1
|
Novel antibody assessment method for microbial compositional alteration in the oral cavity. Biochem Biophys Rep 2022; 30:101269. [PMID: 35518198 PMCID: PMC9065711 DOI: 10.1016/j.bbrep.2022.101269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/08/2022] [Accepted: 04/25/2022] [Indexed: 12/02/2022] Open
Abstract
Recently, it has been demonstrated that dysbiosis, an alteration in commensal microflora composition, is intimately involved in the onset of a variety of diseases. It is becoming increasingly evident that the composition of commensal microflora in the oral cavity is closely connected to oral diseases, such as periodontal disease, and systemic diseases, such as inflammatory bowel disease. Next-generation sequencing techniques are used as a method to examine changes in bacterial flora, but additional analytical methods to assess bacterial flora are needed to understand bacterial activity in more detail. In addition, the oral environment is unique because of the role of secretory antibodies contained in saliva in the formation of bacterial flora. The present study aimed to develop a new method for evaluating the compositional change of microbiota using flow cytometry (FCM) with specific antibodies against the bacterial surface antigen, as well as salivary antibodies. Using specific antibodies against Streptococcus mutans, a causative agent of dental caries, and human IgA, bacterial samples from human saliva were analyzed via FCM. The results showed that different profiles could be obtained depending on the oral hygiene status of the subjects. These results suggest that changes in the amount and type of antibodies that bind to oral bacteria may be an indicator for evaluating abnormalities in the oral flora. Therefore, the protocol established in this report could be applied as an evaluation method for alterations in the oral microbiota. We aimed to develop a new method for evaluating dysbiosis using flow cytometry. We used bacterial surface antigen-specific antibodies and salivary antibodies. Different profiles could be obtained depending on oral hygiene status. Changes in antibodies bound to oral bacteria may indicate oral flora abnormalities. Our method can be used to evaluate alterations in the oral microbiota.
Collapse
|
2
|
Patel M. Dental caries vaccine: are we there yet? Lett Appl Microbiol 2019; 70:2-12. [PMID: 31518435 DOI: 10.1111/lam.13218] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 09/06/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022]
Abstract
Dental caries, caused by Streptococcus mutans, is a common infection. Caries vaccine has been under investigation for the last 40 years. Many in vitro and in vivo studies and some human clinical trials have determined many pertinent aspects regarding vaccine development. The virulence determinants of Strep. mutans, such as Ag I/II, responsible for adherence to surfaces, glucosyltransferase, responsible for the production of glucan, and the glucan-binding protein, responsible for the attachment of glucan to surfaces, have been known to elicit an antigen-specific immune response. It is also known that more than one antigen or a functional part of the genome responsible for these virulence determinants provide a better host response compared with the monogenic vaccine or complete genome of a specific antigen. To enhance the host response, the use of adjuvants has been studied and the routes of antigen administration have been investigated. In recent years, some promising vaccines such as pGJA-P/VAX, LT derivative/Pi39-512 , KFD2-rPAc and SBR/GBR-CMV-nirB have been developed and tested in animals. New virulence targets need to be explored. Multicentre collaborative studies and human clinical trials are required and some interest from funders and public health experts should be generated to overcome this hurdle. SIGNIFICANCE AND IMPACT OF THE STUDY: Dental caries is an irreversible, multifactorial opportunistic infection. The treatment is costly, making it a public health problem. Despite many years of promising laboratory research, animal studies and clinical trials, there is no commercially available vaccine today. The research objectives have become more refined from lessons learnt over the years. Multigenic DNA/recombinant vaccines, using the best proved adjuvants with a delivery system for the nasal or sublingual route, should be developed and researched with multicentre collaborative efforts. In addition, new vaccine targets can be identified. To overcome the economic hurdle, funders and public health interest should be stimulated.
Collapse
Affiliation(s)
- M Patel
- Department of Oral Biological Sciences, School of Oral Health Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
3
|
Liu X, Adams LJ, Zeng X, Lin J. Evaluation of in ovo vaccination of DNA vaccines for Campylobacter control in broiler chickens. Vaccine 2019; 37:3785-3792. [PMID: 31171394 DOI: 10.1016/j.vaccine.2019.05.082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/13/2019] [Accepted: 05/20/2019] [Indexed: 12/14/2022]
Abstract
Campylobacter is the leading bacterial cause of human enteritis in developed countries. Chicken is a major natural host of Campylobacter. Thus, on-farm control of Campylobacter load in poultry would reduce the risk of human exposure to this pathogen. Vaccination is an attractive intervention measure to mitigate Campylobacter in poultry. Our previous studies have demonstrated that Campylobacter outer membrane proteins CmeC (a component of multidrug efflux pump) and CfrA (ferric enterobactin receptor) are feasible and promising candidates for vaccine development. In this study, by targeting these two attractive vaccine candidates, we explored and evaluated a new vaccination strategy, which combines the in ovo vaccination route and novel DNA vaccine formulation, for Campylobacter control in broilers. We observed that direct cloning of cfrA or cmeC gene into the eukaryotic expression vector pCAGGS did not lead to sufficient level of production of the target proteins in the eukaryotic HEK-293 cell line. However, introduction of the Kozak consensus sequence (ACCATGG) in the cloned bacterial genes greatly enhanced production of inserted gene in eukaryotic cells, creating desired DNA vaccines. Subsequently, the validated DNA vaccines were prepared and used for two independent in ovo vaccination trials to evaluate their immune response and protective efficacy. However, single in ovo injection of specific DNA vaccine at 18th day of embryonation, regardless using neutral lipid-protected vector or not, failed to trigger significant IgG and IgA immune responses and did not confer protection against C. jejuni colonization in the intestine of chickens. In conclusion, this study demonstrates that the Kozak sequence is critically important for construction of the DNA vaccine expressing prokaryotic gene. The optimal regimen for in ovo vaccination of DNA vaccine for Campylobacter control in poultry needs to be determined in future studies.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN 37996, USA
| | - Lindsay Jones Adams
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN 37996, USA
| | - Ximin Zeng
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN 37996, USA
| | - Jun Lin
- Department of Animal Science, The University of Tennessee, 2506 River Drive, Knoxville, TN 37996, USA.
| |
Collapse
|
4
|
Besingi RN, Wenderska IB, Senadheera DB, Cvitkovitch DG, Long JR, Wen ZT, Brady LJ. Functional amyloids in Streptococcus mutans, their use as targets of biofilm inhibition and initial characterization of SMU_63c. MICROBIOLOGY-SGM 2017; 163:488-501. [PMID: 28141493 DOI: 10.1099/mic.0.000443] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Amyloids have been identified as functional components of the extracellular matrix of bacterial biofilms. Streptococcus mutans is an established aetiologic agent of dental caries and a biofilm dweller. In addition to the previously identified amyloidogenic adhesin P1 (also known as AgI/II, PAc), we show that the naturally occurring antigen A derivative of S. mutans wall-associated protein A (WapA) and the secreted protein SMU_63c can also form amyloid fibrils. P1, WapA and SMU_63c were found to significantly influence biofilm development and architecture, and all three proteins were shown by immunogold electron microscopy to reside within the fibrillar extracellular matrix of the biofilms. We also showed that SMU_63c functions as a negative regulator of biofilm cell density and genetic competence. In addition, the naturally occurring C-terminal cleavage product of P1, C123 (also known as AgII), was shown to represent the amyloidogenic moiety of this protein. Thus, P1 and WapA both represent sortase substrates that are processed to amyloidogenic truncation derivatives. Our current results suggest a novel mechanism by which certain cell surface adhesins are processed and contribute to the amyloidogenic capability of S. mutans. We further demonstrate that the polyphenolic small molecules tannic acid and epigallocatechin-3-gallate, and the benzoquinone derivative AA-861, which all inhibit amyloid fibrillization of C123 and antigen A in vitro, also inhibit S. mutans biofilm formation via P1- and WapA-dependent mechanisms, indicating that these proteins serve as therapeutic targets of anti-amyloid compounds.
Collapse
Affiliation(s)
- Richard N Besingi
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| | - Iwona B Wenderska
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Dilani B Senadheera
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Dennis G Cvitkovitch
- Department of Oral Microbiology, Faculty of Dentistry, University of Toronto, Toronto, ON, Canada
| | - Joanna R Long
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, USA
| | - Zezhang T Wen
- Department of Comprehensive Dentistry and Biomaterials and Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - L Jeannine Brady
- Department of Oral Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Cholera Toxin Subunit B as Adjuvant--An Accelerator in Protective Immunity and a Break in Autoimmunity. Vaccines (Basel) 2015; 3:579-96. [PMID: 26350596 PMCID: PMC4586468 DOI: 10.3390/vaccines3030579] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/07/2015] [Accepted: 07/20/2015] [Indexed: 11/16/2022] Open
Abstract
Cholera toxin subunit B (CTB) is the nontoxic portion of cholera toxin. Its affinity to the monosialotetrahexosylganglioside (GM1) that is broadly distributed in a variety of cell types including epithelial cells of the gut and antigen presenting cells, macrophages, dendritic cells, and B cells, allows its optimal access to the immune system. CTB can easily be expressed on its own in a variety of organisms, and several approaches can be used to couple it to antigens, either by genetic fusion or by chemical manipulation, leading to strongly enhanced immune responses to the antigens. In autoimmune diseases, CTB has the capacity to evoke regulatory responses and to thereby dampen autoimmune responses, in several but not all animal models. It remains to be seen whether the latter approach translates to success in the clinic, however, the versatility of CTB to manipulate immune responses in either direction makes this protein a promising adjuvant for vaccine development.
Collapse
|
6
|
Li H, Wang D. Streptococcus mutans wall-associated protein A promotes TLR4-induced dendritic cell maturation. Scand J Immunol 2014; 80:121-6. [PMID: 24846569 DOI: 10.1111/sji.12194] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/03/2014] [Indexed: 01/11/2023]
Abstract
Dendritic cells orchestrate innate and adaptive immune responses, which are central to establishing efficient responses to vaccination. Wall-associated protein A (WapA) of Streptococcus mutans was previously used as a vaccine in animal studies for immunization against dental caries. However, as a cell surface protein, whether WapA activates innate immune responses and the effects of WapA on DCs remain unclear. In this study, WapA was cloned into the GST fusion vector pEBG, which can be expressed efficiently in mammalian cells. We found that when added before stimulation with LPS, purified WapA-GST protein increased TLR4-induced NF-κB and MAPK signalling pathway activation. Pretreatment with WapA-GST also increased LPS-induced proinflammatory cytokine production by DCs, including IL-12, IL-6 and TNF-α. Furthermore, expression of the DC maturation markers CD80/86, CD40 and MHC II was also increased by WapA pretreatment. These data indicate that WapA is recognized by DCs and promotes DC maturation.
Collapse
Affiliation(s)
- H Li
- Department of Stomatology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | | |
Collapse
|
7
|
DNA-Encoded Flagellin Activates Toll-Like Receptor 5 (TLR5), Nod-like Receptor Family CARD Domain-Containing Protein 4 (NRLC4), and Acts as an Epidermal, Systemic, and Mucosal-Adjuvant. Vaccines (Basel) 2013; 1:415-43. [PMID: 26344341 PMCID: PMC4494208 DOI: 10.3390/vaccines1040415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/27/2013] [Accepted: 08/30/2013] [Indexed: 01/28/2023] Open
Abstract
Eliciting effective immune responses using non-living/replicating DNA vaccines is a significant challenge. We have previously shown that ballistic dermal plasmid DNA-encoded flagellin (FliC) promotes humoral as well as cellular immunity to co-delivered antigens. Here, we observe that a plasmid encoding secreted FliC (pFliC(-gly)) produces flagellin capable of activating two innate immune receptors known to detect flagellin; Toll-like Receptor 5 (TLR5) and Nod-like Receptor family CARD domain-containing protein 4 (NRLC4). To test the ability of pFliC(-gly) to act as an adjuvant we immunized mice with plasmid encoding secreted FliC (pFliC(-gly)) and plasmid encoding a model antigen (ovalbumin) by three different immunization routes representative of dermal, systemic, and mucosal tissues. By all three routes we observed increases in antigen-specific antibodies in serum as well as MHC Class I-dependent cellular immune responses when pFliC(-gly) adjuvant was added. Additionally, we were able to induce mucosal antibody responses and Class II-dependent cellular immune responses after mucosal vaccination with pFliC(-gly). Humoral immune responses elicited by heterologus prime-boost immunization with a plasmid encoding HIV-1 from gp160 followed by protein boosting could be enhanced by use of pFliC(-gly). We also observed enhancement of cross-clade reactive IgA as well as a broadening of B cell epitope reactivity. These observations indicate that plasmid-encoded secreted flagellin can activate multiple innate immune responses and function as an adjuvant to non-living/replicating DNA immunizations. Moreover, the capacity to elicit mucosal immune responses, in addition to dermal and systemic properties, demonstrates the potential of flagellin to be used with vaccines designed to be delivered by various routes.
Collapse
|
8
|
Rama AR, Prados J, Melguizo C, Burgos M, Alvarez PJ, Rodriguez-Serrano F, Ramos JL, Aranega A. Synergistic antitumoral effect of combination E gene therapy and Doxorubicin in MCF-7 breast cancer cells. Biomed Pharmacother 2011; 65:260-70. [PMID: 21723082 DOI: 10.1016/j.biopha.2011.01.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 01/17/2011] [Indexed: 10/18/2022] Open
Abstract
The low effectiveness of conventional therapies to achieve the long-term survival of metastatic breast cancer patients calls for the development of novel options. Genes encoding cytotoxic proteins have been proposed as a new strategy to enhance the antiproliferative activity of drugs. Combined therapy using these genes and classical antitumoral drugs are under intensive study. The E gene from ϕX174 encodes a membrane protein with a toxic domain that leads to a decrease in the tumour cell growth rate. With the aim of improving the anti-tumour effect on breast cancer cells of the currently used chemotherapeutic drugs (Paclitaxel, Docetaxel and Doxorubicin), we investigated the association of E suicide gene with these drugs. The effect of the combined therapy (gene therapy and cytotoxic) was determined by treating transfected MCF-7 cells and multicellular tumour spheroids (MTS) with drugs gradient concentrations. Our results showed that E gene has a direct oncolytic effect inducing a significant decrease in the proliferation rate of the MCF-7 cells. The E gene antitumoral activity was mediated by the induction of apoptosis (mitochondrial pathway). In addition, a significant enhancement of proliferation inhibition was observed when E gene transfection was associated with cytotoxic drugs in comparison to single treatments. The use of the combined therapy E gene-Doxorubicin obtained the greatest effect on the MCF-7 growth arrest. This therapeutic association also induced a significant enhancement of the MTS volume growth inhibition. Anti-tumour activity of the chemotherapeutic drugs classically used in the treatment of breast cancer was enhanced by E gene. Our in vitro results indicate that experimental therapeutic strategy based in the combined therapy E gene and cytotoxic drugs may be of potential therapeutic value as a new strategy for patients with advanced breast cancer.
Collapse
Affiliation(s)
- Ana R Rama
- Institute of Biopathology and Regenerative Medicine (IBIMER), Dept. Anatomía y Embriología, Facultad de Medicina, University of Granada, 18071 Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Li YH, Huang S, Du M, Bian Z, Chen Z, Fan MW. Immunogenic characterization and protection against Streptococcus mutans infection induced by intranasal DNA prime–protein boost immunization. Vaccine 2010; 28:5370-6. [DOI: 10.1016/j.vaccine.2010.04.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 04/14/2010] [Accepted: 04/23/2010] [Indexed: 01/25/2023]
|
10
|
Liu GX, Xu QA, Jin J, Li YH, Jia R, Guo JH, Fan MW. Mucosal and systemic immunization with targeted fusion anti-caries DNA plasmid in young rats. Vaccine 2009; 27:2940-7. [PMID: 19428904 DOI: 10.1016/j.vaccine.2009.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 03/01/2009] [Accepted: 03/04/2009] [Indexed: 10/21/2022]
Abstract
Early life vaccination is necessary to protect young children from dental caries. Our group had previously reported that a plasmid DNA vaccine pGJA-P/VAX against the glucosyltransferase (GTF) enzyme and cell surface antigen AgI/II (PAc) of Streptococcus mutans (S. mutans) elicited a specific and protective immunity in adult experimental animal models. In this report, early life immunization with the same plasmid was studied following intranasal (i.n.) and intramuscular (i.m.) delivery in murine models. The potential of inducing mucosal and systemic immune responses to special antigens was measured by ELISA. In addition, cytokine production and protection effectiveness against dental caries formation were also investigated. In the i.n. route, rats were primed when they were 5 days old, and boosted after 10 and 20 days with either plasmid pGJA-P/VAX-bupivacaine complexes, or pGJA-P/VAX alone, or empty vector. The pGJA-P/VAX-bupivacaine combination was able to mount the immune responses characterized by increased antibody levels of specific salivary IgA and serum IgG, preferential IFN-gamma production and significant reduction in the dental caries lesions. In the i.m. route, rats were vaccinated with either pGJA-P/VAX alone or empty vector with the same immunization schedule as the i.n. route. Plasmid pGJA-P/VAX alone induced a significant increase in the serum IgG and IFN-gamma production. However, it was not effective in eliciting specific salivary IgA and in decreasing the dental caries formation. All these findings indicate the feasibility of immunity with a targeted fusion DNA vaccine to a young immune system.
Collapse
Affiliation(s)
- G X Liu
- Key Laboratory for Oral Biomedical Engineering of Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | | | | | | | | | | | | |
Collapse
|