1
|
Hau PT, Shiu A, Tam EWT, Chau ECT, Murillo M, Humer E, Po WW, Yu RCW, Fung J, Seto SW, Tsang CC, Chow FWN. Diversity and Antifungal Susceptibilities of Yeasts from Mangroves in Hong Kong, China-A One Health Aspect. J Fungi (Basel) 2024; 10:728. [PMID: 39452680 PMCID: PMC11508678 DOI: 10.3390/jof10100728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 10/26/2024] Open
Abstract
While mangrove ecosystems are rich in biodiversity, they are increasingly impacted by climate change and urban pollutants. The current study provides first insights into the emergence of potentially pathogenic yeasts in Hong Kong's mangroves. Sediment and water samples were collected from ten urban and rural mangroves sites. Initial CHROMagarTM Candida Plus screening, representing the first application of this differential medium for water and soil samples collected from a non-clinical environment, enabled the rapid, preliminary phenotypic identification of yeast isolates from mangroves. Subsequent molecular profiling (ITS and/or 28S nrDNA sequencing) and antifungal drug susceptibility tests were conducted to further elucidate yeast diversity and drug resistance. A diversity of yeasts, including 45 isolates of 18 distinct species across 13 genera/clades, was isolated from sediments and waters from Hong Kong mangroves. Molecular profiling revealed a dominance of the Candida/Lodderomyces clade (44.4%), a group of notorious opportunistic pathogens. The findings also reveal a rich biodiversity of non-Candida/Lodderomyces yeasts in mangroves, including the first reported presence of Apiotrichum domesticum and Crinitomyces flavificans. A potentially novel Yamadazyma species was also discovered. Remarkably, 14.3% of the ubiquitous Candida parapsilosis isolates displayed resistance to multiple antifungal drugs, suggesting that mangroves may be reservoirs of multi-drug resistance. Wildlife, especially migratory birds, may disseminate these hidden threats. With significant knowledge gaps regarding the environmental origins, drug resistance, and public health impacts of pathogenic yeasts, urgent surveillance is needed from a One Health perspective. This study provides an early warning that unrestrained urbanization can unleash resistant pathogens from coastal ecosystems globally. It underscores the necessity for enhanced surveillance studies and interdisciplinary collaboration between clinicians, ornithologists, and environmental microbiologists to effectively monitor and manage this environmental health risk, ensuring the maintenance of 'One Health'.
Collapse
Affiliation(s)
- Pak-Ting Hau
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Anson Shiu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Emily Wan-Ting Tam
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong, China;
| | - Eddie Chung-Ting Chau
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Michaela Murillo
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Eva Humer
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
- Department of Medical and Pharmaceutical Biotechnology, IMC University of Applied Sciences Krems, Am Campus Krems, Trakt G, 3500 Krems an der Donau, Austria
| | - Wai-Wai Po
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Ray Chun-Wai Yu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Joshua Fung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| | - Sai-Wang Seto
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, China;
- School of Biomedical Sciences, The University of Western Australia, Perth 6009, WA, Australia
| | - Chi-Ching Tsang
- School of Medical and Health Sciences, Tung Wah College, Hong Kong, China
| | - Franklin Wang-Ngai Chow
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China; (P.-T.H.); (E.C.-T.C.); (M.M.); (R.C.-W.Y.); (J.F.)
| |
Collapse
|
2
|
Dornelles G, Araújo GRDS, Rodrigues M, Alves V, Almeida-Paes R, Frases S. Comparative Analysis of Capsular and Secreted Polysaccharides Produced by Rhodotorula mucilaginosa and Cryptococcus neoformans. J Fungi (Basel) 2023; 9:1124. [PMID: 37998929 PMCID: PMC10672113 DOI: 10.3390/jof9111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 11/25/2023] Open
Abstract
Fungal infections are a global public health challenge, especially among immunocompromised patients. Basidiomycetous yeasts, such as Rhodotorula mucilaginosa, have emerged as opportunistic pathogens, but have received less attention than Cryptococcus neoformans. This study aimed to characterize the polysaccharides of R. mucilaginosa and compare them with those of C. neoformans, analyzing their clinical implications. Comprehensive physicochemical, mechanical, and ultrastructural analyses of polysaccharides from both species were performed, revealing correlations with virulence and pathogenicity. R. mucilaginosa cells are surrounded by a capsule smaller than that produced by C. neoformans, but with similar polysaccharides. Those polysaccharides are also secreted by R. mucilaginosa. Cross-reactivity with R. mucilaginosa was observed in a diagnostic C. neoformans antigen test, using both in vitro and in vivo samples, highlighting the need for more reliable tests. Some R. mucilaginosa strains exhibited virulence comparable to that of C. neoformans in an invertebrate experimental model (Tenebrio molitor). This study contributes to a deeper understanding of yeast pathogenicity and virulence, highlighting the need for more accurate diagnostic tests to improve the differential diagnosis of infections caused by basidiomycetous yeasts.
Collapse
Affiliation(s)
- Gustavo Dornelles
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (G.D.); (G.R.d.S.A.); (M.R.); (V.A.)
| | - Glauber R. de S. Araújo
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (G.D.); (G.R.d.S.A.); (M.R.); (V.A.)
| | - Marcus Rodrigues
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (G.D.); (G.R.d.S.A.); (M.R.); (V.A.)
| | - Vinicius Alves
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (G.D.); (G.R.d.S.A.); (M.R.); (V.A.)
| | - Rodrigo Almeida-Paes
- Laboratório de Micologia, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-900, Brazil;
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21040-360, Brazil
| | - Susana Frases
- Laboratório de Biofísica de Fungos, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil; (G.D.); (G.R.d.S.A.); (M.R.); (V.A.)
- Rede Micologia RJ, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
3
|
Thompson GR, Jenks JD, Baddley JW, Lewis JS, Egger M, Schwartz IS, Boyer J, Patterson TF, Chen SCA, Pappas PG, Hoenigl M. Fungal Endocarditis: Pathophysiology, Epidemiology, Clinical Presentation, Diagnosis, and Management. Clin Microbiol Rev 2023; 36:e0001923. [PMID: 37439685 PMCID: PMC10512793 DOI: 10.1128/cmr.00019-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023] Open
Abstract
Fungal endocarditis accounts for 1% to 3% of all infective endocarditis cases, is associated with high morbidity and mortality (>70%), and presents numerous challenges during clinical care. Candida spp. are the most common causes of fungal endocarditis, implicated in over 50% of cases, followed by Aspergillus and Histoplasma spp. Important risk factors for fungal endocarditis include prosthetic valves, prior heart surgery, and injection drug use. The signs and symptoms of fungal endocarditis are nonspecific, and a high degree of clinical suspicion coupled with the judicious use of diagnostic tests is required for diagnosis. In addition to microbiological diagnostics (e.g., blood culture for Candida spp. or galactomannan testing and PCR for Aspergillus spp.), echocardiography remains critical for evaluation of potential infective endocarditis, although radionuclide imaging modalities such as 18F-fluorodeoxyglucose positron emission tomography/computed tomography are increasingly being used. A multimodal treatment approach is necessary: surgery is usually required and should be accompanied by long-term systemic antifungal therapy, such as echinocandin therapy for Candida endocarditis or voriconazole therapy for Aspergillus endocarditis.
Collapse
Affiliation(s)
- George R. Thompson
- Department of Internal Medicine, Division of Infectious Diseases, University of California-Davis Medical Center, Sacramento, California, USA
- Department of Medical Microbiology and Immunology, University of California-Davis, Davis, California, USA
| | - Jeffrey D. Jenks
- Durham County Department of Public Health, Durham, North Carolina, USA
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - John W. Baddley
- Department of Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - James S. Lewis
- Department of Pharmacy, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthias Egger
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Ilan S. Schwartz
- Division of Infectious Diseases, Department of Medicine, Duke University, Durham, North Carolina, USA
| | - Johannes Boyer
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Medicine, Medical University of Graz, Graz, Austria
| | - Thomas F. Patterson
- Department of Medicine, Division of Infectious Diseases, The University of Texas Health Science Center, San Antonio, Texas, USA
| | - Sharon C.-A. Chen
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research, New South Wales Health Pathology, Sydney, New South Wales, Australia
- Centre for Infectious Diseases and Microbiology, Westmead Hospital, The University of Sydney, Sydney, New South Wales, Australia
| | - Peter G. Pappas
- Department of Medicine Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Medicine, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
4
|
Gil Ó, Hernández-Pabón JC, Tabares B, Lugo-Sánchez C, Firacative C. Rare Yeasts in Latin America: Uncommon Yet Meaningful. J Fungi (Basel) 2023; 9:747. [PMID: 37504735 PMCID: PMC10381163 DOI: 10.3390/jof9070747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023] Open
Abstract
Systemic infections caused by rare yeasts are increasing given the rise in immunocompromised or seriously ill patients. Even though globally, the clinical significance of these emerging opportunistic yeasts is increasingly being recognized, less is known about the epidemiology of rare yeasts in Latin America. This review collects, analyzes, and contributes demographic and clinical data from 495 cases of infection caused by rare yeasts in the region. Among all cases, 32 species of rare yeasts, distributed in 12 genera, have been reported in 8 Latin American countries, with Trichosporon asahii (49.5%), Rhodotorula mucilaginosa (11.1%), and Saccharomyces cerevisiae (7.8%) the most common species found. Patients were mostly male (58.3%), from neonates to 84 years of age. Statistically, surgery and antibiotic use were associated with higher rates of Trichosporon infections, while central venous catheter, leukemia, and cancer were associated with higher rates of Rhodotorula infections. From all cases, fungemia was the predominant diagnosis (50.3%). Patients were mostly treated with amphotericin B (58.7%). Crude mortality was 40.8%, with a higher risk of death from fungemia and T. asahii infections. Culture was the main diagnostic methodology. Antifungal resistance to one or more drugs was reported in various species of rare yeasts.
Collapse
Affiliation(s)
- Óscar Gil
- Group MICROS Research Incubator, School of Medicine and Health Sciences, Universidad de Rosario, Bogota 111221, Colombia
| | - Juan Camilo Hernández-Pabón
- Group MICROS Research Incubator, School of Medicine and Health Sciences, Universidad de Rosario, Bogota 111221, Colombia
| | - Bryan Tabares
- Group MICROS Research Incubator, School of Medicine and Health Sciences, Universidad de Rosario, Bogota 111221, Colombia
- Unidad de Extensión Hospitalaria, Hospital Universitario Mayor Méderi, Bogota 111411, Colombia
| | - Carlos Lugo-Sánchez
- Group MICROS Research Incubator, School of Medicine and Health Sciences, Universidad de Rosario, Bogota 111221, Colombia
| | - Carolina Firacative
- Studies in Translational Microbiology and Emerging Diseases (MICROS) Research Group, School of Medicine and Health Sciences, Universidad de Rosario, Bogota 111221, Colombia
| |
Collapse
|
5
|
Ioannou P, Alexakis K, Kofteridis DP. Endocarditis in kidney transplant recipients: a systematic review. J Chemother 2020; 33:269-275. [PMID: 33327869 DOI: 10.1080/1120009x.2020.1861512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Infective Endocarditis (IE) carries significant mortality. Bacteremia, which is a predisposing factor for IE, occurs more frequently in immunocompromised individuals. Interestingly, IE in kidney transplant recipients has not been adequately described. The aim of this study was to systematically review all published cases of IE in kidney transplant recipients and describe their epidemiology, microbiology, clinical characteristics, treatment and outcomes. A systematic review of PubMed (through 13th December 2019) for studies providing epidemiological, clinical, microbiological as well as treatment data and outcomes of IE in kidney transplant recipients was performed. A total of 60 studies, containing data of 117 patients, were included in the analysis. The most common causative pathogens were gram-positive microorganisms in 57.4%, gram-negative microorganisms in 14.8%, fungi in 20%, while in 18.9% of cases, IE was culture-negative. Aortic valve was the most commonly infected valve followed by mitral, tricuspid and the pulmonary valve. Diagnosis was set with a transthoracic ultrasound in half the cases, followed by transesophageal ultrasound and autopsy. Fever was present in most cases, while embolic phenomena were noted in two out of five cases. Aminoglycosides, cephalosporins and aminopenicillins were the most commonly used antimicrobials, and surgical management was performed in one out of three cases. Clinical cure was noted in 60.9%, while overall mortality was 45.3%. To conclude, this systematic review thoroughly describes IE in kidney transplant recipients and provides information on epidemiology, clinical presentation, treatment and outcomes. Moreover, it identifies the emerging role of Enterococci, gram-negatives and fungi in IE in this population.
Collapse
Affiliation(s)
- Petros Ioannou
- Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, Heraklion, Greece
| | - Konstantinos Alexakis
- Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, Heraklion, Greece
| | - Diamantis P Kofteridis
- Department of Internal Medicine & Infectious Diseases, University Hospital of Heraklion, Heraklion, Greece
| |
Collapse
|
6
|
Ioannou P, Papakitsou I, Kofteridis DP. Fungal endocarditis in transplant recipients: A systematic review. Mycoses 2020; 63:952-963. [PMID: 32557938 DOI: 10.1111/myc.13132] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/07/2020] [Accepted: 06/11/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Invasive fungal infections remain a major cause of morbidity and mortality in transplant recipients. Moreover, Fungal Infective Endocarditis (FIE) is a rare infection that carries a higher mortality than bacterial IE in normal host, while in transplant recipients may be even higher. The purpose of this study was to systemically review all published cases of FIE in solid organ and allogeneic bone marrow transplant recipients, describe the epidemiology, microbiology, clinical characteristics, treatment and outcomes of these infections, and to identify risk factors for mortality by FIE. METHODS A systematic review of PubMed, Scopus and Cochrane Library (through 20 May 2020) for studies providing epidemiological, clinical, microbiological and treatment data and outcomes of FIE in transplant recipients was performed. RESULTS A total of 60 studies, containing data of 72 patients, were included. The most common transplants were those of the kidney and the liver, while the commonest causative pathogen was Aspergillus. Mitral valve was the commonest infected intracardiac site, followed by mural endocardium. Diagnosis was made with transthoracic echocardiography in 44.3%, while the diagnosis was made at autopsy in 37.3%. Embolic phenomena were the commonest clinical presentation, followed by fever, heart failure and endophthalmitis. Amphotericin B, voriconazole and caspofungin were the commonest antifungals used for treatment of FIE. Clinical cure was noted in 26.9%, while overall mortality was 78.6%. Amphotericin B or caspofungin use was negatively associated with overall mortality. CONCLUSIONS This systematic review thoroughly describes IE in transplant recipients and provides information on epidemiology, clinical presentation, treatment and outcomes.
Collapse
Affiliation(s)
- Petros Ioannou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, Heraklion, Greece
| | - Ioanna Papakitsou
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, Heraklion, Greece
| | - Diamantis P Kofteridis
- Department of Internal Medicine and Infectious Diseases, University Hospital of Heraklion, Heraklion, Greece
| |
Collapse
|
7
|
Jarros IC, Veiga FF, Corrêa JL, Barros ILE, Gadelha MC, Voidaleski MF, Pieralisi N, Pedroso RB, Vicente VA, Negri M, Svidzinski TIE. Microbiological and virulence aspects of Rhodotorula mucilaginosa. EXCLI JOURNAL 2020; 19:687-704. [PMID: 32536838 PMCID: PMC7290102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 05/25/2020] [Indexed: 11/01/2022]
Abstract
We aimed to characterize microbiologically clinical isolates of R. mucilaginosa isolated from colonization of a patient with chronic renal disease (CKD), as well as to evaluate their phylogeny, antifungal susceptibility, virulence, and pathogenicity in order to infer the potential to become a possible infective agent. For this study, two isolates of R. mucilaginosa from oral colonization of a CKD patient were isolated, identified and characterized by classical (genotypic and phenotypic) methods. Susceptibility to conventional antifungals was evaluated, followed by biofilm production, measured by different techniques (total biomass, metabolic activity, colony forming units and extracellular matrix quantification). Finally, the pathogenicity of yeast was evaluated by infection of Tenebrio molitor larvae. All isolates were resistant to azole and sensitive to polyenes and they were able to adhere and form biofilm on the abiotic surface of polystyrene. In general, similar profiles among isolates were observed over the observed periods (2, 24, 48 and 72 hours). Regarding extracellular matrix components of biofilms at different maturation ages, R. mucilaginosa was able to produce eDNA, eRNA, proteins, and polysaccharides that varied according to time and the strain. The death curve in vivo model showed a large reduction in the survival percentage of the larvae was observed in the first 24 hours, with only 40 % survival at the end of the evaluation. We infer that colonization of chronic renal patients by R. mucilaginosa offers a high risk of serious infection. And also emphasize that the correct identification of yeast is the main means for an efficient treatment.
Collapse
Affiliation(s)
- Isabele Carrilho Jarros
- Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analyses – Department of Clinical Analysis of State University of Maringá, Paraná, Brazil
| | - Flávia Franco Veiga
- Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analyses – Department of Clinical Analysis of State University of Maringá, Paraná, Brazil
| | - Jakeline Luiz Corrêa
- Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analyses – Department of Clinical Analysis of State University of Maringá, Paraná, Brazil
| | - Isabella Letícia Esteves Barros
- Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analyses – Department of Clinical Analysis of State University of Maringá, Paraná, Brazil
| | - Marina Cristina Gadelha
- Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analyses – Department of Clinical Analysis of State University of Maringá, Paraná, Brazil
| | - Morgana F. Voidaleski
- Postgraduate Program in Microbiology, Parasitology, and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
| | - Neli Pieralisi
- Department of Dentistry, State University of Maringá, Maringá, Paraná, Brazil
| | - Raissa Bocchi Pedroso
- Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analyses – Department of Clinical Analysis of State University of Maringá, Paraná, Brazil
| | - Vânia A. Vicente
- Postgraduate Program in Microbiology, Parasitology, and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Parana, Curitiba, Brazil
| | - Melyssa Negri
- Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analyses – Department of Clinical Analysis of State University of Maringá, Paraná, Brazil
| | - Terezinha Inez Estivalet Svidzinski
- Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analyses – Department of Clinical Analysis of State University of Maringá, Paraná, Brazil,*To whom correspondence should be addressed: Terezinha Inez Estivalet Svidzinski, Division of Medical Mycology, Teaching and Research Laboratory in Clinical Analysis – Department of Clinical Analysis of State University of Maringá, Paraná, Brazil, Av. Colombo, 5790 CEP: 87020-900, Maringá, PR., Brazil; Phone: +5544 3011-4809, Fax: +5544 3011-4860, E-mail: or
| |
Collapse
|
8
|
Brito-Santos F, Figueiredo-Carvalho MHG, Coelho RA, de Oliveira JCA, Monteiro RV, da Silva Chaves AL, Almeida-Paes R. Molecular identification and antifungal susceptibility testing of Pucciniomycotina red yeast clinical isolates from Rio de Janeiro, Brazil. Braz J Microbiol 2019; 51:95-98. [PMID: 31776863 DOI: 10.1007/s42770-019-00191-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 11/13/2019] [Indexed: 11/30/2022] Open
Abstract
Infections caused by Rhodotorula spp. are increasing worldwide. This study identified, through the light of the new taxonomic advances on the subphylum Pucciniomycotina, 16 isolates from blood cultures and compared their antifungal susceptibility on microdilution and gradient diffusion methods. Internal transcriber spacer sequencing identified Rhodotorula mucilaginosa (n = 12), Rhodotorula toruloides (n = 2), Rhodotorula dairenensis (n = 1), and Cystobasidium minutum (n = 1). Amphotericin B was the most effective drug. A good essential agreement was observed on MIC values of amphotericin B and voriconazole determined by the two methods. Therefore, the gradient method is useful for susceptibility tests of R. mucilaginosa against these drugs.
Collapse
Affiliation(s)
- Fabio Brito-Santos
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, FIOCRUZ, Av. Brazil 4365, Manguinhos, Rio de Janeiro, RJ, 21045-900, Brazil.
| | - Maria Helena Galdino Figueiredo-Carvalho
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, FIOCRUZ, Av. Brazil 4365, Manguinhos, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Rowena Alves Coelho
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, FIOCRUZ, Av. Brazil 4365, Manguinhos, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Jean Carlos Almeida de Oliveira
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, FIOCRUZ, Av. Brazil 4365, Manguinhos, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Raissa Vieira Monteiro
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, FIOCRUZ, Av. Brazil 4365, Manguinhos, Rio de Janeiro, RJ, 21045-900, Brazil
| | | | - Rodrigo Almeida-Paes
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, FIOCRUZ, Av. Brazil 4365, Manguinhos, Rio de Janeiro, RJ, 21045-900, Brazil
| |
Collapse
|