treating patients affected by plague.
Collapse
Affiliation(s)
| | | | | | | | - Patricia A Yu
- National Center for Emerging and Zoonotic Infectious Diseases
- CDC
| | | |
Collapse
|
16
|
Sebbane F, Lemaître N. Antibiotic Therapy of Plague: A Review. Biomolecules 2021; 11:724. [PMID: 34065940 PMCID: PMC8151713 DOI: 10.3390/biom11050724] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Plague-a deadly disease caused by the bacterium Yersinia pestis-is still an international public health concern. There are three main clinical forms: bubonic plague, septicemic plague, and pulmonary plague. In all three forms, the symptoms appear suddenly and progress very rapidly. Early antibiotic therapy is essential for countering the disease. Several classes of antibiotics (e.g., tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, chloramphenicol, rifamycin, and β-lactams) are active in vitro against the majority of Y. pestis strains and have demonstrated efficacy in various animal models. However, some discrepancies have been reported. Hence, health authorities have approved and recommended several drugs for prophylactic or curative use. Only monotherapy is currently recommended; combination therapy has not shown any benefits in preclinical studies or case reports. Concerns about the emergence of multidrug-resistant strains of Y. pestis have led to the development of new classes of antibiotics and other therapeutics (e.g., LpxC inhibitors, cationic peptides, antivirulence drugs, predatory bacteria, phages, immunotherapy, host-directed therapy, and nutritional immunity). It is difficult to know which of the currently available treatments or therapeutics in development will be most effective for a given form of plague. This is due to the lack of standardization in preclinical studies, conflicting data from case reports, and the small number of clinical trials performed to date.
Collapse
Affiliation(s)
- Florent Sebbane
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nadine Lemaître
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
- Laboratoire de Bactériologie-Hygiène, Centre Hospitalier Universitaire Amiens Picardie, UR 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Université de Picardie Jules Verne, F-80000 Amiens, France
| |
Collapse
|
17
|
Shi J, Li J, Wang Y, Cheng J, Zhang CY. Recent advances in MoS 2-based photothermal therapy for cancer and infectious disease treatment. J Mater Chem B 2021; 8:5793-5807. [PMID: 32597915 DOI: 10.1039/d0tb01018a] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Photothermal therapy (PTT) is a treatment combining laser irradiation and a photothermal transduction agent (PTA) to generate hyperthermia, which is used to efficiently and effectively treat cancer and prevent bacteria-induced infectious diseases. MoS2, an increasingly used two-dimensional transition metal dichalcogenide, which shows high absorbance in the near infrared (NIR) laser region, has been extensively utilized as a novel PTA in biomedical applications. The use of MoS2 as an advanced photoabsorbing agent has introduced a more efficient cancer therapy and improved antibacterial efficacy. In this review, we firstly summarize the recent advances in the MoS2-based platform for PTT in cancer and bacteria-induced infectious diseases treatments. We then discuss that the combination of MoS2-based PTT and other biomedical methods along with multimodality imaging, such as chemotherapy, photodynamic therapy (PDT) and immunotherapy, might be a promising strategy for cancer treatment. Furthermore, a new concept is proposed wherein MoS2-based PTT and combined therapies based on this could be more effective for the treatment of various bacteria-induced infectious diseases. Finally, research progress, challenges, and perspectives for the future development of this MoS2-based platform in cancer and bacteria-induced infectious disease treatments are discussed and concluded. Collectively, we think that MoS2-based PTT with high therapeutic efficacy and minimal side-effects could be potentially applied in clinical settings to improve cancer and infectious disease treatments.
Collapse
Affiliation(s)
- Jinping Shi
- Advanced Research Institute for Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China.
| | | | | | | | | |
Collapse
|
18
|
Whole-Genome Assembly of Yersinia pestis 231, the Russian Reference Strain for Testing Plague Vaccine Protection. Microbiol Resour Announc 2021; 10:10/5/e01373-20. [PMID: 33541878 PMCID: PMC7862956 DOI: 10.1128/mra.01373-20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
We report the whole-genome sequence of Yersinia pestis subsp. pestis bv. Antiqua strain 231 belonging to the 0.ANT3 phylogroup, the reference strain for testing plague vaccine protection in Russia. Genome sequencing was completed using the Oxford Nanopore MinION and Illumina platforms. We report the whole-genome sequence of Yersinia pestis subsp. pestis bv. Antiqua strain 231 belonging to the 0.ANT3 phylogroup, the reference strain for testing plague vaccine protection in Russia. Genome sequencing was completed using the Oxford Nanopore MinION and Illumina platforms.
Collapse
|
19
|
Moharkar S, Dhamole PB. Sugaring-out extraction of erythromycin from fermentation broth. KOREAN J CHEM ENG 2021; 38:90-97. [PMID: 33432252 PMCID: PMC7787404 DOI: 10.1007/s11814-020-0680-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 12/27/2022]
Abstract
This study reports the sugaring-out extraction of erythromycin from fermentation broth using acetonitrile (ACN) as solvent and glucose as a mass separating agent. Different process parameters-glucose concentration, temperature, ACN/water ratio and pH-were optimized to achieve maximum extraction of erythromycin. 88% (w/w) of erythromycin was extracted from the model system with following optimized conditions: glucose 156.3 g/L; temperature 4 °C; ACN/water ratio 1 and pH 8.3. Further, the effect of typical fermentation media components (starch, soybean flour, CaCO3, NaCl and (NH4)2SO4) on sugaring out extraction of erythromycin was also investigated. Starch, soybean flour and CaCO3 were observed to affect erythromycin extraction only at higher concentration. Removal of suspended solids from simulated as well as real broth prior to extraction enhanced the extraction efficiency (from 72% to 87%). Sugaring out extraction of erythromycin was found to be more effective than salting out extraction. Also, higher partition coefficient was achieved in the present work than other reported methods using carbohydrates as mass separating agent. Further, it was found that the antimicrobial activity of erythromycin was preserved during sugaring out extraction of erythromycin.
Collapse
Affiliation(s)
- Sharayu Moharkar
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| | - Pradip Babanrao Dhamole
- Department of Chemical Engineering, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, India
| |
Collapse
|
20
|
Zhou H, Guo S. Two cases of imported pneumonic plague in Beijing, China. Medicine (Baltimore) 2020; 99:e22932. [PMID: 33126357 PMCID: PMC7598775 DOI: 10.1097/md.0000000000022932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/18/2020] [Accepted: 09/28/2020] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Plague is an acute, often fulminating infectious disease caused by Yersinia Pestis transmitted by rodents. It is rarely encountered in clinics, although natural plague foci are widely distributed around the world. PATIENT CONCERNS A couple who are cattle and sheep herdsmen from the Inner Mongolia Autonomous Region presented with cough, expectoration and fever. The husband developed sudden onset of fever and bloody sputum after working the soil on his farm. The wife also developed fever after nursing his husband. Both patients were preliminarily diagnosed with severe pneumonia, but antimicrobial treatments in the local hospital were unsuccessful. Their conditions deteriorated and they were transferred to our center. DIAGNOSIS Preliminary etiological examinations were unremarkable, while blood and sputum specimens were found to be positive by RT-PCR and colloidal gold-immunochromatography assay targeting the F1 antigen and by reverse indirect hemagglutination assay. Pneumonic plague was confirmed. INTERVENTIONS Both patients were transferred to special infectious disease hospital for further treatment. OUTCOMES The condition of the female patient deteriorated. The male recovered after treatment, while the female patient finally died. CONCLUSION There are 3 main forms of plague: bubonic, pneumonic and septicemic. Humans can be infected by the bites of bacterium-bearing fleas or direct contact of wild animals that died from plague. Human plague can be transmitted by close contact through coughing droplet. Neglected diagnosis of plague could cause severe consequences. Strict surveillance and protection measures should be taken and the public should be alerted about potential risks when epizootic plague is detected.
Collapse
|
21
|
Guo Z, He J, Mahadevegowda SH, Kho SH, Chan‐Park MB, Liu X. Multifunctional Glyco-Nanosheets to Eradicate Drug-Resistant Bacteria on Wounds. Adv Healthc Mater 2020; 9:e2000265. [PMID: 32319223 DOI: 10.1002/adhm.202000265] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/18/2020] [Indexed: 01/04/2023]
Abstract
Bacterial infection is becoming increasingly lethal with the emergence of antimicrobial resistance, and wounds plagued by such infection are notoriously difficult to heal. Here, the first use of galactose-black phosphorus nanosheets, (Gal-BP NSs) as a delivery platform for synergistic antibiotic (kanamycin, Kana) and photothermal treatments against the Gram-negative microbial strain, Pseudomonas aeruginosa PAO1 (PAO1) is reported. Gal-BP NSs@Kana can actively target PAO1 and release kanamycin into the bacterial cytoplasm upon near-infrared laser irradiation. This strategy kills most of the PAO1 through a simultaneous burst of intracellular kanamycin release and photothermal treatment. Comparable antibacterial activities of Gal-BP NSs@Kana are observed within in vivo mouse models at their wound sites. In addition, this platform accelerates wound healing from PAO1 infection via promotion of neoangiogenesis and collagen production at the wound sites. This work demonstrates the material properties of Gal-BP NS in fighting bacterial infections and in the treatment of wound healing.
Collapse
Affiliation(s)
- Zhong Guo
- School of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Jing‐Xi He
- School of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Surendra H. Mahadevegowda
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Shu Hui Kho
- School of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| | - Mary B. Chan‐Park
- School of Chemical and Biomedical EngineeringNanyang Technological University 62 Nanyang Drive Singapore 637459 Singapore
| | - Xue‐Wei Liu
- School of Physical and Mathematical SciencesNanyang Technological University 21 Nanyang Link Singapore 637371 Singapore
| |
Collapse
|
22
|
Ansari I, Grier G, Byers M. Deliberate release: Plague - A review. JOURNAL OF BIOSAFETY AND BIOSECURITY 2020; 2:10-22. [PMID: 32835180 PMCID: PMC7270574 DOI: 10.1016/j.jobb.2020.02.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 02/11/2020] [Indexed: 01/01/2023] Open
Abstract
Yersinia pestis is the causative agent of plague and is considered one of the most likely pathogens to be used as a bioweapon. In humans, plague is a severe clinical infection that can rapidly progress with a high mortality despite antibiotic therapy. Therefore, early treatment of Y. pestis infection is crucial. This review provides an overview of its clinical manifestations, diagnosis, treatment, prophylaxis, and protection requirements for the use of clinicians. We discuss the likelihood of a deliberate release of plague and the feasibility of obtaining, isolating, culturing, transporting and dispersing plague in the context of an attack aimed at a westernized country. The current threat status and the medical and public health responses are reviewed. We also provide a brief review of the potential prehospital treatment strategy and vaccination against Y. pestis. Further, we discuss the plausibility of antibiotic resistant plague bacterium, F1-negative Y. pestis, and also the possibility of a plague mimic along with potential strategies of defense against these. An extensive literature search on the MEDLINE, EMBASE, and Web of Science databases was conducted to collate papers relevant to plague and its deliberate release. Our review concluded that the deliberate release of plague is feasible but unlikely to occur, and that a robust public health response and early treatment would rapidly halt the transmission of plague in the population. Front-line clinicians should be aware of the potential of a deliberate release of plague and prepared to instigate early isolation of patients. Moreover, front-line clinicians should be weary of the possibility of suicide attackers and mindful of the early escalation to public health organizations.
Collapse
Affiliation(s)
- Issmaeel Ansari
- Queen Mary University of London, Mile End Rd, Bethnal Green, London E1 4NS, United Kingdom.,Barts and The London School of Medicine and Dentistry, 4 Newark St, Whitechapel, London E1 2AT, United Kingdom.,The Institute of Pre-hospital Care, London's Air Ambulance, The Helipad, The Royal London Hospital, Whitechapel, London E1 1BB, United Kingdom
| | - Gareth Grier
- Queen Mary University of London, Mile End Rd, Bethnal Green, London E1 4NS, United Kingdom.,Barts and The London School of Medicine and Dentistry, 4 Newark St, Whitechapel, London E1 2AT, United Kingdom.,The Institute of Pre-hospital Care, London's Air Ambulance, The Helipad, The Royal London Hospital, Whitechapel, London E1 1BB, United Kingdom
| | - Mark Byers
- Queen Mary University of London, Mile End Rd, Bethnal Green, London E1 4NS, United Kingdom.,Barts and The London School of Medicine and Dentistry, 4 Newark St, Whitechapel, London E1 2AT, United Kingdom.,The Institute of Pre-hospital Care, London's Air Ambulance, The Helipad, The Royal London Hospital, Whitechapel, London E1 1BB, United Kingdom
| |
Collapse
|
23
|
Hou K, Tang Z. Powerful Dual Metal-Organic Framework Heterointerface for Wound Healing. ACS CENTRAL SCIENCE 2019; 5:1488-1489. [PMID: 31572773 PMCID: PMC6764155 DOI: 10.1021/acscentsci.9b00837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
|
24
|
Fontana RM, Milano N, Barbara L, Di Vincenzo A, Gallo G, Meo PL. Cyclodextrin‐Calixarene Nanosponges as Potential Platforms for pH‐Dependent Delivery of Tetracycline. ChemistrySelect 2019. [DOI: 10.1002/slct.201902373] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rosa Maria Fontana
- Department of BiologicalChemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of Palermo, V.le delle Scienze pad. 17–90128 Palermo Italy
| | - Nicola Milano
- Department of BiologicalChemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of Palermo, V.le delle Scienze pad. 17–90128 Palermo Italy
| | - Lorenzo Barbara
- Department of BiologicalChemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of Palermo, V.le delle Scienze pad. 17–90128 Palermo Italy
| | - Antonella Di Vincenzo
- Department of BiologicalChemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of Palermo, V.le delle Scienze pad. 17–90128 Palermo Italy
| | - Giuseppe Gallo
- Department of BiologicalChemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of Palermo, V.le delle Scienze pad. 17–90128 Palermo Italy
| | - Paolo Lo Meo
- Department of BiologicalChemical and Pharmaceutical Sciences and Technologies (STEBICEF)University of Palermo, V.le delle Scienze pad. 17–90128 Palermo Italy
| |
Collapse
|
25
|
Ditchburn JL, Hodgkins R. Yersinia pestis, a problem of the past and a re-emerging threat. BIOSAFETY AND HEALTH 2019. [DOI: 10.1016/j.bsheal.2019.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
26
|
Liu X, Yan Z, Zhang Y, Liu Z, Sun Y, Ren J, Qu X. Two-Dimensional Metal-Organic Framework/Enzyme Hybrid Nanocatalyst as a Benign and Self-Activated Cascade Reagent for in Vivo Wound Healing. ACS NANO 2019; 13:5222-5230. [PMID: 31002497 DOI: 10.1021/acsnano.8b09501] [Citation(s) in RCA: 281] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Metal-organic frameworks (MOFs)-based peroxidase mimics have been seldom applied in the biomedical field, especially in vivo. One of the main reasons is their optimum reactions occur in strong acidic environments with a pH of 3-4, severely limiting their applications in living systems where neutral pH is usually required. Other types of peroxidase mimics also suffer such a fatal defect. Additionally, the direct introduction of the relatively high concentrated and toxic reaction reagent H2O2 would induce undesired damage to normal tissues. Herein, a MOF-based hybrid nanocatalyst as a benign and self-activated cascade reagent has been constructed. Owing to better catalytic performance compared with three-dimensional bulk MOF, an ultrathin two-dimensional (2D) MOF (2D Cu-TCPP(Fe)) nanosheet is chosen as a model of peroxidase mimic to physically adsorb glucose oxidase (GOx) for fabricating such a hybrid nanocatalyst. Nontoxic glucose can be continuously converted into abundant gluconic acid and H2O2 by GOx, avoiding the direct use of relatively high concentrated and toxic H2O2 and minimizing the harmful side effects. The generated gluconic acid can decrease the pH value from 7 to 3-4, dramatically activating the peroxidase-like activity of 2D Cu-TCPP(Fe) nanosheets. Meanwhile, the produced H2O2 is used for subsequent catalysis of activated 2D Cu-TCPP(Fe) nanosheets, leading to efficient generation of an extremely toxic hydroxyl radial and antibacterial capacity. In vitro and in vivo results illustrate the designed benign and self-activated cascade reagent possesses a robust antibacterial effect with negligible biotoxicity.
Collapse
Affiliation(s)
- Xinping Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Science and Technology of China , Hefei , Anhui 230029 , P.R. China
| | - Zhengqing Yan
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P.R. China
| | - Yan Zhang
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P.R. China
| | - Zhengwei Liu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P.R. China
| | - Yuhuan Sun
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Science and Technology of China , Hefei , Anhui 230029 , P.R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Science and Technology of China , Hefei , Anhui 230029 , P.R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization , Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022 , P.R. China
- University of Science and Technology of China , Hefei , Anhui 230029 , P.R. China
| |
Collapse
|
27
|
Moelling K, Broecker F, Willy C. A Wake-Up Call: We Need Phage Therapy Now. Viruses 2018; 10:E688. [PMID: 30563034 PMCID: PMC6316858 DOI: 10.3390/v10120688] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/27/2018] [Accepted: 12/03/2018] [Indexed: 12/11/2022] Open
Abstract
The rise of multidrug-resistant bacteria has resulted in an increased interest in phage therapy, which historically preceded antibiotic treatment against bacterial infections. To date, there have been no reports of serious adverse events caused by phages. They have been successfully used to cure human diseases in Eastern Europe for many decades. More recently, clinical trials and case reports for a variety of indications have shown promising results. However, major hurdles to the introduction of phage therapy in the Western world are the regulatory and legal frameworks. Present regulations may take a decade or longer to be fulfilled. It is of urgent need to speed up the availability of phage therapy.
Collapse
Affiliation(s)
- Karin Moelling
- Institute of Medical Microbiology, University of Zurich, 8006 Zurich, Switzerland.
- Max Planck Institute for molecular Genetics, 14195 Berlin, Germany.
| | - Felix Broecker
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Christian Willy
- Department Trauma & Orthopedic Surgery, Septic & Reconstructive Surgery, Research and Treatment Center for Complex Combat Injuries, Military Hospital Berlin, 10115 Berlin, Germany.
| |
Collapse
|
28
|
|
29
|
Abstract
Plague is caused by Yersinia pestis and is not commonly encountered in clinics, although natural plague foci are widely distributed around the world. Y. pestis has been listed as a category A bioterrorism agent. A neglected diagnosis will cause severe consequences. Therefore, this minireview briefly introduces the current understanding on Y. pestis and then focuses on practical aspects of plague, including clinical manifestations, diagnosis, treatment, and prevention, to alert clinicians about this notorious disease.
Collapse
|
30
|
Zhou Y, Zhou J, Ji Y, Li L, Tan Y, Tian G, Yang R, Wang X. Bioluminescent tracing of a Yersinia pestis pCD1 +-mutant and Yersinia pseudotuberculosis in subcutaneously infected mice. Microbes Infect 2017; 20:166-175. [PMID: 29180033 DOI: 10.1016/j.micinf.2017.11.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/01/2017] [Accepted: 11/07/2017] [Indexed: 01/14/2023]
Abstract
Yersinia pestis has evolved from Yersinia pseudotuberculosis serotype O:1b. A typical Y. pestis contains three plasmids: pCD1, pMT1 and pPCP1. However, some isolates only harbor pCD1 (pCD1+-mutant). Y. pestis and Y. pseudotuberculosis share a common plasmid (pCD1 or pYV), but little is known about whether Y. pseudotuberculosis exhibited plague-inducing potential before it was evolved into Y. pestis. Here, the luxCDABE::Tn5::kan was integrated into the chromosome of the pCD1+-mutant, Y. pseudotuberculosis or Escherichia coli K12 to construct stable bioluminescent strains for investigation of their dissemination in mice by bioluminescence imaging technology. After subcutaneous infection, the pCD1+-mutant entered the lymph nodes, followed by the liver and spleen, and, subsequently, the lungs, causing pathological changes in these organs. Y. pseudotuberculosis entered the lymph nodes, but not the liver, spleen and lungs. It also resided in the lymph nodes for several days, but did not cause lymphadenitis or pathological lesions. By contrast, E. coli K12-lux was not isolatable from mouse lymph nodes, liver, spleen and lungs. These results indicate that the pCD1+-mutant can cause typical bubonic and pneumonic plague-like diseases, and Y. pestis has inherited lymphoid tissue tropism from its ancestor rather than acquiring these properties independently.
Collapse
Affiliation(s)
- Yazhou Zhou
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Jiyuan Zhou
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yuxin Ji
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lu Li
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yafang Tan
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Guang Tian
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ruifu Yang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Xiaoyi Wang
- Laboratory of Analytical Microbiology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| |
Collapse
|
31
|
Yin W, Yu J, Lv F, Yan L, Zheng LR, Gu Z, Zhao Y. Functionalized Nano-MoS 2 with Peroxidase Catalytic and Near-Infrared Photothermal Activities for Safe and Synergetic Wound Antibacterial Applications. ACS NANO 2016; 10:11000-11011. [PMID: 28024334 DOI: 10.1021/acsnano.6b05810] [Citation(s) in RCA: 583] [Impact Index Per Article: 72.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have developed a biocompatible antibacterial system based on polyethylene glycol functionalized molybdenum disulfide nanoflowers (PEG-MoS2 NFs). The PEG-MoS2 NFs have high near-infrared (NIR) absorption and peroxidase-like activity, which can efficiently catalyze decomposition of low concentration of H2O2 to generate hydroxyl radicals (·OH). The conversion of H2O2 into ·OH can avoid the toxicity of high concentration of H2O2 and the ·OH has higher antibacterial activity, making resistant bacteria more vulnerable and wounds more easily cured. The PEG-MoS2 NFs combine the catalysis with NIR photothermal effect, providing a rapid and effective killing outcome in vitro for Gram-negative ampicillin resistant Escherichia coli (Ampr E. coli) and Gram-positive endospore-forming Bacillus subtilis (B. subtilis) as compared to catalytic treatment or photothermal therapy (PTT) alone. Wound healing results indicate that the synergy antibacterial system could be conveniently used for wound disinfection in vivo. Interestingly, glutathione (GSH) oxidation can be accelerated due to the 808 nm irradiation induced hyperthermia at the presence of PEG-MoS2 NFs proved by X-ray near-edge absorption spectra and X-ray spectroscopy. The accelerated GSH oxidation can result in bacterial death more easily. A mechanism based on ·OH-enhanced PTT is proposed to explain the antibacterial process.
Collapse
Affiliation(s)
- Wenyan Yin
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing, 100049, China
| | - Jie Yu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing, 100049, China
- Key Laboratory of Polymer Science and Technology, School of Science, Northwestern Polytechnical University , Xi'an, Shaanxi 710129, China
| | - Fengting Lv
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences , Beijing, 100190, China
| | - Liang Yan
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing, 100049, China
| | - Li Rong Zheng
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing, 100049, China
| | - Zhanjun Gu
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing, 100049, China
| | - Yuliang Zhao
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing, 100049, China
- Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China , Beijing, 100190, China
| |
Collapse
|
32
|
Li YF, Li DB, Shao HS, Li HJ, Han YD. Plague in China 2014-All sporadic case report of pneumonic plague. BMC Infect Dis 2016; 16:85. [PMID: 26895880 PMCID: PMC4759734 DOI: 10.1186/s12879-016-1403-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 02/01/2016] [Indexed: 01/11/2023] Open
Abstract
Background Yersinia pestis is the pathogen of the plague and caused three pandemics worldwide. Pneumonic plague is rarer than bubonic and septicemic plague. We report detailed clinical and pathogenic data for all the three sporadic cases of pneumonic plagues in China in 2014. Case presentation All the three patients are herders in Gansu province of China. They were all infected by Yersinia pestis and displayed in the form of pneumonic plague respectively without related. We tested patient specimens from the upper (nasopharyngeal swabs) or the lower (sputum) respiratory tract and whole blood, plasma, and serum specimens for Yersinia pestis. All patients had fever, cough and dyspnea, and for patient 2 and 3, unconscious. Respiratory symptoms were predominant with acute respiratory failure. The chest X-ray showed signs consistent with necrotizing inflammation with multiple lobar involvements. Despite emergency treatment, all patients died of refractory multiple organ failure within 24 h after admission to hospital. All the contacts were quarantined immediately and there were no secondary cases. Conclusions Nowadays, the plague is epidemic in animals and can infect people who contact with the infected animals which may cause an epidemic in human. We think dogs maybe an intermediate vector for plague and as a source of risk for humans who are exposed to pet animals or who work professionally with canines. If a patient has been exposed to a risk factor and has fever and dyspnea, plague should be considered. People who had contact with a confirmed case should be isolated and investigated for F1 antigen analysis and receive post-exposure preventive treatment. A vaccination strategy might be useful for individuals who are occupationally exposed in areas where endemically infected reservoirs of plague-infected small mammals co-exist.
Collapse
Affiliation(s)
- Yun-Fang Li
- Radiology Department, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - De-Biao Li
- Radiology Department, the First People's Hospital of Yumen, Gansu, China.
| | - Hong-Sheng Shao
- Department of Interventional Radiology, Rehabilitation Center Hospital, of Gansu Province, Gansu, China.
| | - Hong-Jun Li
- Radiology Department, Beijing YouAn Hospital, Capital Medical University, Beijing, 100069, China.
| | - Yue-Dong Han
- Imaging Diagnostic Center, Lanzhou General Hospital, Lanzhou Command, PLA, Lanzhou, 730050, China.
| |
Collapse
|
33
|
Abstract
Bacteriophage play many varied roles in microbial ecology and evolution. This chapter collates a vast body of knowledge and expertise on Yersinia pestis phages, including the history of their isolation and classical methods for their isolation and identification. The genomic diversity of Y. pestis phage and bacteriophage islands in the Y. pestis genome are also discussed because all phage research represents a branch of genetics. In addition, our knowledge of the receptors that are recognized by Y. pestis phage, advances in phage therapy for Y. pestis infections, the application of phage in the detection of Y. pestis, and clustered regularly interspaced short palindromic repeats (CRISPRs) sequences of Y. pestis from prophage DNA are all reviewed here.
Collapse
|
34
|
Nikiforov VV, Gao H, Zhou L, Anisimov A. Plague: Clinics, Diagnosis and Treatment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 918:293-312. [PMID: 27722868 DOI: 10.1007/978-94-024-0890-4_11] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Plague still poses a significant threat to human health and as a reemerging infection is unfamiliar to the majority of the modern medical doctors. In this chapter, the plague is described according to Dr. Nikiforov's experiences in the diagnosis and treatment of patients, and also a review of the relevant literature on this subject is provided. The main modern methods and criteria for laboratory diagnosis of plague are briefly described. The clinical presentations include the bubonic and pneumonic form, septicemia, rarely pharyngitis, and meningitis. Early diagnosis and the prompt initiation of treatment reduce the mortality rate associated with bubonic plague and septicemic plague to 5-50 %; although a delay of more than 24 h in the administration of antibiotics and antishock treatment can be fatal for plague patients. Most human cases can successfully be treated with antibiotics.
Collapse
Affiliation(s)
- Vladimir V Nikiforov
- Institute of Advanced Training, Federal Medical-Biological Agency of Russia, Moscow, Russia.
| | - He Gao
- National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, 102206, China
| | - Lei Zhou
- Beijing Institute of Microbiology and Epidemiology, Beijing, 100071, China
| | - Andrey Anisimov
- State Research Center for Applied Microbiology, Obolensk, Moscow Region, Russia
| |
Collapse
|
35
|
Roberts LG, Dabbs GR, Spencer JR. An Update on the Hazards and Risks of Forensic Anthropology, Part II: Field and Laboratory Considerations. J Forensic Sci 2015; 61 Suppl 1:S14-21. [PMID: 26389711 DOI: 10.1111/1556-4029.12949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 01/29/2015] [Accepted: 02/03/2015] [Indexed: 11/26/2022]
Abstract
This paper focuses on potential hazards and risks to forensic anthropologists while working in the field and laboratory in North America. Much has changed since Galloway and Snodgrass published their seminal article addressing these issues. The increased number of forensic practitioners combined with new information about potential hazards calls for an updated review of these pathogens and chemicals. Discussion of pathogen hazards (Brucella, Borrelia burgdorferi, Yersinia pestis, Clostridium tetani and West Nile virus) includes important history, exposure routes, environmental survivability, early symptoms, treatments with corresponding morbidity and mortality rates, and decontamination measures. Additionally, data pertaining to the use of formaldehyde in the laboratory environment have resulted in updated safety regulations, and these are highlighted. These data should inform field and laboratory protocols. The hazards of working directly with human remains are discussed in a companion article, "An Update on the Hazards and Risks of Forensic Anthropology, Part I: Human Remains."
Collapse
Affiliation(s)
- Lindsey G Roberts
- Department of Anthropology, Southern Illinois University, Carbondale, IL, 62901
| | - Gretchen R Dabbs
- Department of Anthropology, Southern Illinois University, Carbondale, IL, 62901
| | - Jessica R Spencer
- Department of Anthropology, Southern Illinois University, Carbondale, IL, 62901
| |
Collapse
|
36
|
Filippov AA, Sergueev KV, Nikolich MP. Can phage effectively treat multidrug-resistant plague? BACTERIOPHAGE 2014; 2:186-189. [PMID: 23282533 PMCID: PMC3530528 DOI: 10.4161/bact.22407] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The spread of natural or weaponized drug-resistant plague among humans is a credible high consequence threat to public health that demands the prompt introduction of alternatives to antibiotics such as bacteriophage. Early attempts to treat plague with phages in the 1920s–1930s were sometimes promising but mostly failed, purportedly due to insufficient knowledge of phage biology and poor experimental design. We recently reported the striking stability of plague diagnostic bacteriophages, their safety for animal use, propagation in vivo and partial protection of mice from deadly plague after a single injection of phage. In this addendum we reflect on that article, other recent publications and our unpublished data, and discuss the prospects of phage therapy against plague.
Collapse
Affiliation(s)
- Andrey A Filippov
- Bacterial Diseases Branch; Walter Reed Army Institute of Research; Silver Spring, MD USA
| | | | | |
Collapse
|
37
|
Wang Y, Wang W, Lv Y, Zheng W, Mi Z, Pei G, An X, Xu X, Han C, Liu J, Zhou C, Tong Y. Characterization and complete genome sequence analysis of novel bacteriophage IME-EFm1 infecting Enterococcus faecium. J Gen Virol 2014; 95:2565-2575. [PMID: 25078302 DOI: 10.1099/vir.0.067553-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
We isolated and characterized a novel virulent bacteriophage, IME-EFm1, specifically infecting multidrug-resistant Enterococcus faecium. IME-EFm1 is morphologically similar to members of the family Siphoviridae. It was found capable of lysing a wide range of our E. faecium collections, including two strains resistant to vancomycin. One-step growth tests revealed the host lysis activity of phage IME-EFm1, with a latent time of 30 min and a large burst size of 116 p.f.u. per cell. These biological characteristics suggested that IME-EFm1 has the potential to be used as a therapeutic agent. The complete genome of IME-EFm1 was 42 597 bp, and was linear, with terminally non-redundant dsDNA and a G+C content of 35.2 mol%. The termini of the phage genome were determined with next-generation sequencing and were further confirmed by nuclease digestion analysis. To our knowledge, this is the first report of a complete genome sequence of a bacteriophage infecting E. faecium. IME-EFm1 exhibited a low similarity to other phages in terms of genome organization and structural protein amino acid sequences. The coding region corresponded to 90.7 % of the genome; 70 putative ORFs were deduced and, of these, 29 could be functionally identified based on their homology to previously characterized proteins. A predicted metallo-β-lactamase gene was detected in the genome sequence. The identification of an antibiotic resistance gene emphasizes the necessity for complete genome sequencing of a phage to ensure it is free of any undesirable genes before use as a therapeutic agent against bacterial pathogens.
Collapse
Affiliation(s)
- Yahui Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China.,School of Life Science & Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Wei Wang
- Anhui Medical University, Hefei 230032, PR China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Yongqiang Lv
- Department of Laboratory, Dalian Beihai Hospital, Dalian Liaoning 116021, PR China
| | - Wangliang Zheng
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Zhiqiang Mi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Guangqian Pei
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Xiaoping An
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Xiaomeng Xu
- Anhui Medical University, Hefei 230032, PR China.,State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Chuanyin Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| | - Jie Liu
- The General Hospital of Beijing Military Command, Beijing 100041, PR China
| | - Changlin Zhou
- School of Life Science & Technology, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Yigang Tong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, PR China
| |
Collapse
|
38
|
Outer membrane proteins ail and OmpF of Yersinia pestis are involved in the adsorption of T7-related bacteriophage Yep-phi. J Virol 2013; 87:12260-9. [PMID: 24006436 DOI: 10.1128/jvi.01948-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Yep-phi is a T7-related bacteriophage specific to Yersinia pestis, and it is routinely used in the identification of Y. pestis in China. Yep-phi infects Y. pestis grown at both 20°C and 37°C. It is inactive in other Yersinia species irrespective of the growth temperature. Based on phage adsorption, phage plaque formation, affinity chromatography, and Western blot assays, the outer membrane proteins of Y. pestis Ail and OmpF were identified to be involved, in addition to the rough lipopolysaccharide, in the adsorption of Yep-phi. The phage tail fiber protein specifically interacts with Ail and OmpF proteins, and residues 518N, 519N, and 523S of the phage tail fiber protein are essential for the interaction with OmpF, whereas residues 518N, 519N, 522C, and 523S are essential for the interaction with Ail. This is the first report to demonstrate that membrane-bound proteins are involved in the adsorption of a T7-related bacteriophage. The observations highlight the importance of the tail fiber protein in the evolution and function of various complex phage systems and provide insights into phage-bacterium interactions.
Collapse
|
39
|
Shen GH, Wang JL, Wen FS, Chang KM, Kuo CF, Lin CH, Luo HR, Hung CH. Isolation and characterization of φkm18p, a novel lytic phage with therapeutic potential against extensively drug resistant Acinetobacter baumannii. PLoS One 2012; 7:e46537. [PMID: 23071586 PMCID: PMC3465330 DOI: 10.1371/journal.pone.0046537] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/31/2012] [Indexed: 12/29/2022] Open
Abstract
AIMS To isolate phages against extensively drug resistant Acinetobacter baumannii (XDRAB) and characterize the highest lytic capability phage as a model to evaluate the potential on phage therapy. METHODS AND RESULTS Eight phages were isolated from hospital sewage and showed narrow host spectrum. Phage φkm18p was able to effectively lyse the most XDRAB. It has a dsDNA genome of 45 kb in size and hexagonal head of about 59 nm in diameter and no tail. Bacterial population decreased quickly from 10(8) CFU ml(-1) to 10(3) CFU ml(-1) in 30 min by φkm18p. The 185 kDa lysis protein encoded by φkm18p genome was detected when the extracted protein did not boil before SDS-PAGE; it showed that the lysis protein is a complex rather than a monomer. Phage φkm18p improved human lung epithelial cells survival rates when they were incubated with A. baumannii. Combination of phages (φkm18p, φTZ1 and φ314) as a cocktail could lyse all genotype-varying XDRAB isolates. CONCLUSION Infections with XDRAB are extremely difficult to treat and development of a phage cocktails therapy could be a therapeutic alternative in the future. Phage φkm18p is a good candidate for inclusion in phage cocktails.
Collapse
Affiliation(s)
- Gwan-Han Shen
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
- Department of Respiratory Therapy, College of Health Care, China Medical University, Taichung, Taiwan, ROC
| | - Jiun-Ling Wang
- School of Chinese Medicine for Post Baccalaureate, I-Shou University, Kaohsiung County, Taiwan, ROC
- Department of Internal Medicine, E-Da Hospital, Kaohsiung County, Taiwan
| | - Fu-Shyan Wen
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Kai-Ming Chang
- Department of Life Science, National Chung Hsing University, Taichung, Taiwan, ROC
| | - Chih-Feng Kuo
- Department of Nursing, I-Shou University, Kaoshiung, Taiwan, ROC
| | - Chun-Hung Lin
- Department of Chemical Engineering, and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaoshiung, Taiwan, ROC
| | - Huei-Ru Luo
- Department of Chemical Engineering, and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaoshiung, Taiwan, ROC
| | - Chih-Hsin Hung
- Department of Chemical Engineering, and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaoshiung, Taiwan, ROC
| |
Collapse
|
40
|
Gonzalez RJ, Weening EH, Frothingham R, Sempowski GD, Miller VL. Bioluminescence imaging to track bacterial dissemination of Yersinia pestis using different routes of infection in mice. BMC Microbiol 2012; 12:147. [PMID: 22827851 PMCID: PMC3436865 DOI: 10.1186/1471-2180-12-147] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 07/24/2012] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Plague is caused by Yersinia pestis, a bacterium that disseminates inside of the host at remarkably high rates. Plague bacilli disrupt normal immune responses in the host allowing for systematic spread that is fatal if left untreated. How Y. pestis disseminates from the site of infection to deeper tissues is unknown. Dissemination studies for plague are typically performed in mice by determining the bacterial burden in specific organs at various time points. To follow bacterial dissemination during plague infections in mice we tested the possibility of using bioluminescence imaging (BLI), an alternative non-invasive approach. Fully virulent Y. pestis was transformed with a plasmid containing the luxCDABE genes, making it able to produce light; this lux-expressing strain was used to infect mice by subcutaneous, intradermal or intranasal inoculation. RESULTS We successfully obtained images from infected animals and were able to follow bacterial dissemination over time for each of the three different routes of inoculation. We also compared the radiance signal from animals infected with a wild type strain and a Δcaf1ΔpsaA mutant that we previously showed to be attenuated in colonization of the lymph node and systemic dissemination. Radiance signals from mice infected with the wild type strain were larger than values obtained from mice infected with the mutant strain (linear regression of normalized values, P<0.05). CONCLUSIONS We demonstrate that BLI is useful for monitoring dissemination from multiple inoculation sites, and for characterization of mutants with defects in colonization or dissemination.
Collapse
Affiliation(s)
- Rodrigo J Gonzalez
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
| | - Eric H Weening
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Richard Frothingham
- Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC, USA
| | - Gregory D Sempowski
- Department of Medicine and Duke Human Vaccine Institute, Duke University Medical Center, Durham, NC, USA
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Virginia L Miller
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
41
|
Wilson CN, Vance CO, Doyle TM, Brink DS, Matuschak GM, Lechner AJ. A novel post-exposure medical countermeasure L-97-1 improves survival and acute lung injury following intratracheal infection with Yersinia pestis. Innate Immun 2012; 18:373-89. [PMID: 21862597 PMCID: PMC3362682 DOI: 10.1177/1753425911411595] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Yersinia pestis, a Gram-negative bacillus causing plague and Centers for Disease Control and Prevention (CDC) classified Category A pathogen, has high potential as a bioweapon. Lipopolysaccharide, a virulence factor for Y. pestis, binds to and activates A(1) adenosine receptor (AR)s and, in animals, A(1)AR antagonists block induced acute lung injury (ALI) and increase survival following cecal ligation and perforation. In this study, rats were infected intratracheally with viable Y. pestis [CO99 (pCD1( + )/Δpgm) 1 × 10( 8 ) CFU/animal] and treated daily for 3 d with ciprofloxacin (cipro), the A(1)AR antagonist L-97-1, or cipro plus L-97-1 starting at 0, 6, 24, 48, or 72 h post-Y. pestis. At 72 h post-Y. pestis, cipro plus L-97-1 significantly improved 6-d survival to 60-70% vs 28% for cipro plus H(2)O and 33% for untreated Y. pestis controls (P = 0.02, logrank test). Lung edema, hemorrhage and leukocyte infiltration index (LII) were evaluated histologically to produce ALI scores. Cipro plus L-97-1 significantly reduced lung edema, as well as aggregate lung injury scores vs controls or cipro plus H(2)O, and LII vs controls (P < 0.05, Student's unpaired t test). These results support efficacy for L-97-1 as a post-exposure medical countermeasure, adjunctive therapy to antibiotics for Y. pestis.
Collapse
|
42
|
Schofield DA, Sharp NJ, Westwater C. Phage-based platforms for the clinical detection of human bacterial pathogens. BACTERIOPHAGE 2012; 2:105-283. [PMID: 23050221 PMCID: PMC3442824 DOI: 10.4161/bact.19274] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bacteriophages (phages) have been utilized for decades as a means for uniquely identifying their target bacteria. Due to their inherent natural specificity, ease of use, and straightforward production, phage possess a number of desirable attributes which makes them particularly suited as bacterial detectors. As a result, extensive research has been conducted into the development of phage, or phage-derived products to expedite the detection of human pathogens. However, very few phage-based diagnostics have transitioned from the research lab into a clinical diagnostic tool. Herein we review the phage-based platforms that are currently used for the detection of Mycobacterium tuberculosis, Yersinia pestis, Bacillus anthracis and Staphylococcus aureus in the clinical field. We briefly describe the disease, the current diagnostic options, and the role phage diagnostics play in identifying the cause of infection, and determining antibiotic susceptibility.
Collapse
Affiliation(s)
| | | | - Caroline Westwater
- Department of Craniofacial Biology; Medical University of South Carolina; Charleston, SC USA
| |
Collapse
|
43
|
Advanced Development of the rF1V and rBV A/B Vaccines: Progress and Challenges. Adv Prev Med 2011; 2012:731604. [PMID: 22028978 PMCID: PMC3199075 DOI: 10.1155/2012/731604] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2011] [Revised: 07/20/2011] [Accepted: 07/21/2011] [Indexed: 01/25/2023] Open
Abstract
The development of vaccines for microorganisms and bacterial toxins with the potential to be used as biowarfare and bioterrorism agents is an important component of the US biodefense program. DVC is developing two vaccines, one against inhalational exposure to botulinum neurotoxins A1 and B1 and a second for Yersinia pestis, with the ultimate goal of licensure by the FDA under the Animal Rule. Progress has been made in all technical areas, including manufacturing, nonclinical, and clinical development and testing of the vaccines, and in assay development. The current status of development of these vaccines, and remaining challenges are described in this chapter.
Collapse
|
44
|
Filippov AA, Sergueev KV, He Y, Huang XZ, Gnade BT, Mueller AJ, Fernandez-Prada CM, Nikolich MP. Bacteriophage-resistant mutants in Yersinia pestis: identification of phage receptors and attenuation for mice. PLoS One 2011; 6:e25486. [PMID: 21980477 PMCID: PMC3182234 DOI: 10.1371/journal.pone.0025486] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Accepted: 09/06/2011] [Indexed: 01/21/2023] Open
Abstract
Background Bacteriophages specific for Yersinia pestis are routinely used for plague diagnostics and could be an alternative to antibiotics in case of drug-resistant plague. A major concern of bacteriophage therapy is the emergence of phage-resistant mutants. The use of phage cocktails can overcome this problem but only if the phages exploit different receptors. Some phage-resistant mutants lose virulence and therefore should not complicate bacteriophage therapy. Methodology/Principal Findings The purpose of this work was to identify Y. pestis phage receptors using site-directed mutagenesis and trans-complementation and to determine potential attenuation of phage-resistant mutants for mice. Six receptors for eight phages were found in different parts of the lipopolysaccharide (LPS) inner and outer core. The receptor for R phage was localized beyond the LPS core. Most spontaneous and defined phage-resistant mutants of Y. pestis were attenuated, showing increase in LD50 and time to death. The loss of different LPS core biosynthesis enzymes resulted in the reduction of Y. pestis virulence and there was a correlation between the degree of core truncation and the impact on virulence. The yrbH and waaA mutants completely lost their virulence. Conclusions/Significance We identified Y. pestis receptors for eight bacteriophages. Nine phages together use at least seven different Y. pestis receptors that makes some of them promising for formulation of plague therapeutic cocktails. Most phage-resistant Y. pestis mutants become attenuated and thus should not pose a serious problem for bacteriophage therapy of plague. LPS is a critical virulence factor of Y. pestis.
Collapse
Affiliation(s)
- Andrey A Filippov
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
|
46
|
Identification of the lipopolysaccharide core of Yersinia pestis and Yersinia pseudotuberculosis as the receptor for bacteriophage φA1122. J Bacteriol 2011; 193:4963-72. [PMID: 21764935 DOI: 10.1128/jb.00339-11] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
φA1122 is a T7-related bacteriophage infecting most isolates of Yersinia pestis, the etiologic agent of plague, and used by the CDC in the identification of Y. pestis. φA1122 infects Y. pestis grown both at 20 °C and at 37 °C. Wild-type Yersinia pseudotuberculosis strains are also infected but only when grown at 37 °C. Since Y. pestis expresses rough lipopolysaccharide (LPS) missing the O-polysaccharide (O-PS) and expression of Y. pseudotuberculosis O-PS is largely suppressed at temperatures above 30 °C, it has been assumed that the phage receptor is rough LPS. We present here several lines of evidence to support this. First, a rough derivative of Y. pseudotuberculosis was also φA1122 sensitive when grown at 22 °C. Second, periodate treatment of bacteria, but not proteinase K treatment, inhibited the phage binding. Third, spontaneous φA1122 receptor mutants of Y. pestis and rough Y. pseudotuberculosis could not be isolated, indicating that the receptor was essential for bacterial growth under the applied experimental conditions. Fourth, heterologous expression of the Yersinia enterocolitica O:3 LPS outer core hexasaccharide in both Y. pestis and rough Y. pseudotuberculosis effectively blocked the phage adsorption. Fifth, a gradual truncation of the core oligosaccharide into the Hep/Glc (L-glycero-D-manno-heptose/D-glucopyranose)-Kdo/Ko (3-deoxy-D-manno-oct-2-ulopyranosonic acid/D-glycero-D-talo-oct-2-ulopyranosonic acid) region in a series of LPS mutants was accompanied by a decrease in phage adsorption, and finally, a waaA mutant expressing only lipid A, i.e., also missing the Kdo/Ko region, was fully φA1122 resistant. Our data thus conclusively demonstrated that the φA1122 receptor is the Hep/Glc-Kdo/Ko region of the LPS core, a common structure in Y. pestis and Y. pseudotuberculosis.
Collapse
|
47
|
Wang H, Cui Y, Wang Z, Wang X, Guo Z, Yan Y, Li C, Cui B, Xiao X, Yang Y, Qi Z, Wang G, Wei B, Yu S, He D, Chen H, Chen G, Song Y, Yang R. A dog-associated primary pneumonic plague in Qinghai Province, China. Clin Infect Dis 2011; 52:185-90. [PMID: 21288842 DOI: 10.1093/cid/ciq107] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Primary pneumonic plague (PPP) caused by Yersinia pestis is the most threatening clinical form of plague. An outbreak was reported in July 2009 in Qinghai Province, China. METHODS This outbreak was investigated by clinical, epidemiological, bacteriological, and immunological methods. Multilocus variable number tandem repeat analysis (MLVA) was used to track the source of the outbreak. RESULTS The index case, a patient with PPP, contaminated 11 close contacts. All the 12 cases, including the index patient, experienced sudden onset of fever, headache, and productive coughing with bloody sputum. Three of them died. Nevertheless, another 61 direct and 256 indirect contacts were not infected during the 2-week quarantine. Antibodies to F1 antigen were detected in 9 survival cases, with a 4-fold increase in titers in serum samples collected at different periods. Seven strains of Y. pestis were isolated from dogs and patients. Field investigation and MLVA of the isolated strains revealed that this outbreak was started by a deceased dog. CONCLUSION Dogs are believed to be an indicator animal for plague surveillance, but their association with PPP is rare. Our results provide evidence for this possibility, which suggests the public health significance of dogs as a source of plague.
Collapse
Affiliation(s)
- Hu Wang
- Qinghai Institute for Endemic Diseases Prevention and Control, Xining, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Small molecule inhibitors of LcrF, a Yersinia pseudotuberculosis transcription factor, attenuate virulence and limit infection in a murine pneumonia model. Infect Immun 2010; 78:4683-90. [PMID: 20823209 DOI: 10.1128/iai.01305-09] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
LcrF (VirF), a transcription factor in the multiple adaptational response (MAR) family, regulates expression of the Yersinia type III secretion system (T3SS). Yersinia pseudotuberculosis lcrF-null mutants showed attenuated virulence in tissue culture and animal models of infection. Targeting of LcrF offers a novel, antivirulence strategy for preventing Yersinia infection. A small molecule library was screened for inhibition of LcrF-DNA binding in an in vitro assay. All of the compounds lacked intrinsic antibacterial activity and did not demonstrate toxicity against mammalian cells. A subset of these compounds inhibited T3SS-dependent cytotoxicity of Y. pseudotuberculosis toward macrophages in vitro. In a murine model of Y. pseudotuberculosis pneumonia, two compounds significantly reduced the bacterial burden in the lungs and afforded a dramatic survival advantage. The MAR family of transcription factors is well conserved, with members playing central roles in pathogenesis across bacterial genera; thus, the inhibitors could have broad applicability.
Collapse
|
49
|
Sergueev KV, He Y, Borschel RH, Nikolich MP, Filippov AA. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR. PLoS One 2010. [PMID: 20596528 DOI: 10.1371/journal.pone.0011337; 10.1371/journal.pone.0011337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3) CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.
Collapse
Affiliation(s)
- Kirill V Sergueev
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America.
| | | | | | | | | |
Collapse
|
50
|
Sergueev KV, He Y, Borschel RH, Nikolich MP, Filippov AA. Rapid and sensitive detection of Yersinia pestis using amplification of plague diagnostic bacteriophages monitored by real-time PCR. PLoS One 2010; 5:e11337. [PMID: 20596528 PMCID: PMC2893161 DOI: 10.1371/journal.pone.0011337] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 06/07/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Yersinia pestis, the agent of plague, has caused many millions of human deaths and still poses a serious threat to global public health. Timely and reliable detection of such a dangerous pathogen is of critical importance. Lysis by specific bacteriophages remains an essential method of Y. pestis detection and plague diagnostics. METHODOLOGY/PRINCIPAL FINDINGS The objective of this work was to develop an alternative to conventional phage lysis tests--a rapid and highly sensitive method of indirect detection of live Y. pestis cells based on quantitative real-time PCR (qPCR) monitoring of amplification of reporter Y. pestis-specific bacteriophages. Plague diagnostic phages phiA1122 and L-413C were shown to be highly effective diagnostic tools for the detection and identification of Y. pestis by using qPCR with primers specific for phage DNA. The template DNA extraction step that usually precedes qPCR was omitted. phiA1122-specific qPCR enabled the detection of an initial bacterial concentration of 10(3) CFU/ml (equivalent to as few as one Y. pestis cell per 1-microl sample) in four hours. L-413C-mediated detection of Y. pestis was less sensitive (up to 100 bacteria per sample) but more specific, and thus we propose parallel qPCR for the two phages as a rapid and reliable method of Y. pestis identification. Importantly, phiA1122 propagated in simulated clinical blood specimens containing EDTA and its titer rise was detected by both a standard plating test and qPCR. CONCLUSIONS/SIGNIFICANCE Thus, we developed a novel assay for detection and identification of Y. pestis using amplification of specific phages monitored by qPCR. The method is simple, rapid, highly sensitive, and specific and allows the detection of only live bacteria.
Collapse
Affiliation(s)
- Kirill V. Sergueev
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Yunxiu He
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Richard H. Borschel
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Mikeljon P. Nikolich
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| | - Andrey A. Filippov
- Division of Bacterial and Rickettsial Diseases, Department of Emerging Bacterial Infections, Walter Reed Army Institute of Research, Silver Spring, Maryland, United States of America
| |
Collapse
|