1
|
Nateghizad H, Sajadi R, Shivaee A, Shirazi O, Sharifian M, Tadi DA, Amini K. Resistance of Vibrio cholera to antibiotics that inhibit cell wall synthesis: A systematic review and meta-analysis. Front Pharmacol 2023; 14:1027277. [PMID: 37021056 PMCID: PMC10069679 DOI: 10.3389/fphar.2023.1027277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 01/10/2023] [Indexed: 04/07/2023] Open
Abstract
Objective: Cholera is a challenging ancient disease caused by Vibrio cholera (V. cholera). Antibiotics that prevent cell wall synthesis are among the first known antibiotic groups. Due to its high consumption, V. cholera has developed resistance to the majority of antibiotics in this class. Resistance to recommended antibiotics for the treatment of V. cholera has also increased. In light of the decrease in consumption of certain antibiotics in this group that inhibit cell wall synthesis and the implementation of new antibiotics, it is necessary to determine the antibiotic resistance pattern of V. cholera and to employ the most effective treatment antibiotic. Method: An comprehensive systematic search for relevant articles was conducted in PubMed, Web of Science, Scopus, and EMBASE through October 2020. Stata version 17.1 utilized the Metaprop package to execute a Freeman-Tukey double arcsine transformation in order to estimate weighted pooled proportions. Results: A total of 131 articles were included in the meta-analysis. Ampicillin was the most investigated antibiotic. The prevalence of antibiotic resistance was in order aztreonam (0%), cefepime (0%), imipenem (0%), meropenem (3%), fosfomycin (4%), ceftazidime (5%), cephalothin (7%), augmentin (8%), cefalexin (8%), ceftriaxone (9%), cefuroxime (9%), cefotaxime (15%), cefixime (37%), amoxicillin (42%), penicillin (44%), ampicillin (48%), cefoxitin (50%), cefamandole (56%), polymyxin-B (77%), carbenicillin (95%) respectively. Discussion: Aztreonam, cefepime, and imipenem are the most efficient V. cholera cell wall synthesis inhibitors. There has been an increase in resistance to antibiotics such as cephalothin, ceftriaxone, amoxicillin, and meropenem. Over the years, resistance to penicillin, ceftazidime, and cefotaxime, has decreased.
Collapse
Affiliation(s)
- Hossein Nateghizad
- Department of Biology, Faculty of Basic Sciences, East of Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Rojina Sajadi
- Department of Biology, Faculty of Basic Sciences, East of Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Ali Shivaee
- Department of Microbiology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Shirazi
- Department of Veterinary medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohadeseh Sharifian
- Department of Veterinary medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Danyal Abbasi Tadi
- Department Of Veterinary, Azad University Of Shahr-E Kord, Shahrekord, Iran
| | - Kumarss Amini
- Department of Microbiology, Saveh Branch, Islamic Azad University, Saveh, Iran
- *Correspondence: Kumarss Amini,
| |
Collapse
|
2
|
Liu C, Wang Y, Azizian K, Omidi N, Kaviar VH, Kouhsari E, Maleki A. Antimicrobial resistance in Vibrio cholerae O1/O139 clinical isolates: a systematic review and meta-analysis. Expert Rev Anti Infect Ther 2022; 20:1217-1231. [PMID: 35790112 DOI: 10.1080/14787210.2022.2098114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Vibrio cholerae O1/O139 is responsible for cholera epidemics; that remains a huge public health menace across the globe. Furthermore, an increasing resistance rate among V. cholerae strains has been reported around the world. Therefore, the objective of this meta-analysis was to evaluate the weighted pooled resistance (WPR) rates in clinical V. cholerae O1/O139 isolates based on different years, areas, antimicrobial susceptibility testing, and resistance rates. RESEARCH DESIGN AND METHODS : We searched the studies in PubMed, Scopus, Embase, and Web of Science (until January 2020). Statistical analyses were conducted using STATA software (ver. 14.0). RESULTS : A total of 139 studies investigating 24062 V. cholerae O1/O139 isolates were analyzed. The majority of the studies originated in Asia (n=102). The WPR rates were as follows: azithromycin 1%, erythromycin 36%, ciprofloxacin 3%, cotrimoxazole 79%, doxycycline 7%, tetracycline 20%. There was increased resistance to cotrimoxazole, ciprofloxacin, and tetracycline during the 1980 to 2020 years. CONCLUSIONS : Temporal changes in antibiotic resistance rate found in this study demonstrated the critical continuous surveillance of antibiotic resistance. Also, ciprofloxacin, azithromycin, gentamicin, cephalexin, imipenem, ofloxacin, and norfloxacin were found to be the best antibiotics against V. cholera, with the highest and the lowest effectiveness resistance rate.
Collapse
Affiliation(s)
- Chaoying Liu
- Zhumadian Academy of Industry Innovation and Development, Huanghuai University, Zhumadian 463000, China
| | - Ye Wang
- School of Biological and Food Processing Engineering, Huanghuai University, Zhumadian 463000, China
| | - Khalil Azizian
- Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Nazanin Omidi
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Vahab Hassan Kaviar
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran.,Department of Laboratory Sciences, Faculty of Paramedicine, Golestan University of Medical Sciences, Iran
| | - Abbas Maleki
- Clinical Microbiology Research Center, Ilam University of Medical Sciences, Ilam, Iran
| |
Collapse
|
3
|
Globally Vibrio cholera antibiotics resistance to RNA and DNA effective antibiotics: A systematic review and meta-analysis. Microb Pathog 2022; 172:105514. [DOI: 10.1016/j.micpath.2022.105514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/19/2022]
|
4
|
Genome Dynamics of Vibrio cholerae Isolates Linked to Seasonal Outbreaks of Cholera in Dhaka, Bangladesh. mBio 2020; 11:mBio.03339-19. [PMID: 32047137 PMCID: PMC7018647 DOI: 10.1128/mbio.03339-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The switching of serotype from Ogawa to Inaba and back to Ogawa has been observed temporally in Vibrio cholerae O1, which is responsible for endemic cholera in Bangladesh. The serospecificity is key for effective intervention and for preventing cholera, a deadly disease that continues to cause significant morbidity and mortality worldwide. In the present study, WGS of V. cholerae allowed us to better understand the factors associated with the serotype switching events observed during 2015 to 2018. Genomic data analysis of strains isolated during this interval highlighted variations in the genes ctxB, tcpA, and rtxA and also identified significant differences in the genetic content of the mobilome, which included key elements such as SXT ICE, VSP-II, and PLE. Our results indicate that selective forces such as antibiotic resistance and phage resistance might contribute to the clonal expansion and predominance of a particular V. cholerae serotype responsible for an outbreak. The temporal switching of serotypes from serotype Ogawa to Inaba and back to Ogawa was identified in Vibrio cholerae O1, which was responsible for seasonal outbreaks of cholera in Dhaka during the period 2015 to 2018. In order to delineate the factors responsible for this serotype transition, we performed whole-genome sequencing (WGS) of V. cholerae O1 multidrug-resistant strains belonging to both the serotypes that were isolated during this interval where the emergence and subsequent reduction of the Inaba serotype occurred. The whole-genome-based phylogenetic analysis revealed clonal expansion of the Inaba isolates mainly responsible for the peaks of infection during 2016 to 2017 and that they might have evolved from the prevailing Ogawa strains in 2015 which coclustered with them. Furthermore, the wbeT gene in these Inaba serotype isolates was inactivated due to insertion of a transposable element at the same position signifying the clonal expansion. Also, V. cholerae isolates in the Inaba serotype dominant clade mainly contained classical ctxB allele and revealed differences in the genetic composition of Vibrioseventh pandemic island II (VSP-II) and the SXT integrative and conjugative element (SXT-ICE) compared to those of Ogawa serotype strains which remerged in 2018. The variable presence of phage-inducible chromosomal island-like element 1 (PLE1) was also noted in the isolates of the Inaba serotype dominant clade. The detailed genomic characterization of the sequenced isolates has shed light on the forces which could be responsible for the periodic changes in serotypes of V. cholerae and has also highlighted the need to analyze the mobilome in greater detail to obtain insights into the mechanisms behind serotype switching.
Collapse
|
5
|
Bhotra T, Das MM, Pal BB, Singh DV. Genomic profile of antibiotic resistant, classical ctxB positive Vibrio cholerae O1 biotype El Tor isolated in 2003 and 2005 from Puri, India: A retrospective study. Indian J Med Microbiol 2017; 34:462-470. [PMID: 27934824 DOI: 10.4103/0255-0857.195356] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
OBJECTIVES To examine eight strains of Vibrio cholerae O1 isolated in 2003 and 2005 from Puri, India, for antibiotic susceptibility, presence of virulence and regulatory genes, cholera toxin (CT) production, CTX arrangement and genomic profiles. MATERIALS AND METHODS Bacterial strains were tested for antibiotic susceptibility using disc diffusion assay. Polymerase chain reaction determined the presence of antibiotic resistance, virulence and regulatory genes. To determine the type of cholera toxin subunit B (ctxB), nucleotide sequencing was performed. Southern hybridisation determined the number and arrangement of CTXΦ. Ribotyping and pulsed-field gel electrophoresis (PFGE) were used to determine the genomic profile of isolates. RESULTS All the eight strains, except one strain, showed resistant to nalidixic acid, sulphamethoxazole, streptomycin and trimethoprim and possessed the sullI, strB, dfrA1 and int SXT genes. All the strains carried the toxin-co-regulated pilus pathogenicity island, the CTX genetic element, the repeat in toxin and produced CT. Restriction fragment length polymorphism (RFLP) analysis showed that V. cholerae O1 possess a single copy of the CTX element flanked by tandemly arranged RS element. Nucleotide sequencing of the ctxB gene showed the presence of classical ctxB. RFLP analysis of conserved rRNA gene showed two ribotype patterns. PFGE analysis also showed at least three PFGE patterns, irrespective of year of isolations, indicating the genomic relatedness among them. CONCLUSION Overall, these data suggest that classical ctxB-positive V. cholerae O1 El Tor strains that appeared in 2003 continue to cause infection in 2005 in Puri, India, and belong to identical ribotype(s) and/or pulsotype(s). There is need to continuous monitor the emergence of variant of El Tor because it will improve our understanding of the evolution of new clones of variant of V. cholerae.
Collapse
Affiliation(s)
- T Bhotra
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - M M Das
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - B B Pal
- Department of Infectious Disease Biology, Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - D V Singh
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
Mohaptra SS, Mantri CK, Bhotra T, Singh DV. Characteristics of Vibrio cholerae O1 isolated from water of the River Ganga, Varanasi, India. Indian J Med Microbiol 2015; 33:507-15. [PMID: 26470956 DOI: 10.4103/0255-0857.167327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Vibrio cholerae is an autochthonous inhabitant of fresh and brackish water and estuarine system. Investigation of V. cholerae from the River Ganga seems important to find variation in CTX arrangement and genomic diversity. OBJECTIVES To investigate V. cholerae O1 strains for the presence of virulence and regulatory genes, variation in number and organisation of the pre-CTXΦ and/or CTXΦ, and for the genomic diversity. MATERIALS AND METHODS Polymerase chain reaction (PCR) was used to detect virulence and regulatory genes, type of rstR and location of CTXΦ on the chromosome. Southern hybridisation was conducted to see the number and arrangement of pre-CTXΦ and CTXΦ. Ribotyping and pulsed-field gel electrophoresis were used to find genetic relatedness. RESULTS Seven strains gave positive results by PCR for the gene encoding for ctx A, zot, ace, tcp A (El Tor), omp U, and tox R, except one strain that was negative for the ctx A. Three strains were positive for the tcp A (El Tor), omp U and tox R genes. Determination of CTX organisation showed that among the ctx-positive strains, four harboured two copies of CTXETΦ arranged in tandem and two harboured one copy of CTXETΦ, and one ctx-negative strain harboured only one copy of pre-CTXETΦ. Pulsotype and ribotype analysis showed existence of at least three pulsotype and ribotypes indicating diversity in genomic content among them. CONCLUSION This study thus indicates that multiple clones (ribotypes/pulsotypes) of V. cholerae O1 carrying pre-CTXΦ and/or CTXΦ and ctx-negative strains were present in the water of the River Ganga, Varanasi, India.
Collapse
Affiliation(s)
| | | | | | - D V Singh
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| |
Collapse
|
7
|
Mukhopadhyay AK, Takeda Y, Balakrish Nair G. Cholera outbreaks in the El Tor biotype era and the impact of the new El Tor variants. Curr Top Microbiol Immunol 2014; 379:17-47. [PMID: 24710767 DOI: 10.1007/82_2014_363] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
Vibrio cholerae O1, the causative agent of the disease cholera, has two biotypes namely the classical and El Tor. Biotype is a subspecific taxonomic classification of V. cholerae O1. Differentiation of V. cholerae strains into biotype does not alter the clinical management of cholera but is of immense public health and epidemiological importance in identifying the source and spread of infection, particularly when V. cholerae is first isolated in a country or geographic area. From recorded history, till date, the world has experienced seven pandemics of cholera. Among these, the first six pandemics are believed to have been caused by the classical biotype whereas the ongoing seventh pandemic is caused by the El Tor biotype. In recent years, new pathogenic variants of V. cholerae have emerged and spread throughout many Asian and African countries with corresponding cryptic changes in the epidemiology of cholera. In this chapter, we describe the outbreaks during the seventh pandemic El Tor biotype era spanning more than five decades along with the recent advances in our understanding of the development, evolution, spread, and impact of the new variants of El Tor strains.
Collapse
Affiliation(s)
- Asish K Mukhopadhyay
- National Institute of Cholera and Enteric Diseases, P 33, CIT Road, Scheme XM, Beliaghata, Kolkata, 700010, India,
| | | | | |
Collapse
|
8
|
Abstract
Cholera is a global health problem as several thousands of cases and deaths occur each year. The unique epidemiologic attribute of the disease is its propensity to occur as outbreaks that may flare-up into epidemics, if not controlled. The causative bacterial pathogen Vibrio cholerae prevails in the environment and infects humans whenever there is a breakdown in the public health component. The Indian subcontinent is vulnerable to this disease due its vast coastlines with areas of poor sanitation, unsafe drinking water, and overcrowding. Recently, it was shown that climatic conditions also play a major role in the persistence and spread of cholera. Constant change in the biotypes and serotypes of V. cholerae are also important aspects that changes virulence and survival of the pathogen. Such continuous changes increase the infection ability of the pathogen affecting the susceptible population including the children. The short-term carrier status of V. cholerae has been studied well at community level and this facet significantly contributes to the recurrence of cholera. Several molecular tools recognized altering clonality of V. cholerae in relation with the advent of a serogroup or serotype. Rapid identification systems were formulated for the timely detection of the pathogen so as to identify and control the outbreak and institute proper treatment of the patients. The antimicrobials used in the past are no longer useful in the treatment of cholera as V. cholerae has acquired several mechanisms for multiple antimicrobial resistance. This upsurge in antimicrobial resistance directly influences the management of the disease. This chapter provides an overview of cholera prevalence in India, possible sources of infection, and molecular epidemiology along with antimicrobial resistance of V. cholerae.
Collapse
|
9
|
Shakya G, Kim DW, Clemens JD, Malla S, Upadhyaya BP, Dumre SP, Shrestha SD, Adhikari S, Sharma S, Rijal N, Shrestha SK, Mason C, Kansakar P. Phenotypic and genetic characterization of Vibrio cholerae O1 clinical isolates collected through national antimicrobial resistance surveillance network in Nepal. World J Microbiol Biotechnol 2012; 28:2671-8. [PMID: 22806193 DOI: 10.1007/s11274-012-1077-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 05/05/2012] [Indexed: 11/25/2022]
Abstract
Cholera occurs in sporadic cases and outbreaks in Nepal each year. Vibrio cholerae O1 (n = 522) isolated during 2007-2010 from diarrheal patients at 10 different hospital laboratories in Nepal were characterized. Biochemical and serologic identifications showed that all the isolates belonged to serogroup O1, El Tor biotype. Except 72 isolates of Inaba serotype isolated in the year 2007, all the remaining isolates were of Ogawa serotype. All isolates were resistant to nalidixic acid and furazolidone. Resistance to tetracycline, ciprofloxacin, erythromycin and co-trimoxazole were 21, 4, 16 and 90 % respectively. Seventy-seven of these isolates were selected for further characterization for ctxB gene and MLVA typing. Two different variants of classical type cholera toxin were observed. Ogawa strains from 2007 and 2010-Western Nepal outbreak harbored CTX-3 type cholera toxin, whereas Inaba serotypes in 2007 and the remaining Ogawa serotypes in 2008-2010 harbored CTX 3b-type toxin. MLVA analysis showed circulation of four different groups of altered V. cholerae O1 El Tor strains. Two different profiles were seen among 2007 Inaba (9, 3, 6, x, x) and Ogawa (10, 7, 6, x, x) isolates. The MLVA profile of 2008 and 2009 Ogawa isolates were similar to those of Inaba strains of 2007. Isolates from 2010 also showed three different MLVA profiles; profile 9, 3, 6, x, x in 3 isolates, 11, 7, 6, x, x among 2010 Western Nepal outbreak strains and profile 8, 3, 6, x, x among isolates from Butwal and Kathmandu.
Collapse
Affiliation(s)
- Geeta Shakya
- National Public Health Laboratory, Kathmandu, Nepal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Mohapatra SS, Mantri CK, Turabe Fazil MHU, Singh DV. Vibrio cholerae O1 biotype El Tor strains isolated in 1992 from Varanasi, India harboured El Tor CTXΦ and classical ctxB on the chromosome-I and classical CTXΦ and classical ctxB on the chromosome-II. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:783-790. [PMID: 23761370 DOI: 10.1111/j.1758-2229.2011.00287.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this study, we report the presence of the El Tor CTXΦ and classical CTXΦ in Vibrio cholerae O1 strains isolated from Varanasi, India. Polymerase chain reaction, DNA sequencing and restriction fragment length polymorphism revealed that, although ctx-positive strains isolated after 1990 contain CTXΦ harbouring El Tor type of rstR and classical ctxB, strains isolated before 1990 contain El Tor type of rstR and El Tor ctxB. Two V. cholerae O1 strains (VC104 and VC106) represent an altered/hybrid strain containing the RS1 element followed by CTXΦ prophage harbouring El Tor type rstR and classical ctxB on the chromosome-I and RS2 element followed by second copy of CTXΦ prophage harbouring classical type rstR and classical ctxB on the chromosome-II. This is the first report of occurrence of El Tor CTXΦ harbouring classical ctxB and classical CTXΦ harbouring classical ctxB in chromosome-I and -II, respectively in diarrhoeal isolates of V. cholerae O1 El Tor strains from Varanasi, India, and that had been isolated in 1992.
Collapse
Affiliation(s)
- Saswat S Mohapatra
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, India
| | | | | | | |
Collapse
|
11
|
Abstract
In India, the range and burden of infectious diseases are enormous. The administrative responsibilities of the health system are shared between the central (federal) and state governments. Control of diseases and outbreaks is the responsibility of the central Ministry of Health, which lacks a formal public health department for this purpose. Tuberculosis, malaria, filariasis, visceral leishmaniasis, leprosy, HIV infection, and childhood cluster of vaccine-preventable diseases are given priority for control through centrally managed vertical programmes. Control of HIV infection and leprosy, but not of tuberculosis, seems to be on track. Early success of malaria control was not sustained, and visceral leishmaniasis prevalence has increased. Inadequate containment of the vector has resulted in recurrent outbreaks of dengue fever and re-emergence of Chikungunya virus disease and typhus fever. Other infectious diseases caused by faecally transmitted pathogens (enteric fevers, cholera, hepatitis A and E viruses) and zoonoses (rabies, leptospirosis, anthrax) are not in the process of being systematically controlled. Big gaps in the surveillance and response system for infectious diseases need to be addressed. Replication of the model of vertical single-disease control for all infectious diseases will not be efficient or viable. India needs to rethink and revise its health policy to broaden the agenda of disease control. A comprehensive review and redesign of the health system is needed urgently to ensure equity and quality in health care. We recommend the creation of a functional public health infrastructure that is shared between central and state governments, with professional leadership and a formally trained public health cadre of personnel who manage an integrated control mechanism of diseases in districts that includes infectious and non-infectious diseases, and injuries.
Collapse
Affiliation(s)
- T Jacob John
- Department of Clinical Microbiology, Christian Medical College, Vellore, Tamil Nadu, India
| | | | | | | |
Collapse
|
12
|
Mantri CK, Mohapatra SS, Singh DV. Effect of storage and sodium chloride on excision of CTXPhi or pre-CTXPhi and CTXPhi from Vibrio cholerae O139 strains. INFECTION GENETICS AND EVOLUTION 2010; 10:925-30. [PMID: 20621579 DOI: 10.1016/j.meegid.2010.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/26/2010] [Accepted: 05/26/2010] [Indexed: 12/23/2022]
Abstract
We examined the effect of storage and sodium chloride on excision of CTXPhi or pre-CTXPhi and CTXPhi from Vibrio cholerae O139 strains. We found that one strain of V. cholerae O139 VO146P showed loss of the complete phage array, and other strain VO170P showed partial loss of the phage array giving rise to altered strains designated as VO146N and VO170N. Results of PCR and RFLP analysis revealed that both strains (VO146P and VO170P) possessed a single copy of pre-CTX(ET)Phi and two copies of CTXPhi comprising CTX(Class)Phi and CTX(Calc)Phi arranged in tandem, and integrated in the large chromosome. The presence of classical ctxB was detected in CTX(Calc)Phi of both V. cholerae O139 strains. Nucleotide sequencing of three housekeeping genes showed no difference between parent and altered strains of V. cholerae O139.
Collapse
Affiliation(s)
- Chinmay K Mantri
- Infectious Disease Biology, Institute of Life Sciences, Nalco Square, Bhubaneswar, Orrisa 751023, India
| | | | | |
Collapse
|
13
|
Epidemics of severe cholera caused by El Tor Vibrio cholerae O1 Ogawa possessing the ctxB gene of the classical biotype in Orissa, India. Int J Infect Dis 2010; 14:e384-9. [DOI: 10.1016/j.ijid.2009.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 04/28/2009] [Accepted: 06/15/2009] [Indexed: 11/22/2022] Open
|
14
|
Khuntia HK, Samal SK, Kar SK, Pal BB. An Ogawa Cholera Outbreak 6 Months After the Inaba Cholera Outbreaks in India, 2006. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2010; 43:133-7. [DOI: 10.1016/s1684-1182(10)60021-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 03/05/2009] [Accepted: 06/17/2009] [Indexed: 11/28/2022]
|
15
|
Construction and characterization of rtxA and rtxC mutants of auxotrophic O139 Vibrio cholerae. Microb Pathog 2009; 48:85-90. [PMID: 19900531 DOI: 10.1016/j.micpath.2009.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2009] [Revised: 10/27/2009] [Accepted: 11/02/2009] [Indexed: 11/21/2022]
Abstract
Vibrio cholerae is a Gram-negative bacterium that causes diarrheal disease. V. cholerae O1 and O139 serogroups are toxigenic and are known to cause epidemic cholera. These serogroups produce cholera toxin and other accessory toxins such as accessory cholera enterotoxin, zonula occludens toxin, and multifunctional, autoprocessing repeat in toxin (MARTX). In the present study, we incorporated mutated rtxA and rtxC genes that encode MARTX toxin into the existing aminolevulinic acid (ALA) auxotrophic vaccine candidate VCUSM2 of V. cholerae O139 serogroup. The rtxC mutant was named VCUSM9 and the rtxC/rtxA mutant was named VCUSM10. VCUSM9 and VCUSM10 were able to colonize intestinal cells well, compared with the parent vaccine strain, and produced no fluid accumulation in a rabbit ileal loop model. Cell rounding and western blotting assays indicated that mutation of the rtxC gene alone (VCUSM9 strain) did not abolish MARTX toxicity. However mutation of both the rtxA and rtxC genes (VCUSM10) completely abolished MARTX toxicity. Thus we have produced a new, less reactogenic, auxotrophic rtxC/rtxA mutated vaccine candidate against O139 V. cholerae.
Collapse
|
16
|
Kingston JJ, Thavachelvam K, Tuteja U, James T, Janardhanan B, Batra HV. Antimicrobial susceptibility and molecular characterization of Vibrio cholerae from cholera outbreaks in Chennai. Indian J Microbiol 2009; 49:84-8. [PMID: 23100755 DOI: 10.1007/s12088-009-0007-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Accepted: 04/29/2008] [Indexed: 11/28/2022] Open
Abstract
The genotype and antibiotic resistance pattern of the toxigenic Vibrio cholerae strains associated with cholera outbreaks vary frequently. Fifty-one V. cholerae strains isolated from cholera outbreaks in Chennai (2002-2005) were screened for the presence of virulence and regulatory genes by multiplex polymerase chain reaction (PCR) assay. Genotyping of the isolates was done by VC1 primers derived from enterobacterial repetitive intergenic consensus (ERIC)-related sequence in V. cholerae. All the isolates possessed toxigenic genes, such as ctxA, ctxB, tcpA, ace, ompU, toxR and zot. Two different El Tor genotypes and one O139 genotype could be delineated by VC1-PCR. One of the El Tor genotypes was similar to the El Tor strains isolated from Bhind district and Delhi during 2004. Antibiotic susceptibility testing revealed greater variability among the isolates tested. All the isolates were found to be susceptible to norfloxacin, ciprofloxacin and tetracycline. Thiry-three per cent of the isolates were found to be resistant to more than 4 antibiotics and could be termed as multiple antibiotic resistant. Coexistence of O139 serogroup along with the El Tor biotype could be identified among the strains recovered during the period 2002-2004. The O139 isolates were found to be more susceptible to the antibiotics tested when compared to the El Tor isolates.
Collapse
Affiliation(s)
- J J Kingston
- Division of Microbiology, Defence Food Research Laboratory, Sidhartha Nagar, Mysore, Karnataka India
| | | | | | | | | | | |
Collapse
|
17
|
Mohapatra SS, Ramachandran D, Mantri CK, Colwell RR, Singh DV. Determination of relationships among non-toxigenic Vibrio cholerae O1 biotype El Tor strains from housekeeping gene sequences and ribotype patterns. Res Microbiol 2008; 160:57-62. [PMID: 19028569 DOI: 10.1016/j.resmic.2008.10.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2008] [Revised: 10/20/2008] [Accepted: 10/24/2008] [Indexed: 10/21/2022]
Abstract
Sequencing of three housekeeping genes, mdh, dnaE and recA, and ribotyping for seven non-toxigenic Vibrio cholerae O1 strains isolated from different geographic sources indicate a phylogenetic relationship among the strains. Results of MLST and ribotyping indicate a clear difference between three toxigenic strains (N16961, O395, and 569B) and three non-toxigenic strains from India (GS1, GS2, and GW87) and one Guam strain (X392), the latter of which were similar in both MLST and ribotyping, while two other non-toxigenic strains from the USA and India (2740-80 and OR69) appeared to be more closely related to toxigenic strains than to non-toxigenic strains, although this was not supported by ribotyping. These results provide clues to the emergence of toxigenic strains from a non-toxigenic progenitor by acquisition of virulence gene clusters. Results of split decomposition analysis suggest that widespread recombination occurs among the three housekeeping genes and that recombination plays an important role in the emergence of toxigenic strains of V. cholerae O1.
Collapse
Affiliation(s)
- Saswat S Mohapatra
- Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar 751023, India
| | | | | | | | | |
Collapse
|
18
|
Singh DV, Mohapatra H. Application of DNA-based methods in typing Vibrio cholerae strains. Future Microbiol 2008; 3:87-96. [DOI: 10.2217/17460913.3.1.87] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Molecular biology-based techniques based on microbial genotype or DNA sequence have emerged as a basic tool in biological research and in the establishment of large databases of characterized organisms. Genotyping methods have the potential to provide information on subtypes of the organism and their source and/or origin of infection, and to recognize particularly virulent strains of the organism and monitor vaccination programs. Pulsed-field gel electrophoresis, ribotyping, CTX typing, amplified fragment length polymorphism, enterobacterial intergenic consensus sequence-PCR, multilocus sequence typing and microarray methods are more often used for the determination of genetic changes of toxigenic and nontoxigenic Vibrio cholerae strains, origin of infection and relationship between clinical and environmental strains, with the simultaneous detection of the number of copies and types of CTX prophages and genes required for persistence in diverse aquatic environments. This review will discuss DNA-based techniques for the molecular analysis of V. cholerae, its application and future directions.
Collapse
Affiliation(s)
- Durg V Singh
- Institute of Life Sciences, Nalco Square, Bhubaneswar-751023, India
| | | |
Collapse
|