1
|
Yang X, Yu X, Zhou L, Wang D, Chen W. Exploring nagZ as a virulence biomarker and treatment target in Enterobacter cloacae. BMC Microbiol 2025; 25:10. [PMID: 39789468 PMCID: PMC11715595 DOI: 10.1186/s12866-024-03718-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Enterobacter cloacae is increasingly prevalent and resistant to multiple antibiotics, making it a significant pathogen in healthcare settings with high mortality rates. However, its pathogenic mechanisms are not fully understood. RESULTS In this study, we explored the role of nagZ in regulating the virulence of E. cloacae and its potential as a therapeutic target. Our research showed that pathogenic strains of E. cloacae express higher levels of nagZ than colonizing strains, particularly in simulated infection environments. Deleting nagZ significantly reduced E. cloacae virulence in various infection models, including Galleria mellonella larvae, mice, and RAW264.7 cells. Moreover, nagZ knockout decreased the bacterium's ability to induce inflammatory factor levels, while complementing nagZ in knockout strains partially rescued this ability. Importantly, the absence of nagZ also enhanced the antibacterial efficacy of ceftazidime against E. cloacae. CONCLUSIONS These findings underscore the crucial role of nagZ in E. cloacae pathogenesis and highlight its potential as a novel therapeutic target for treating infections caused by this pathogen.
Collapse
Affiliation(s)
- Xianggui Yang
- Department of Laboratory Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, P.R. China
| | - Xuejing Yu
- Institute for Heart and Brain Health, University of Michigan Medical Center, Ann Arbor, MI, 48109, USA
| | - Li Zhou
- Department of Clinical Laboratory, the First Affiliated Hospital of Army Medical University, Chongqing, 400038, P.R. China
| | - Dan Wang
- Department of Laboratory Medicine, Clinical Medical College and the First Affiliated Hospital of Chengdu Medical College, Chengdu, Sichuan, 610500, P.R. China
| | - Weixian Chen
- Department of Laboratory Medicine, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400010, P.R. China.
| |
Collapse
|
2
|
Feng R, Wang H, Zhang X, Li T, Huang C, Zhang S, Sun M, Shi C, Hu J, Gou J. Characteristics of Corynespora cassiicola, the causal agent of tobacco Corynespora leaf spot, revealed by genomic and metabolic phenomic analysis. Sci Rep 2024; 14:18326. [PMID: 39112526 PMCID: PMC11306238 DOI: 10.1038/s41598-024-67510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
Corynespora cassiicola is a highly diverse fungal pathogen that commonly occurs in tropical, subtropical, and greenhouse environments worldwide. In this study, the isolates were identified as C. cassiicola, and the optimum growth and sporulation were studied. The phenotypic characteristics of C. cassiicola, concerning 950 different growth conditions, were tested using Biolog PM plates 1-10. In addition, the strain of C. cassiicola DWZ from tobacco hosts was sequenced for the using Illumina PE150 and Pacbio technologies. The host resistance of tobacco Yunyan 87 with different maturity levels was investigated. In addition, the resistance evaluation of 10 common tobacco varieties was investigated. The results showed that C. cassiicola metabolized 89.47% of the tested carbon source, 100% of the nitrogen source, 100% of the phosphorus source, and 97.14% of the sulfur source. It can adapt to a variety of different osmotic pressure and pH environments, and has good decarboxylase and deaminase activities. The optimum conditions for pathogen growth and sporulation were 25-30 °C, and the growth was better on AEA and OA medium. The total length of the genome was 45.9 Mbp, the GC content was 51.23%, and a total of 13,061 protein-coding genes, 202 non-coding RNAs and 2801 and repeat sequences were predicted. Mature leaves were more susceptible than proper mature and immature leaves, and the average diameter of diseased spots reached 17.74 mm at 12 days. None of the tested ten cultivars exhibited obvious resistance to Corynespora leaf spot of tobacco, whereby all disease spot diameters reached > 10 mm and > 30 mm when at 5 and 10 days after inoculation, respectively. The phenotypic characteristics, genomic analysis of C. cassiicola and the cultivar resistance assessment of this pathogen have increased our understanding of Corynespora leaf spot of tobacco.
Collapse
Affiliation(s)
- Ruichao Feng
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, 550081, People's Republic of China
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Hancheng Wang
- Guizhou Provincial Academician Workstation of Microbiology and Health, Guizhou Academy of Tobacco Science, Guiyang, 550081, People's Republic of China.
| | - Xinghong Zhang
- College of Agricultural Sciences, Guizhou University, Guiyang, 550081, People's Republic of China
| | - Tong Li
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Chunyang Huang
- Zunyi Branch of Guizhou Tobacco Company, Zunyi Guizhou, 564200, People's Republic of China
| | - Songbai Zhang
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, People's Republic of China.
| | - Meili Sun
- Hubei Engineering Research Center for Pest Forewarning and Management, Yangtze University, Jingzhou, 434025, People's Republic of China
| | - Caihua Shi
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, People's Republic of China
| | - Jingrong Hu
- Institute of Advanced Agricultural Science, Hubei University of Arts and Science, Xiangyang, Hubei Province, 441053, People's Republic of China
| | - Jianyu Gou
- Zunyi Branch of Guizhou Tobacco Company, Zunyi Guizhou, 564200, People's Republic of China.
| |
Collapse
|
3
|
Parkins MD, Lee BE, Acosta N, Bautista M, Hubert CRJ, Hrudey SE, Frankowski K, Pang XL. Wastewater-based surveillance as a tool for public health action: SARS-CoV-2 and beyond. Clin Microbiol Rev 2024; 37:e0010322. [PMID: 38095438 PMCID: PMC10938902 DOI: 10.1128/cmr.00103-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2024] Open
Abstract
Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.
Collapse
Affiliation(s)
- Michael D. Parkins
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- O’Brien Institute of Public Health, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Bonita E. Lee
- Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | - Nicole Acosta
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria Bautista
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Casey R. J. Hubert
- Department of Biological Sciences, Faculty of Science, University of Calgary, Calgary, Alberta, Canada
| | - Steve E. Hrudey
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
| | - Kevin Frankowski
- Advancing Canadian Water Assets, University of Calgary, Calgary, Alberta, Canada
| | - Xiao-Li Pang
- Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, Alberta, Canada
- Provincial Health Laboratory, Alberta Health Services, Calgary, Alberta, Canada
| |
Collapse
|
4
|
El-Beltagi HS, Halema AA, Almutairi ZM, Almutairi HH, Elarabi NI, Abdelhadi AA, Henawy AR, Abdelhaleem HAR. Draft genome analysis for Enterobacter kobei, a promising lead bioremediation bacterium. Front Bioeng Biotechnol 2024; 11:1335854. [PMID: 38260751 PMCID: PMC10800491 DOI: 10.3389/fbioe.2023.1335854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Lead pollution of the environment poses a major global threat to the ecosystem. Bacterial bioremediation offers a promising alternative to traditional methods for removing these pollutants, that are often hindered by various limitations. Our research focused on isolating lead-resistant bacteria from industrial wastewater generated by heavily lead-containing industries. Eight lead-resistant strains were successfully isolated, and subsequently identified through molecular analysis. Among these, Enterobacter kobei FACU6 emerged as a particularly promising candidate, demonstrating an efficient lead removal rate of 83.4% and a remarkable lead absorption capacity of 571.9 mg/g dry weight. Furthermore, E. kobei FACU6 displayed a remarkable a maximum tolerance concentration (MTC) for lead reaching 3,000 mg/L. To further investigate the morphological changes in E. kobei FACU6 in response to lead exposure, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed. These analyses revealed significant lead adsorption and intracellular accumulation in treated bacteria in contrast to the control bacterium. Whole-genome sequencing was performed to gain deeper insights into E. kobei's lead resistance mechanisms. Structural annotation revealed a genome size of 4,856,454 bp, with a G + C content of 55.06%. The genome encodes 4,655 coding sequences (CDS), 75 tRNA genes, and 4 rRNA genes. Notably, genes associated with heavy metal resistance and their corresponding regulatory elements were identified within the genome. Furthermore, the expression levels of four specific heavy metal resistance genes were evaluated. Our findings revealed a statistically significant upregulation in gene expression under specific environmental conditions, including pH 7, temperature of 30°C, and high concentrations of heavy metals. The outstanding potential of E. kobei FACU6 as a source of diverse genes related to heavy metal resistance and plant growth promotion makes it a valuable candidate for developing safe and effective strategies for heavy metal disposal.
Collapse
Affiliation(s)
- Hossam S. El-Beltagi
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa, Saudi Arabi
- Biochemistry Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Asmaa A. Halema
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Zainab M. Almutairi
- Biology Department, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Hayfa Habes Almutairi
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Nagwa I. Elarabi
- Genetics Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | | | - Ahmed R. Henawy
- Microbiology Department, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Heba A. R. Abdelhaleem
- College of Biotechnology, Misr University for Science and Technology (MUST), 6th October City, Egypt
| |
Collapse
|
5
|
Tao S, Chen H, Li N, Fang Y, Zhang H, Xu Y, Chen L, Liang W. Elimination of bla KPC-2-mediated carbapenem resistance in Escherichia coli by CRISPR-Cas9 system. BMC Microbiol 2023; 23:310. [PMID: 37884864 PMCID: PMC10601263 DOI: 10.1186/s12866-023-03058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE The purpose of this study is to re-sensitive bacteria to carbapenemases and reduce the transmission of the blaKPC-2 gene by curing the blaKPC-2-harboring plasmid of carbapenem-resistant using the CRISPR-Cas9 system. METHODS The single guide RNA (sgRNA) specifically targeted to the blaKPC-2 gene was designed and cloned into plasmid pCas9. The recombinant plasmid pCas9-sgRNA(blaKPC-2) was transformed into Escherichia coli (E.coli) carrying pET24-blaKPC-2. The elimination efficiency in strains was evaluated by polymerase chain reaction (PCR) and quantitative real-time PCR (qPCR). Susceptibility testing was performed by broth microdilution assay and by E-test strips (bioMérieux, France) to detect changes in bacterial drug resistance phenotype after drug resistance plasmid clearance. RESULTS In the present study, we constructed a specific prokaryotic CRISPR-Cas9 system plasmid targeting cleavage of the blaKPC-2 gene. PCR and qPCR results indicated that prokaryotic CRISPR-Cas9 plasmid transforming drug-resistant bacteria can efficiently clear blaKPC-2-harboring plasmids. In addition, the drug susceptibility test results showed that the bacterial resistance to imipenem was significantly reduced and allowed the resistant model bacteria to restore susceptibility to antibiotics after the blaKPC-2-containing drug-resistant plasmid was specifically cleaved by the CRISPR-Cas system. CONCLUSION In conclusion, our study demonstrated that the one plasmid-mediated CRISPR-Cas9 system can be used as a novel tool to remove resistance plasmids and re-sensitize the recipient bacteria to antibiotics. This strategy provided a great potential to counteract the ever-worsening spread of the blaKPC-2 gene among bacterial pathogens and laid the foundation for subsequent research using the CRISPR-Cas9 system as adjuvant antibiotic therapy.
Collapse
Affiliation(s)
- Shuan Tao
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huimin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Na Li
- Bengbu Medical College, Bengbu, China
| | - Yewei Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - He Zhang
- Bengbu Medical College, Bengbu, China
| | - Yao Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Luyan Chen
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Wei Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
6
|
St. John A, Perault AI, Giacometti SI, Sommerfield AG, DuMont AL, Lacey KA, Zheng X, Sproch J, Petzold C, Dancel-Manning K, Gonzalez S, Annavajhala M, Beckford C, Zeitouni N, Liang FX, van Bakel H, Shopsin B, Uhlemann AC, Pironti A, Torres VJ. Capsular Polysaccharide Is Essential for the Virulence of the Antimicrobial-Resistant Pathogen Enterobacter hormaechei. mBio 2023; 14:e0259022. [PMID: 36779722 PMCID: PMC10127600 DOI: 10.1128/mbio.02590-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/13/2023] [Indexed: 02/14/2023] Open
Abstract
Nosocomial infections caused by multidrug-resistant (MDR) Enterobacter cloacae complex (ECC) pathogens are on the rise. However, the virulence strategies employed by these pathogens remain elusive. Here, we study the interaction of ECC clinical isolates with human serum to define how this pathogen evades the antimicrobial action of complement, one of the first lines of host-mediated immune defense. We identified a small number of serum-sensitive strains, including Enterobacter hormaechei strain NR3055, which we exploited for the in vitro selection of serum-resistant clones. Comparative genomics between the serum-sensitive NR3055 strain and the isolated serum-resistant clones revealed a premature stop codon in the wzy gene of the capsular polysaccharide biosynthesis locus of NR3055. The complementation of wzy conferred serum resistance to NR3055, prevented the deposition of complement proteins on the bacterial surface, inhibited phagocytosis by human neutrophils, and rendered the bacteria virulent in a mouse model of peritonitis. Mice exposed to a nonlethal dose of encapsulated NR3055 were protected from subsequent lethal infections by encapsulated NR3055, whereas mice that were previously exposed to unencapsulated NR3055 succumbed to infection. Thus, capsule is a key immune evasion determinant for E. hormaechei, and it is a potential target for prophylactics and therapeutics to combat these increasingly MDR human pathogens. IMPORTANCE Infections caused by antimicrobial resistant bacteria are of increasing concern, especially those due to carbapenem-resistant Enterobacteriaceae pathogens. Included in this group are species of the Enterobacter cloacae complex, regarding which there is a paucity of knowledge on the infection biology of the pathogens, despite their clinical relevance. In this study, we combine techniques in comparative genomics, bacterial genetics, and diverse models of infection to establish capsule as an important mechanism of Enterobacter pathogens to resist the antibacterial activity of serum, a first line of host defense against bacterial infections. We also show that immune memory targeting the Enterobacter capsule protects against lethal infection. The further characterization of Enterobacter infection biology and the immune response to infection are needed for the development of therapies and preventative interventions targeting these highly antibiotic resistant pathogens.
Collapse
Affiliation(s)
- Amelia St. John
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Andrew I. Perault
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
| | - Sabrina I. Giacometti
- Department of Cell Biology, New York University Grossman School of Medicine, New York, New York, USA
| | - Alexis G. Sommerfield
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Ashley L. DuMont
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Keenan A. Lacey
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Xuhui Zheng
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Julia Sproch
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Chris Petzold
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Langone Health, New York, New York, USA
| | - Kristen Dancel-Manning
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Langone Health, New York, New York, USA
| | - Sandra Gonzalez
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Medini Annavajhala
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, New York, USA
| | - Colleen Beckford
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nathalie Zeitouni
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Feng-Xia Liang
- Microscopy Laboratory, Division of Advanced Research Technologies, New York University Langone Health, New York, New York, USA
| | - Harm van Bakel
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bo Shopsin
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
- Department of Medicine, Division of Infectious Diseases, New York University Grossman School of Medicine, New York, New York, USA
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, New York, USA
| | - Alejandro Pironti
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
- Microbial Computational Genomic Core Lab, Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Victor J. Torres
- Department of Microbiology, New York University Grossman School of Medicine, New York, New York, USA
- Antimicrobial-Resistant Pathogens Program, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
7
|
Salazar C, Giménez M, Riera N, Parada A, Puig J, Galiana A, Grill F, Vieytes M, Mason CE, Antelo V, D'Alessandro B, Risso J, Iraola G. Human microbiota drives hospital-associated antimicrobial resistance dissemination in the urban environment and mirrors patient case rates. MICROBIOME 2022; 10:208. [PMID: 36457116 PMCID: PMC9715416 DOI: 10.1186/s40168-022-01407-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/21/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND The microbial community composition of urban environments is primarily determined by human activity. The use of metagenomics to explore how microbial communities are shaped in a city provides a novel input that can improve decisions on public health measures, architectural design, and urban resilience. Of note, the sewage system in a city acts as a complex reservoir of bacteria, pharmaceuticals, and antimicrobial resistant (AMR) genes that can be an important source of epidemiological information. Hospital effluents are rich in patient-derived bacteria and can thus readily become a birthplace and hotspot reservoir for antibiotic resistant pathogens which are eventually incorporated into the environment. Yet, the scope to which nosocomial outbreaks impact the urban environment is still poorly understood. RESULTS In this work, we extensively show that different urban waters from creeks, beaches, sewage spillways and collector pipes enclose discrete microbial communities that are characterized by a differential degree of contamination and admixture with human-derived bacteria. The abundance of human bacteria correlates with the abundance of AMR genes in the environment, with beta-lactamases being the top-contributing class to distinguish low vs. highly-impacted urban environments. Indeed, the abundance of beta-lactamase resistance and carbapenem resistance determinants in the urban environment significantly increased in a 1-year period. This was in line with a pronounced increase of nosocomial carbapenem-resistant infections reported during the same period that was mainly driven by an outbreak-causing, carbapenemase-producing Klebsiella pneumoniae (KPC) ST-11 strain. Genome-resolved metagenomics of urban waters before and after this outbreak, coupled with high-resolution whole-genome sequencing, confirmed the dissemination of the ST-11 strain and a novel KPC megaplasmid from the hospital to the urban environment. City-wide analysis showed that geospatial dissemination of the KPC megaplasmid in the urban environment inversely depended on the sewage system infrastructure. CONCLUSIONS We show how urban metagenomics and outbreak genomic surveillance can be coupled to generate relevant information for infection control, antibiotic stewardship, and pathogen epidemiology. Our results highlight the need to better characterize and understand how human-derived bacteria and antimicrobial resistance disseminate in the urban environment to incorporate this information in the development of effluent treatment infrastructure and public health policies. Video Abstract.
Collapse
Affiliation(s)
- Cecilia Salazar
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Matias Giménez
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
- Molecular Microbiology Laboratory, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Nadia Riera
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Andrés Parada
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Josefina Puig
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | | | | | | | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY, USA
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, USA
| | - Verónica Antelo
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay
| | - Bruno D'Alessandro
- Servicio de Evaluación de la Calidad y Control Ambiental, Intendencia de Montevideo, Montevideo, Uruguay
- Instituto de Higiene, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Jimena Risso
- Servicio de Evaluación de la Calidad y Control Ambiental, Intendencia de Montevideo, Montevideo, Uruguay
| | - Gregorio Iraola
- Microbial Genomics Laboratory, Institut Pasteur de Montevideo, 11400, Montevideo, Uruguay.
- Wellcome Sanger Institute, Hinxton, UK.
- Center for Integrative Biology, Universidad Mayor, Santiago de Chile, Chile.
| |
Collapse
|
8
|
Waśko I, Kozińska A, Kotlarska E, Baraniak A. Clinically Relevant β-Lactam Resistance Genes in Wastewater Treatment Plants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192113829. [PMID: 36360709 PMCID: PMC9657204 DOI: 10.3390/ijerph192113829] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 05/17/2023]
Abstract
Antimicrobial resistance (AMR) is one of the largest global concerns due to its influence in multiple areas, which is consistent with One Health's concept of close interconnections between people, animals, plants, and their shared environments. Antibiotic-resistant bacteria (ARB) and antibiotic-resistance genes (ARGs) circulate constantly in various niches, sediments, water sources, soil, and wastes of the animal and plant sectors, and is linked to human activities. Sewage of different origins gets to the wastewater treatment plants (WWTPs), where ARB and ARG removal efficiency is still insufficient, leading to their transmission to discharge points and further dissemination. Thus, WWTPs are believed to be reservoirs of ARGs and the source of spreading AMR. According to a World Health Organization report, the most critical pathogens for public health include Gram-negative bacteria resistant to third-generation cephalosporins and carbapenems (last-choice drugs), which represent β-lactams, the most widely used antibiotics. Therefore, this paper aimed to present the available research data for ARGs in WWTPs that confer resistance to β-lactam antibiotics, with a particular emphasis on clinically important life-threatening mechanisms of resistance, including extended-spectrum β-lactamases (ESBLs) and carbapenemases (KPC, NDM).
Collapse
Affiliation(s)
- Izabela Waśko
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
- Correspondence: ; Tel.: +48-228-410-623
| | - Aleksandra Kozińska
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| | - Ewa Kotlarska
- Genetics and Marine Biotechnology Department, Institute of Oceanology of the Polish Academy of Sciences, Powstancow Warszawy 55, 81-712 Sopot, Poland
| | - Anna Baraniak
- Department of Biomedical Research, National Medicines Institute, Chelmska 30/34, 00-725 Warsaw, Poland
| |
Collapse
|
9
|
Robins K, Leonard AFC, Farkas K, Graham DW, Jones DL, Kasprzyk-Hordern B, Bunce JT, Grimsley JMS, Wade MJ, Zealand AM, McIntyre-Nolan S. Research needs for optimising wastewater-based epidemiology monitoring for public health protection. JOURNAL OF WATER AND HEALTH 2022; 20:1284-1313. [PMID: 36170187 DOI: 10.2166/wh.2022.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Wastewater-based epidemiology (WBE) is an unobtrusive method used to observe patterns in illicit drug use, poliovirus, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The pandemic and need for surveillance measures have led to the rapid acceleration of WBE research and development globally. With the infrastructure available to monitor SARS-CoV-2 from wastewater in 58 countries globally, there is potential to expand targets and applications for public health protection, such as other viral pathogens, antimicrobial resistance (AMR), pharmaceutical consumption, or exposure to chemical pollutants. Some applications have been explored in academic research but are not used to inform public health decision-making. We reflect on the current knowledge of WBE for these applications and identify barriers and opportunities for expanding beyond SARS-CoV-2. This paper critically reviews the applications of WBE for public health and identifies the important research gaps for WBE to be a useful tool in public health. It considers possible uses for pathogenic viruses, AMR, and chemicals. It summarises the current evidence on the following: (1) the presence of markers in stool and urine; (2) environmental factors influencing persistence of markers in wastewater; (3) methods for sample collection and storage; (4) prospective methods for detection and quantification; (5) reducing uncertainties; and (6) further considerations for public health use.
Collapse
Affiliation(s)
- Katie Robins
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Anne F C Leonard
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; University of Exeter Medical School, European Centre for Environment and Human Health, University of Exeter, Cornwall TR10 9FE, UK
| | - Kata Farkas
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK
| | - David W Graham
- School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - David L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | | | - Joshua T Bunce
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Jasmine M S Grimsley
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Matthew J Wade
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; School of Engineering, Newcastle University, Cassie Building, Newcastle-upon-Tyne NE1 7RU, UK
| | - Andrew M Zealand
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail:
| | - Shannon McIntyre-Nolan
- Environmental Monitoring for Health Protection, UK Health Security Agency, Nobel House, London SW1P 3HX, UK E-mail: ; Her Majesty's Prison and Probation Service, Ministry of Justice, London, SW1H 9AJ, UK
| |
Collapse
|
10
|
Suzuki Y, Nakano R, Nakano A, Tasaki H, Asada T, Horiuchi S, Saito K, Watanabe M, Nomura Y, Kitagawa D, Lee ST, Ui K, Koizumi A, Nishihara Y, Sekine T, Sakata R, Ogawa M, Ohnishi M, Tsuruya K, Kasahara K, Yano H. Comamonas thiooxydans Expressing a Plasmid-Encoded IMP-1 Carbapenemase Isolated From Continuous Ambulatory Peritoneal Dialysis of an Inpatient in Japan. Front Microbiol 2022; 13:808993. [PMID: 35265058 PMCID: PMC8899508 DOI: 10.3389/fmicb.2022.808993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 01/28/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yuki Suzuki
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Ryuichi Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Akiyo Nakano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Hikari Tasaki
- Department of Nephrology, Nara Medical University, Kashihara, Japan
| | - Tomoko Asada
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Saori Horiuchi
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Kai Saito
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Mako Watanabe
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Yasumistu Nomura
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Daisuke Kitagawa
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Sang-Tae Lee
- Central Clinical Laboratory, Nara Medical University, Kashihara, Japan
| | - Koji Ui
- Central Clinical Laboratory, Nara Medical University, Kashihara, Japan
| | - Akira Koizumi
- Central Clinical Laboratory, Nara Medical University, Kashihara, Japan
| | - Yuji Nishihara
- Center for Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Takahiro Sekine
- Center for Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Ryuji Sakata
- Department of Bacteriology, BML Inc., Kawagoe, Japan
| | - Miho Ogawa
- Department of Bacteriology, BML Inc., Kawagoe, Japan
| | - Masahito Ohnishi
- Central Clinical Laboratory, Nara Medical University, Kashihara, Japan
| | - Kazuhiko Tsuruya
- Department of Nephrology, Nara Medical University, Kashihara, Japan
| | - Kei Kasahara
- Center for Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Hisakazu Yano
- Department of Microbiology and Infectious Diseases, Nara Medical University, Kashihara, Japan
| |
Collapse
|
11
|
Wan Y, Zong C, Li X, Wang A, Li Y, Yang T, Bao Q, Dubow M, Yang M, Rodrigo LA, Mao C. New Insights for Biosensing: Lessons from Microbial Defense Systems. Chem Rev 2022; 122:8126-8180. [PMID: 35234463 DOI: 10.1021/acs.chemrev.1c01063] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microorganisms have gained defense systems during the lengthy process of evolution over millions of years. Such defense systems can protect them from being attacked by invading species (e.g., CRISPR-Cas for establishing adaptive immune systems and nanopore-forming toxins as virulence factors) or enable them to adapt to different conditions (e.g., gas vesicles for achieving buoyancy control). These microorganism defense systems (MDS) have inspired the development of biosensors that have received much attention in a wide range of fields including life science research, food safety, and medical diagnosis. This Review comprehensively analyzes biosensing platforms originating from MDS for sensing and imaging biological analytes. We first describe a basic overview of MDS and MDS-inspired biosensing platforms (e.g., CRISPR-Cas systems, nanopore-forming proteins, and gas vesicles), followed by a critical discussion of their functions and properties. We then discuss several transduction mechanisms (optical, acoustic, magnetic, and electrical) involved in MDS-inspired biosensing. We further detail the applications of the MDS-inspired biosensors to detect a variety of analytes (nucleic acids, peptides, proteins, pathogens, cells, small molecules, and metal ions). In the end, we propose the key challenges and future perspectives in seeking new and improved MDS tools that can potentially lead to breakthrough discoveries in developing a new generation of biosensors with a combination of low cost; high sensitivity, accuracy, and precision; and fast detection. Overall, this Review gives a historical review of MDS, elucidates the principles of emulating MDS to develop biosensors, and analyzes the recent advancements, current challenges, and future trends in this field. It provides a unique critical analysis of emulating MDS to develop robust biosensors and discusses the design of such biosensors using elements found in MDS, showing that emulating MDS is a promising approach to conceptually advancing the design of biosensors.
Collapse
Affiliation(s)
- Yi Wan
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Chengli Zong
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic Sciences, Schools of Medicine and Pharmacy, University of California, San Francisco, 1700 Fourth Street, Byers Hall 303C, San Francisco, California 94158, United States
| | - Aimin Wang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Pharmaceutical Sciences, Marine College, Hainan University, Haikou 570228, P. R. China
| | - Yan Li
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Tao Yang
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Qing Bao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Michael Dubow
- Institute for Integrative Biology of the Cell (I2BC), UMR 9198 CNRS, CEA, Université Paris-Saclay, Campus C.N.R.S, Bâtiment 12, Avenue de la Terrasse, 91190 Gif-sur-Yvette, France
| | - Mingying Yang
- College of Animal Science, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| | - Ledesma-Amaro Rodrigo
- Imperial College Centre for Synthetic Biology, Department of Bioengineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Chuanbin Mao
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019, United States.,School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310058, P. R. China
| |
Collapse
|
12
|
Hassoun-Kheir N, Stabholz Y, Kreft JU, de la Cruz R, Dechesne A, Smets BF, Romalde JL, Lema A, Balboa S, García-Riestra C, Torres-Sangiao E, Neuberger A, Graham D, Quintela-Baluja M, Stekel DJ, Graham J, Pruden A, Nesme J, Sørensen SJ, Hough R, Paul M. EMBRACE-WATERS statement: Recommendations for reporting of studies on antimicrobial resistance in wastewater and related aquatic environments. One Health 2021; 13:100339. [PMID: 34746357 PMCID: PMC8554267 DOI: 10.1016/j.onehlt.2021.100339] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND A One Health approach requires integrative research to elucidate antimicrobial resistance (AMR) in the environment and the risks it poses to human health. Research on this topic involves experts from diverse backgrounds and professions. Shortcomings exist in terms of consistent, complete, and transparent reporting in many environmental studies. Standardized reporting will improve the quality of scientific papers, enable meta-analyses and enhance the communication among different experts. In this study, we aimed to generate a consensus of reporting standards for AMR research in wastewater and related aquatic environments. METHODS Based on a risk of bias assessment of the literature in a systematic review, we proposed a set of study quality indicators. We then used a multistep modified Delphi consensus to develop the EMBRACE-WATERS statement (rEporting antiMicroBial ResistAnCE in WATERS), a checklist of recommendations for reporting in studies of AMR in wastewater and related aquatic environments. FINDINGS Consensus was achieved among a multidisciplinary panel of twenty-one experts in three steps. The developed EMBRACE-WATERS statement incorporates 21 items. Each item contains essential elements of high-quality reporting and is followed by an explanation of their rationale and a reporting-example. The EMBRACE-WATERS statement is primarily intended to be used by investigators to ensure transparent and comprehensive reporting of their studies. It can also guide peer-reviewers and editors in evaluation of manuscripts on AMR in the aquatic environment. This statement is not intended to be used to guide investigators on the methodology of their research. INTERPRETATION We are hopeful that this statement will improve the reporting quality of future studies of AMR in wastewater and related aquatic environments. Its uptake would generate a common language to be used among researchers from different disciplines, thus advancing the One Health approach towards understanding AMR spread across aquatic environments. Similar initiatives are needed in other areas of One Health research.
Collapse
Affiliation(s)
- Nasreen Hassoun-Kheir
- Infectious Diseases Institute, Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa 3109601, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Efron St 1, Haifa 3109601, Israel
| | - Yoav Stabholz
- Infectious Diseases Institute, Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa 3109601, Israel
| | - Jan-Ulrich Kreft
- School of Biosciences, Institute of Microbiology and Infection (IMI), Centre for Computational Biology (CCB), University of Birmingham, Birmingham, UK
| | - Roberto de la Cruz
- School of Biosciences, Institute of Microbiology and Infection (IMI), Centre for Computational Biology (CCB), University of Birmingham, Birmingham, UK
| | - Arnaud Dechesne
- Technical University of Denmark, Department of Environmental Engineering, bygning 115, Bygningstorvet, 2800 Kongens Lyngby, Denmark
| | - Barth F. Smets
- Technical University of Denmark, Department of Environmental Engineering, bygning 115, Bygningstorvet, 2800 Kongens Lyngby, Denmark
| | - Jesús L. Romalde
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
- CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Alberto Lema
- Department of Microbiology and Parasitology, CIBUS-Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Sabela Balboa
- CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Carlos García-Riestra
- Department of Microbiology and Parasitology, University Hospital Complex of Santiago (CHUS), Spain
| | - Eva Torres-Sangiao
- Escherichia coli Group, Research Foundation Institute (FIDIS), University Hospital Complex (CHUS), Santiago de Compostela, ES, Spain
| | - Ami Neuberger
- Infectious Diseases Institute, Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa 3109601, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Efron St 1, Haifa 3109601, Israel
| | - David Graham
- School of Engineering, Newcastle University, Newcastle upon Tyne, UK
| | | | - Dov J. Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, College Road, Loughborough LE12 5RD, UK
| | - Jay Graham
- University of California, Berkeley School of Public Health, Berkeley, CA, USA
| | - Amy Pruden
- The Charles Edward Via, Jr. Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, USA
| | - Joseph Nesme
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Søren Johannes Sørensen
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Rupert Hough
- Information and Computational Sciences, The James Hutton Institute, Aberdeen AB15 8QH, Scotland, UK
| | - Mical Paul
- Infectious Diseases Institute, Rambam Health Care Campus, HaAliya HaShniya St 8, Haifa 3109601, Israel
- The Ruth and Bruce Rappaport Faculty of Medicine, Technion – Israel Institute of Technology, Efron St 1, Haifa 3109601, Israel
| |
Collapse
|
13
|
Perry MR, Lepper HC, McNally L, Wee BA, Munk P, Warr A, Moore B, Kalima P, Philip C, de Roda Husman AM, Aarestrup FM, Woolhouse MEJ, van Bunnik BAD. Secrets of the Hospital Underbelly: Patterns of Abundance of Antimicrobial Resistance Genes in Hospital Wastewater Vary by Specific Antimicrobial and Bacterial Family. Front Microbiol 2021; 12:703560. [PMID: 34566912 PMCID: PMC8461093 DOI: 10.3389/fmicb.2021.703560] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/10/2021] [Indexed: 01/05/2023] Open
Abstract
Background: Hospital wastewater is a major source of antimicrobial resistance (AMR) outflow into the environment. This study uses metagenomics to study how hospital clinical activity impacts antimicrobial resistance genes (ARGs) abundances in hospital wastewater. Methods: Sewage was collected over a 24-h period from multiple wastewater collection points (CPs) representing different specialties within a tertiary hospital site and simultaneously from community sewage works. High throughput shotgun sequencing was performed using Illumina HiSeq4000. ARG abundances were correlated to hospital antimicrobial usage (AMU), data on clinical activity and resistance prevalence in clinical isolates. Results: Microbiota and ARG composition varied between CPs and overall ARG abundance was higher in hospital wastewater than in community influent. ARG and microbiota compositions were correlated (Procrustes analysis, p=0.014). Total antimicrobial usage was not associated with higher ARG abundance in wastewater. However, there was a small positive association between resistance genes and antimicrobial usage matched to ARG phenotype (IRR 1.11, CI 1.06-1.16, p<0.001). Furthermore, analyzing carbapenem and vancomycin resistance separately indicated that counts of ARGs to these antimicrobials were positively associated with their increased usage [carbapenem rate ratio (RR) 1.91, 95% CI 1.01-3.72, p=0.07, and vancomycin RR 10.25, CI 2.32-49.10, p<0.01]. Overall, ARG abundance within hospital wastewater did not reflect resistance patterns in clinical isolates from concurrent hospital inpatients. However, for clinical isolates of the family Enterococcaceae and Staphylococcaceae, there was a positive relationship with wastewater ARG abundance [odds ratio (OR) 1.62, CI 1.33-2.00, p<0.001, and OR 1.65, CI 1.21-2.30, p=0.006 respectively]. Conclusion: We found that the relationship between hospital wastewater ARGs and antimicrobial usage or clinical isolate resistance varies by specific antimicrobial and bacterial family studied. One explanation, we consider is that relationships observed from multiple departments within a single hospital site will be detectable only for ARGs against parenteral antimicrobials uniquely used in the hospital setting. Our work highlights that using metagenomics to identify the full range of ARGs in hospital wastewater is a useful surveillance tool to monitor hospital ARG carriage and outflow and guide environmental policy on AMR.
Collapse
Affiliation(s)
- Meghan R. Perry
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
- NHS Lothian Infection Service, Edinburgh Clinical Infection Research Group, Edinburgh, United Kingdom
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Hannah C. Lepper
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Luke McNally
- Centre for Synthetic and Systems Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Bryan A. Wee
- Usher Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Patrick Munk
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Amanda Warr
- Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Barbara Moore
- NHS Lothian Infection Service, Edinburgh Clinical Infection Research Group, Edinburgh, United Kingdom
| | - Pota Kalima
- NHS Lothian Infection Service, Edinburgh Clinical Infection Research Group, Edinburgh, United Kingdom
| | - Carol Philip
- NHS Lothian Infection Service, Edinburgh Clinical Infection Research Group, Edinburgh, United Kingdom
| | | | - Frank M. Aarestrup
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | | |
Collapse
|
14
|
Cortés-Ortíz IA, Mendieta-Condado E, Escobar-Escamilla N, Juárez-Gómez JC, Garcés-Ayala F, Rodriguez AA, Bravata-Alcántara JC, Gutiérrez-Muñoz VH, Bello-López JM, Ramírez–González JE. Multidrug-resistant Raoultella ornithinolytica misidentified as Klebsiella oxytoca carrying blaOXA β-lactamases: antimicrobial profile and genomic characterization. Arch Microbiol 2021; 203:5755-5761. [DOI: 10.1007/s00203-021-02515-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 11/28/2022]
|
15
|
Antibiotic-resistant bacteria, antibiotic resistance genes, and antibiotic residues in wastewater from a poultry slaughterhouse after conventional and advanced treatments. Sci Rep 2021; 11:16622. [PMID: 34404868 PMCID: PMC8371126 DOI: 10.1038/s41598-021-96169-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Slaughterhouse wastewater is considered a reservoir for antibiotic-resistant bacteria and antibiotic residues, which are not sufficiently removed by conventional treatment processes. This study focuses on the occurrence of ESKAPE bacteria (Enterococcus spp., S. aureus, K. pneumoniae, A. baumannii, P. aeruginosa, Enterobacter spp.), ESBL (extended-spectrum β-lactamase)-producing E. coli, antibiotic resistance genes (ARGs) and antibiotic residues in wastewater from a poultry slaughterhouse. The efficacy of conventional and advanced treatments (i.e., ozonation) of the in-house wastewater treatment plant regarding their removal was also evaluated. Target culturable bacteria were detected only in the influent and effluent after conventional treatment. High abundances of genes (e.g., blaTEM, blaCTX-M-15, blaCTX-M-32, blaOXA-48, blaCMY and mcr-1) of up to 1.48 × 106 copies/100 mL were detected in raw influent. All of them were already significantly reduced by 1–4.2 log units after conventional treatment. Following ozonation, mcr-1 and blaCTX-M-32 were further reduced below the limit of detection. Antibiotic residues were detected in 55.6% (n = 10/18) of the wastewater samples. Despite the significant reduction through conventional and advanced treatments, effluents still exhibited high concentrations of some ARGs (e.g., sul1, ermB and blaOXA-48), ranging from 1.75 × 102 to 3.44 × 103 copies/100 mL. Thus, a combination of oxidative, adsorptive and membrane-based technologies should be considered.
Collapse
|
16
|
Gibbon MJ, Couto N, David S, Barden R, Standerwick R, Jagadeesan K, Birkwood H, Dulyayangkul P, Avison MB, Kannan A, Kibbey D, Craft T, Habib S, Thorpe HA, Corander J, Kasprzyk-Hordern B, Feil EJ. A high prevalence of blaOXA-48 in Klebsiella ( Raoultella) ornithinolytica and related species in hospital wastewater in South West England. Microb Genom 2021; 7:mgen000509. [PMID: 33416467 PMCID: PMC8190614 DOI: 10.1099/mgen.0.000509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 12/20/2020] [Indexed: 12/15/2022] Open
Abstract
Klebsiella species occupy a wide range of environmental and animal niches, and occasionally cause opportunistic infections that are resistant to multiple antibiotics. In particular, Klebsiella pneumoniae (Kpne) has gained notoriety as a major nosocomial pathogen, due principally to the rise in non-susceptibility to carbapenems and other beta-lactam antibiotics. Whilst it has been proposed that the urban water cycle facilitates transmission of pathogens between clinical settings and the environment, the level of risk posed by resistant Klebsiella strains in hospital wastewater remains unclear. We used whole genome sequencing (WGS) to compare Klebsiella species in contemporaneous samples of wastewater from an English hospital and influent to the associated wastewater treatment plant (WWTP). As we aimed to characterize representative samples of Klebsiella communities, we did not actively select for antibiotic resistance (other than for ampicillin), nor for specific Klebsiella species. Two species, Kpne and K. (Raoultella) ornithinolytica (Korn), were of equal dominance in the hospital wastewater, and four other Klebsiella species were present in low abundance in this sample. In contrast, despite being the species most closely associated with healthcare settings, Kpne was the dominant species within the WWTP influent. In total, 29 % of all isolates harboured the blaOXA-48 gene on a pOXA-48-like plasmid, and these isolates were almost exclusively recovered from the hospital wastewater. This gene was far more common in Korn (68 % of isolates) than in Kpne (3.4 % of isolates). In general plasmid-borne, but not chromosomal, resistance genes were significantly enriched in the hospital wastewater sample. These data implicate hospital wastewater as an important reservoir for antibiotic-resistant Klebsiella, and point to an unsuspected role of species within the Raoultella group in the maintenance and dissemination of plasmid-borne blaOXA-48. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Marjorie J. Gibbon
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Natacha Couto
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Sophia David
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | | | | | | | - Hollie Birkwood
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Punyawee Dulyayangkul
- University of Bristol, School of Cellular and Molecular Medicine, University Walk, Bristol BS8 1TD, UK
| | - Matthew B. Avison
- University of Bristol, School of Cellular and Molecular Medicine, University Walk, Bristol BS8 1TD, UK
| | - Andrew Kannan
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Dan Kibbey
- Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Tim Craft
- Department of R&D, Royal United Hospitals Bath, NHS Foundation Trust, Bath BA1 3NG, UK
| | - Samia Habib
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Harry A. Thorpe
- Department of Biostatistics, University of Oslo, N-0317, Oslo, Norway
| | - Jukka Corander
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Department of Biostatistics, University of Oslo, N-0317, Oslo, Norway
- Helsinki Institute for Information Technology, Department of Mathematics and Statistics, University of Helsinki, FIN-00014 Helsinki, Finland
| | | | - Edward J. Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
17
|
Environmental Presence and Genetic Characteristics of Carbapenemase-Producing Enterobacteriaceae from Hospital Sewage and River Water in the Philippines. Appl Environ Microbiol 2020; 86:AEM.01906-19. [PMID: 31704681 PMCID: PMC6952235 DOI: 10.1128/aem.01906-19] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 11/01/2019] [Indexed: 12/12/2022] Open
Abstract
Carbapenemase-producing Enterobacteriaceae (CPE) cause severe health care-associated infections, and their increasing prevalence is a serious concern. Recently, natural ecosystems have been recognized as important reservoirs of antibiotic resistance genes. We investigated the prevalence and genetic characteristics of CPE isolated from the environment (hospital sewage and river water) in the Philippines and found several CPE, including Escherichia coli and other species, with different carbapenemases. The most prevalent carbapenemase gene type was NDM, which is endemic in clinical settings. This study revealed that isolates belonging to carbapenemase-producing E. coli CC10 and K. pneumoniae sequence type 147 (ST147), which are often detected in clinical settings, were dominant in the natural environment. Our work here provides a report on the presence and characteristics of CPE in the environment in the Philippines and demonstrates that both hospital sewage and river water are contaminated by CPE strains belonging to clinically important clonal groups. This study aimed to evaluate the prevalence and genetic characteristics of carbapenemase-producing Enterobacteriaceae (CPE) in hospital sewage and river water in the Philippines, which has a typical tropical maritime climate. We collected 83 water samples from 7 hospital sewage and 10 river water sites. CPE were identified using CHROMagar mSuperCARBA, and Gram-negative strains were identified using matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) or 16S rRNA gene sequencing. Resistance genes in Enterobacteriaceae strains were identified using PCR and DNA sequencing, and transferability of carbapenemase genes from the CPE was investigated with conjugation experiments. Genotyping was performed using multilocus sequence typing (MLST) for Escherichia coli and Klebsiella pneumoniae. Out of 124 Enterobacteriaceae isolates, we identified 51 strains as CPE and divided these into 7 species, 11 E. coli, 14 Klebsiella spp., 15 Enterobacter spp., and 11 others, including 4 additional species. Conjugation experiments via broth mating and using E. coli J53 revealed that 24 isolates can transfer carbapenemase-encoding plasmids. MLST analysis showed that 6 of 11 E. coli isolates belonged to clonal complex 10 (CC10). Of 11 K. pneumoniae strains, 9 unique sequence types (STs) were identified, including ST147. Five types of carbapenemase genes were identified, with the most prevalent being NDM (n = 39), which is epidemic in clinical settings in the Philippines. E. coli CC10 and K. pneumoniae ST147, which are often detected in clinical settings, were the dominant strains. In summary, our results indicate that hospital sewage and river water are contaminated by CPE strains belonging to clinically important clonal groups. IMPORTANCE Carbapenemase-producing Enterobacteriaceae (CPE) cause severe health care-associated infections, and their increasing prevalence is a serious concern. Recently, natural ecosystems have been recognized as important reservoirs of antibiotic resistance genes. We investigated the prevalence and genetic characteristics of CPE isolated from the environment (hospital sewage and river water) in the Philippines and found several CPE, including Escherichia coli and other species, with different carbapenemases. The most prevalent carbapenemase gene type was NDM, which is endemic in clinical settings. This study revealed that isolates belonging to carbapenemase-producing E. coli CC10 and K. pneumoniae sequence type 147 (ST147), which are often detected in clinical settings, were dominant in the natural environment. Our work here provides a report on the presence and characteristics of CPE in the environment in the Philippines and demonstrates that both hospital sewage and river water are contaminated by CPE strains belonging to clinically important clonal groups.
Collapse
|
18
|
Botelho J, Lood C, Partridge SR, van Noort V, Lavigne R, Grosso F, Peixe L. Combining sequencing approaches to fully resolve a carbapenemase-encoding megaplasmid in a Pseudomonas shirazica clinical strain. Emerg Microbes Infect 2019; 8:1186-1194. [PMID: 31381486 PMCID: PMC6713103 DOI: 10.1080/22221751.2019.1648182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Horizontal transfer of plasmids plays a pivotal role in dissemination of antibiotic resistance genes and emergence of multidrug-resistant bacteria. Plasmid sequencing is thus paramount for accurate epidemiological tracking in hospitals and routine surveillance. Combining Nanopore and Illumina sequencing allowed full assembly of a carbapenemase-encoding megaplasmid carried by multidrug-resistant clinical isolate FFUP_PS_41. Average nucleotide identity analyses revealed that FFUP_PS_41 belongs to the recently proposed new species Pseudomonas shirazica, related to the P. putida phylogenetic group. FFUP_PS_41 harbours a 498,516-bp megaplasmid (pJBCL41) with limited similarity to publicly-available plasmids. pJBCL41 contains genes predicted to encode replication, conjugation, partitioning and maintenance functions and heavy metal resistance. The |aacA7|blaVIM-2|aacA4| cassette array (resistance to carbapenems and aminoglycosides) is located within a class 1 integron that is a defective Tn402 derivative. This transposon lies within a 50,273-bp region bound by Tn3-family 38-bp inverted repeats and flanked by 5-bp direct repeats (DR) that composes additional transposon fragments, five insertion sequences and a Tn3-Derived Inverted-Repeat Miniature Element. The hybrid Nanopore/Illumina approach allowed full resolution of a carbapenemase-encoding megaplasmid from P. shirazica. Identification of novel megaplasmids sheds new light on the evolutionary effects of gene transfer and the selective forces driving antibiotic resistance.
Collapse
Affiliation(s)
- João Botelho
- a UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| | - Cédric Lood
- b Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven , Leuven , Belgium.,c Laboratory of Gene Technology, Department of Biosystems, KU Leuven , Leuven , Belgium
| | - Sally R Partridge
- d Centre for Microbiology and Infectious Diseases, The Westmead Institute for Medical Research, The University of Sydney, Westmead Hospital , Sydney , Australia
| | - Vera van Noort
- b Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, KU Leuven , Leuven , Belgium.,e Institute of Biology, Leiden University , Leiden , The Netherlands
| | - Rob Lavigne
- c Laboratory of Gene Technology, Department of Biosystems, KU Leuven , Leuven , Belgium
| | - Filipa Grosso
- a UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| | - Luísa Peixe
- a UCIBIO/REQUIMTE, Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto , Porto , Portugal
| |
Collapse
|
19
|
Decano AG, Ludden C, Feltwell T, Judge K, Parkhill J, Downing T. Complete Assembly of Escherichia coli Sequence Type 131 Genomes Using Long Reads Demonstrates Antibiotic Resistance Gene Variation within Diverse Plasmid and Chromosomal Contexts. mSphere 2019; 4:e00130-19. [PMID: 31068432 PMCID: PMC6506616 DOI: 10.1128/msphere.00130-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/24/2019] [Indexed: 11/20/2022] Open
Abstract
The incidence of infections caused by extraintestinal Escherichia coli (ExPEC) is rising globally, which is a major public health concern. ExPEC strains that are resistant to antimicrobials have been associated with excess mortality, prolonged hospital stays, and higher health care costs. E. coli sequence type 131 (ST131) is a major ExPEC clonal group worldwide, with variable plasmid composition, and has an array of genes enabling antimicrobial resistance (AMR). ST131 isolates frequently encode the AMR genes blaCTX-M-14, blaCTX-M-15, and blaCTX-M-27, which are often rearranged, amplified, and translocated by mobile genetic elements (MGEs). Short DNA reads do not fully resolve the architecture of repetitive elements on plasmids to allow MGE structures encoding blaCTX-M genes to be fully determined. Here, we performed long-read sequencing to decipher the genome structures of six E. coli ST131 isolates from six patients. Most long-read assemblies generated entire chromosomes and plasmids as single contigs, in contrast to more fragmented assemblies created with short reads alone. The long-read assemblies highlighted diverse accessory genomes with blaCTX-M-15, blaCTX-M-14, and blaCTX-M-27 genes identified in three, one, and one isolates, respectively. One sample had no blaCTX-M gene. Two samples had chromosomal blaCTX-M-14 and blaCTX-M-15 genes, and the latter was at three distinct locations, likely transposed by the adjacent MGEs: ISEcp1, IS903B, and Tn2 This study showed that AMR genes exist in multiple different chromosomal and plasmid contexts, even between closely related isolates within a clonal group such as E. coli ST131.IMPORTANCE Drug-resistant bacteria are a major cause of illness worldwide, and a specific subtype called Escherichia coli ST131 causes a significant number of these infections. ST131 bacteria become resistant to treatments by modifying their DNA and by transferring genes among one another via large packages of genes called plasmids, like a game of pass-the-parcel. Tackling infections more effectively requires a better understanding of what plasmids are being exchanged and their exact contents. To achieve this, we applied new high-resolution DNA sequencing technology to six ST131 samples from infected patients and compared the output to that of an existing approach. A combination of methods shows that drug resistance genes on plasmids are highly mobile because they can jump into ST131's chromosomes. We found that the plasmids are very elastic and undergo extensive rearrangements even in closely related samples. This application of DNA sequencing technologies illustrates at a new level the highly dynamic nature of ST131 genomes.
Collapse
Affiliation(s)
| | - Catherine Ludden
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Kim Judge
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
20
|
Chique C, Cullinan J, Hooban B, Morris D. Mapping and Analysing Potential Sources and Transmission Routes of Antimicrobial Resistant Organisms in the Environment using Geographic Information Systems-An Exploratory Study. Antibiotics (Basel) 2019; 8:antibiotics8010016. [PMID: 30818774 PMCID: PMC6466594 DOI: 10.3390/antibiotics8010016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/21/2019] [Accepted: 02/25/2019] [Indexed: 11/16/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the leading threats to human health worldwide. The identification of potential sources of antimicrobial resistant organisms (AROs) and their transmission routes in the environment is important for improving our understanding of AMR and to inform and improve policy and monitoring systems, as well as the identification of suitable sampling locations and potential intervention points. This exploratory study uses geographic information systems (GIS) to analyse the spatial distribution of likely ARO sources and transmission routes in four local authority areas (LAAs) in Ireland. A review of relevant spatial data in each LAA, grouped into themes, and categorised into sources and transmission routes, was undertaken. A range of GIS techniques was used to extract, organise, and collate the spatial data into final products in the form of thematic maps for visual and spatial analysis. The results highlight the location of 'clusters' at increased risk of harbouring AMR in each LAA. They also demonstrate the relevance of aquatic transmission routes for ARO mobility and risk of human exposure. The integration of a GIS approach with expert knowledge of AMR is shown to be a useful tool to gain insights into the spatial dimension of AMR and to guide sampling campaigns and intervention points.
Collapse
Affiliation(s)
- Carlos Chique
- Discipline of Economics and Health Economics and Policy Analysis Centre, National University of Ireland, Galway, H91 CF50, Ireland.
| | - John Cullinan
- Discipline of Economics and Health Economics and Policy Analysis Centre, National University of Ireland, Galway, H91 CF50, Ireland.
| | - Brigid Hooban
- Discipline of Bacteriology, School of Medicine and Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, H91 CF50, Ireland.
| | - Dearbhaile Morris
- Discipline of Bacteriology, School of Medicine and Centre for Health from Environment, Ryan Institute, National University of Ireland, Galway, H91 CF50, Ireland.
| |
Collapse
|
21
|
Genomic Surveillance of Enterococcus faecium Reveals Limited Sharing of Strains and Resistance Genes between Livestock and Humans in the United Kingdom. mBio 2018; 9:mBio.01780-18. [PMID: 30401778 PMCID: PMC6222123 DOI: 10.1128/mbio.01780-18] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The rise in rates of human infection caused by vancomycin-resistant Enterococcus faecium (VREfm) strains between 1988 to the 2000s in Europe was suggested to be associated with acquisition from livestock. As a result, the European Union banned the use of the glycopeptide drug avoparcin as a growth promoter in livestock feed. While some studies reported a decrease in VREfm in livestock, others reported no reduction. Here, we report the first livestock VREfm prevalence survey in the UK since 2003 and the first large-scale study using whole-genome sequencing to investigate the relationship between E. faecium strains in livestock and humans. We found a low prevalence of VREfm in retail meat and limited evidence for recent sharing of strains between livestock and humans with bloodstream infection. There was evidence for limited sharing of genes encoding antibiotic resistance between these reservoirs, a finding which requires further research. Vancomycin-resistant Enterococcus faecium (VREfm) is a major cause of nosocomial infection and is categorized as high priority by the World Health Organization global priority list of antibiotic-resistant bacteria. In the past, livestock have been proposed as a putative reservoir for drug-resistant E. faecium strains that infect humans, and isolates of the same lineage have been found in both reservoirs. We undertook cross-sectional surveys to isolate E. faecium (including VREfm) from livestock farms, retail meat, and wastewater treatment plants in the United Kingdom. More than 600 isolates from these sources were sequenced, and their relatedness and antibiotic resistance genes were compared with genomes of almost 800 E. faecium isolates from patients with bloodstream infection in the United Kingdom and Ireland. E. faecium was isolated from 28/29 farms; none of these isolates were VREfm, suggesting a decrease in VREfm prevalence since the last UK livestock survey in 2003. However, VREfm was isolated from 1% to 2% of retail meat products and was ubiquitous in wastewater treatment plants. Phylogenetic comparison demonstrated that the majority of human and livestock-related isolates were genetically distinct, although pig isolates from three farms were more genetically related to human isolates from 2001 to 2004 (minimum of 50 single-nucleotide polymorphisms [SNPs]). Analysis of accessory (variable) genes added further evidence for distinct niche adaptation. An analysis of acquired antibiotic resistance genes and their variants revealed limited sharing between humans and livestock. Our findings indicate that the majority of E. faecium strains infecting patients are largely distinct from those from livestock in this setting, with limited sharing of strains and resistance genes.
Collapse
|
22
|
Lerminiaux NA, Cameron ADS. Horizontal transfer of antibiotic resistance genes in clinical environments. Can J Microbiol 2018; 65:34-44. [PMID: 30248271 DOI: 10.1139/cjm-2018-0275] [Citation(s) in RCA: 379] [Impact Index Per Article: 54.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A global medical crisis is unfolding as antibiotics lose effectiveness against a growing number of bacterial pathogens. Horizontal gene transfer (HGT) contributes significantly to the rapid spread of resistance, yet the transmission dynamics of genes that confer antibiotic resistance are poorly understood. Multiple mechanisms of HGT liberate genes from normal vertical inheritance. Conjugation by plasmids, transduction by bacteriophages, and natural transformation by extracellular DNA each allow genetic material to jump between strains and species. Thus, HGT adds an important dimension to infectious disease whereby an antibiotic resistance gene (ARG) can be the agent of an outbreak by transferring resistance to multiple unrelated pathogens. Here, we review the small number of cases where HGT has been detected in clinical environments. We discuss differences and synergies between the spread of plasmid-borne and chromosomal ARGs, with a special consideration of the difficulties of detecting transduction and transformation by routine genetic diagnostics. We highlight how 11 of the top 12 priority antibiotic-resistant pathogens are known or predicted to be naturally transformable, raising the possibility that this mechanism of HGT makes significant contributions to the spread of ARGs. HGT drives the evolution of untreatable "superbugs" by concentrating ARGs together in the same cell, thus HGT must be included in strategies to prevent the emergence of resistant organisms in hospitals and other clinical settings.
Collapse
Affiliation(s)
| | - Andrew D S Cameron
- a Department of Biology, University of Regina, Regina, SK S4S 0A2, Canada.,b Institute for Microbial Systems and Society, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| |
Collapse
|
23
|
Abstract
Après des années de développement, l’utilisation du nanopore comme sonde pour séquencer les molécules d’ADN est maintenant une possibilité viable et prometteuse. La détection d’une seule paire de bases lors du transport de l’ADN permet d’enregistrer de très longs fragments de polynucléotides, avec une parallélisation et des vitesses élevées. Dans cette revue, les méthodologies actuelles fondées sur la détection électrique et les nanopores biologiques seront présentées de même que les nouvelles méthodes utilisant des nanopores à l’état solide, ou la détection optique.
Collapse
|
24
|
Genomic Analysis of Hospital Plumbing Reveals Diverse Reservoir of Bacterial Plasmids Conferring Carbapenem Resistance. mBio 2018; 9:mBio.02011-17. [PMID: 29437920 PMCID: PMC5801463 DOI: 10.1128/mbio.02011-17] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The hospital environment is a potential reservoir of bacteria with plasmids conferring carbapenem resistance. Our Hospital Epidemiology Service routinely performs extensive sampling of high-touch surfaces, sinks, and other locations in the hospital. Over a 2-year period, additional sampling was conducted at a broader range of locations, including housekeeping closets, wastewater from hospital internal pipes, and external manholes. We compared these data with previously collected information from 5 years of patient clinical and surveillance isolates. Whole-genome sequencing and analysis of 108 isolates provided comprehensive characterization of blaKPC/blaNDM-positive isolates, enabling an in-depth genetic comparison. Strikingly, despite a very low prevalence of patient infections with blaKPC-positive organisms, all samples from the intensive care unit pipe wastewater and external manholes contained carbapenemase-producing organisms (CPOs), suggesting a vast, resilient reservoir. We observed a diverse set of species and plasmids, and we noted species and susceptibility profile differences between environmental and patient populations of CPOs. However, there were plasmid backbones common to both populations, highlighting a potential environmental reservoir of mobile elements that may contribute to the spread of resistance genes. Clear associations between patient and environmental isolates were uncommon based on sequence analysis and epidemiology, suggesting reasonable infection control compliance at our institution. Nonetheless, a probable nosocomial transmission of Leclercia sp. from the housekeeping environment to a patient was detected by this extensive surveillance. These data and analyses further our understanding of CPOs in the hospital environment and are broadly relevant to the design of infection control strategies in many infrastructure settings. Carbapenemase-producing organisms (CPOs) are a global concern because of the morbidity and mortality associated with these resistant Gram-negative bacteria. Horizontal plasmid transfer spreads the resistance mechanism to new bacteria, and understanding the plasmid ecology of the hospital environment can assist in the design of control strategies to prevent nosocomial infections. A 5-year genomic and epidemiological survey was undertaken to study the CPOs in the patient-accessible environment, as well as in the plumbing system removed from the patient. This comprehensive survey revealed a vast, unappreciated reservoir of CPOs in wastewater, which was in contrast to the low positivity rate in both the patient population and the patient-accessible environment. While there were few patient-environmental isolate associations, there were plasmid backbones common to both populations. These results are relevant to all hospitals for which CPO colonization may not yet be defined through extensive surveillance.
Collapse
|