1
|
Herreros-Cabello A, Callejas-Hernández F, Gironès N, Fresno M. Trypanosoma cruzi: Genomic Diversity and Structure. Pathogens 2025; 14:61. [PMID: 39861022 PMCID: PMC11768934 DOI: 10.3390/pathogens14010061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/30/2025] Open
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease, and one of the most important parasitic diseases worldwide. The first genome of T. cruzi was sequenced in 2005, and its complexity made assembly and annotation challenging. Nowadays, new sequencing methods have improved some strains' genome sequence and annotation, revealing this parasite's extensive genetic diversity and complexity. In this review, we examine the genetic diversity, the genomic structure, and the principal multi-gene families involved in the pathogenicity of T. cruzi. The T. cruzi genome sequence is divided into two compartments: the core (conserved) and the disruptive (variable in length and multicopy gene families among strains). The disruptive region has also been described as genome plasticity and plays a key role in the parasite survival and infection process. This region comprises several multi-gene families, including trans-sialidases, mucins, and mucin-associated surface proteins (MASPs). Trans-sialidases are the most prevalent genes in the genome with a key role in the infection process, while mucins and MASPs are also significant glycosylated proteins expressed on the parasite surface, essential for its biological functions, as host-parasite interaction, host cell invasion or protection against the host immune system, in both insect and mammalian stages. Collectively, in this review, some of the most recent advances in the structure and composition of the T. cruzi genome are reviewed.
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | | | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| |
Collapse
|
2
|
Hakim JMC, Gutierrez Guarnizo SA, Málaga Machaca E, Gilman RH, Mugnier MR. Whole-genome assembly of a hybrid Trypanosoma cruzi strain assembled with Nanopore sequencing alone. G3 (BETHESDA, MD.) 2024; 14:jkae076. [PMID: 38592968 PMCID: PMC11152063 DOI: 10.1093/g3journal/jkae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 11/12/2023] [Accepted: 03/27/2024] [Indexed: 04/11/2024]
Abstract
Trypanosoma cruzi is the causative agent of Chagas disease, which causes 10,000 deaths per year. Despite the high mortality associated with Chagas, relatively few parasite genomes have been assembled to date, with genome assemblies unavailable even for some commonly used laboratory strains. This is at least partially due to T. cruzi's highly complex and highly repetitive genome, which defies investigation using traditional short-read sequencing methods. In this study, we have generated a high-quality whole-genome assembly of the hybrid Tulahuen strain, a commercially available type VI strain, using long-read Nanopore sequencing without short-read scaffolding. The assembled genome contains 25% repeat regions, 17% variable multigene family members, and 27% transposable elements (TEs) and is of comparable quality with T. cruzi genome assemblies that utilized both long- and short-read data. Notably, we find that regions with TEs are significantly enriched for multicopy surface proteins, and that surface proteins are, on average, closer to TEs than to other coding regions. This finding suggests that mobile genetic elements such as transposons may drive recombination within surface protein gene families. This work demonstrates the feasibility of Nanopore sequencing to resolve complex regions of T. cruzi genomes, and with these resolved regions, provides support for a possible mechanism for genomic diversification.
Collapse
Affiliation(s)
- Jill M C Hakim
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Edith Málaga Machaca
- Asociación Benéfica PRISMA, Lima 15102, Peru
- Infectious Diseases Research Laboratory, Department of Cellular and Molecular Sciences, Universidad Peruana Cayetano Heredia, Lima 15102, Peru
| | - Robert H Gilman
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Monica R Mugnier
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
3
|
Schäfer L, Jehle JA, Kleespies RG, Wennmann JT. A practical guide and Galaxy workflow to avoid inter-plasmidic repeat collapse and false gene loss in Unicycler's hybrid assemblies. Microb Genom 2024; 10:001173. [PMID: 38197876 PMCID: PMC10868617 DOI: 10.1099/mgen.0.001173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024] Open
Abstract
Generating complete, high-quality genome assemblies is key for any downstream analysis, such as comparative genomics. For bacterial genome assembly, various algorithms and fully automated pipelines exist, which are free-of-charge and easily accessible. However, these assembly tools often cannot unambiguously resolve a bacterial genome, for example due to the presence of sequence repeat structures on the chromosome or on plasmids. Then, a more sophisticated approach and/or manual curation is needed. Such modifications can be challenging, especially for non-bioinformaticians, because they are generally not considered as a straightforward process. In this study, we propose a standardized approach for manual genome completion focusing on the popular hybrid assembly pipeline Unicycler. The provided Galaxy workflow addresses two weaknesses in Unicycler's hybrid assemblies: (i) collapse of inter-plasmidic repeats and (ii) false loss of single-copy sequences. To demonstrate and validate how to detect and resolve these assembly errors, we use two genomes from the Bacillus cereus group. By applying the proposed pipeline following an automated assembly, the genome sequence quality can be significantly improved.
Collapse
Affiliation(s)
- Lea Schäfer
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimer Str. 101, 69221 Dossenheim, Germany
| | - Johannes A. Jehle
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimer Str. 101, 69221 Dossenheim, Germany
| | - Regina G. Kleespies
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimer Str. 101, 69221 Dossenheim, Germany
| | - Jörg T. Wennmann
- Julius Kühn Institute (JKI) – Federal Research Centre for Cultivated Plants, Institute for Biological Control, Schwabenheimer Str. 101, 69221 Dossenheim, Germany
| |
Collapse
|
4
|
Rajeev M, Jung I, Lim Y, Kim S, Kang I, Cho JC. Metagenome sequencing and recovery of 444 metagenome-assembled genomes from the biofloc aquaculture system. Sci Data 2023; 10:707. [PMID: 37848477 PMCID: PMC10582022 DOI: 10.1038/s41597-023-02622-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/06/2023] [Indexed: 10/19/2023] Open
Abstract
Biofloc technology is increasingly recognised as a sustainable aquaculture method. In this technique, bioflocs are generated as microbial aggregates that play pivotal roles in assimilating toxic nitrogenous substances, thereby ensuring high water quality. Despite the crucial roles of the floc-associated bacterial (FAB) community in pathogen control and animal health, earlier microbiota studies have primarily relied on the metataxonomic approaches. Here, we employed shotgun sequencing on eight biofloc metagenomes from a commercial aquaculture system. This resulted in the generation of 106.6 Gbp, and the reconstruction of 444 metagenome-assembled genomes (MAGs). Among the recovered MAGs, 230 were high-quality (≥90% completeness, ≤5% contamination), and 214 were medium-quality (≥50% completeness, ≤10% contamination). Phylogenetic analysis unveiled Rhodobacteraceae as dominant members of the FAB community. The reported metagenomes and MAGs are crucial for elucidating the roles of diverse microorganisms and their functional genes in key processes such as nitrification, denitrification, and remineralization. This study will contribute to scientific understanding of phylogenetic diversity and metabolic capabilities of microbial taxa in aquaculture environments.
Collapse
Affiliation(s)
- Meora Rajeev
- Department of Biological Sciences and Bioengineering, Inha University, Inharo 100, Incheon 22212, Republic of Korea
- Institute for Specialized Teaching and Research, Inha University, Inharo 100, Incheon 22212, Republic of Korea
| | - Ilsuk Jung
- Department of Biological Sciences and Bioengineering, Inha University, Inharo 100, Incheon 22212, Republic of Korea
| | - Yeonjung Lim
- Center for Molecular and Cell Biology, Inha University, Inharo 100, Incheon 22212, Republic of Korea
| | - Suhyun Kim
- Center for Molecular and Cell Biology, Inha University, Inharo 100, Incheon 22212, Republic of Korea
| | - Ilnam Kang
- Center for Molecular and Cell Biology, Inha University, Inharo 100, Incheon 22212, Republic of Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Inharo 100, Incheon 22212, Republic of Korea.
- Center for Molecular and Cell Biology, Inha University, Inharo 100, Incheon 22212, Republic of Korea.
| |
Collapse
|
5
|
Ricci AD, Bracco L, Salas-Sarduy E, Ramsey JM, Nolan MS, Lynn MK, Altcheh J, Ballering GE, Torrico F, Kesper N, Villar JC, Marcipar IS, Marco JD, Agüero F. The Trypanosoma cruzi Antigen and Epitope Atlas: antibody specificities in Chagas disease patients across the Americas. Nat Commun 2023; 14:1850. [PMID: 37012236 PMCID: PMC10070320 DOI: 10.1038/s41467-023-37522-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 03/21/2023] [Indexed: 04/05/2023] Open
Abstract
During an infection the immune system produces pathogen-specific antibodies. These antibody repertoires become specific to the history of infections and represent a rich source of diagnostic markers. However, the specificities of these antibodies are mostly unknown. Here, using high-density peptide arrays we examined the human antibody repertoires of Chagas disease patients. Chagas disease is a neglected disease caused by Trypanosoma cruzi, a protozoan parasite that evades immune mediated elimination and mounts long-lasting chronic infections. We describe a proteome-wide search for antigens, characterised their linear epitopes, and show their reactivity on 71 individuals from diverse human populations. Using single-residue mutagenesis we revealed the core functional residues for 232 of these epitopes. Finally, we show the diagnostic performance of identified antigens on challenging samples. These datasets enable the study of the Chagas antibody repertoire at an unprecedented depth and granularity, while also providing a rich source of serological biomarkers.
Collapse
Affiliation(s)
- Alejandro D Ricci
- Instituto de Investigaciones Biotecnológicas (IIB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Leonel Bracco
- Instituto de Investigaciones Biotecnológicas (IIB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Emir Salas-Sarduy
- Instituto de Investigaciones Biotecnológicas (IIB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina
| | - Janine M Ramsey
- Centro Regional de Investigación en Salud Pública, Instituto Nacional de Salud Pública, Tapachula, México
| | - Melissa S Nolan
- Laboratory of Vector-borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - M Katie Lynn
- Laboratory of Vector-borne and Zoonotic Diseases, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jaime Altcheh
- Hospital de Niños "Ricardo Gutierrez", Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP) - GCBA-CONICET, Buenos Aires, Argentina
| | - Griselda E Ballering
- Hospital de Niños "Ricardo Gutierrez", Ciudad Autónoma de Buenos Aires, Buenos Aires, Argentina
| | | | - Norival Kesper
- LIM-49, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Juan C Villar
- Facultad de Ciencias de la Salud, Universidad Autónoma de Bucaramanga y Fundación Cardioinfantil - Instituto de Cardiología, Bogotá, Colombia
| | - Iván S Marcipar
- Facultad de Ciencias Médicas y Facultad de Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge D Marco
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas (IIB) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina.
- Escuela de Bio y Nanotecnologías (EByN), Universidad de San Martín (UNSAM), San Martín, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Accessing the Variability of Multicopy Genes in Complex Genomes using Unassembled Next-Generation Sequencing Reads: The Case of Trypanosoma cruzi Multigene Families. mBio 2022; 13:e0231922. [PMID: 36264102 PMCID: PMC9765020 DOI: 10.1128/mbio.02319-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Repetitive elements cause assembly fragmentation in complex eukaryotic genomes, limiting the study of their variability. The genome of Trypanosoma cruzi, the parasite that causes Chagas disease, has a high repetitive content, including multigene families. Although many T. cruzi multigene families encode surface proteins that play pivotal roles in host-parasite interactions, their variability is currently underestimated, as their high repetitive content results in collapsed gene variants. To estimate sequence variability and copy number variation of multigene families, we developed a read-based approach that is independent of gene-specific read mapping and de novo assembly. This methodology was used to estimate the copy number and variability of MASP, TcMUC, and Trans-Sialidase (TS), the three largest T. cruzi multigene families, in 36 strains, including members of all six parasite discrete typing units (DTUs). We found that these three families present a specific pattern of variability and copy number among the distinct parasite DTUs. Inter-DTU hybrid strains presented a higher variability of these families, suggesting that maintaining a larger content of their members could be advantageous. In addition, in a chronic murine model and chronic Chagasic human patients, the immune response was focused on TS antigens, suggesting that targeting TS conserved sequences could be a potential avenue to improve diagnosis and vaccine design against Chagas disease. Finally, the proposed approach can be applied to study multicopy genes in any organism, opening new avenues to access sequence variability in complex genomes. IMPORTANCE Sequences that have several copies in a genome, such as multicopy-gene families, mobile elements, and microsatellites, are among the most challenging genomic segments to study. They are frequently underestimated in genome assemblies, hampering the correct assessment of these important players in genome evolution and adaptation. Here, we developed a new methodology to estimate variability and copy numbers of repetitive genomic regions and employed it to characterize the T. cruzi multigene families MASP, TcMUC, and transsialidase (TS), which are important virulence factors in this parasite. We showed that multigene families vary in sequence and content among the parasite's lineages, whereas hybrid strains have a higher sequence variability that could be advantageous to the parasite's survivability. By identifying conserved sequences within multigene families, we showed that the mammalian host immune response toward these multigene families is usually focused on the TS multigene family. These TS conserved and immunogenic peptides can be explored in future works as diagnostic targets or vaccine candidates for Chagas disease. Finally, this methodology can be easily applied to any organism of interest, which will aid in our understanding of complex genomic regions.
Collapse
|
7
|
Diaz-Hernandez A, Gonzalez-Vazquez MC, Arce-Fonseca M, Rodríguez-Morales O, Cedillo-Ramirez ML, Carabarin-Lima A. Consensus Enolase of Trypanosoma Cruzi: Evaluation of Their Immunogenic Properties Using a Bioinformatics Approach. Life (Basel) 2022; 12:life12050746. [PMID: 35629412 PMCID: PMC9148029 DOI: 10.3390/life12050746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 12/23/2022] Open
Abstract
There is currently no vaccine against American trypanosomiasis, caused by the parasite Trypanosoma cruzi. This is due to the genomic variation observed in the six DTUs of T. cruzi. This work aims to propose a consensus sequence of the enolase protein from different strains of T. cruzi and mainly evaluate its immunogenic properties at the bioinformatic level. From specialized databases, 15 sequences of the enolase gene were aligned to obtain a consensus sequence, where this sequence was modeled and then evaluated and validated through different bioinformatic programs to learn their immunogenic potential. Finally, chimeric peptides were designed with the most representative epitopes. The results showed high immunogenic potential with six epitopes for MHC-I, and seven epitopes for MHC-II, all of which were highly representative of the enolase present in strains from the American continent as well as five epitopes for B cells. Regarding the computational modeling, molecular docking with Toll-like receptors showed a high affinity and low constant of dissociation, which could lead to an innate-type immune response that helps to eliminate the parasite. In conclusion, the consensus sequence proposed for enolase is capable of providing an ideal immune response; however, the experimental evaluation of this enolase consensus and their chimeric peptides should be a high priority to develop a vaccine against Chagas disease.
Collapse
Affiliation(s)
- Alejandro Diaz-Hernandez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 14 Sury Avenida San Claudio, Ciudad Universitaria, Puebla 72570, Mexico; (A.D.-H.); (M.L.C.-R.)
| | - Maria Cristina Gonzalez-Vazquez
- Herbario y Jardín Botánico Universitario, Benemérita Universidad Autónoma de Puebla, Ciudad Universitaria, Puebla 72570, Mexico;
| | - Minerva Arce-Fonseca
- Departamento de Biología Molecular, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, México City 14080, Mexico; (M.A.-F.); (O.R.-M.)
| | - Olivia Rodríguez-Morales
- Departamento de Biología Molecular, Instituto Nacional de Cardiología “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, México City 14080, Mexico; (M.A.-F.); (O.R.-M.)
| | - Maria Lilia Cedillo-Ramirez
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 14 Sury Avenida San Claudio, Ciudad Universitaria, Puebla 72570, Mexico; (A.D.-H.); (M.L.C.-R.)
| | - Alejandro Carabarin-Lima
- Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 14 Sury Avenida San Claudio, Ciudad Universitaria, Puebla 72570, Mexico; (A.D.-H.); (M.L.C.-R.)
- Correspondence: ; Tel.: +52-222-2295-500 (ext. 3965)
| |
Collapse
|
8
|
Paraphocaeicola brunensis gen. nov., sp. nov., Carrying Two Variants of nimB Resistance Gene from Bacteroides fragilis, and Caecibacteroides pullorum gen. nov., sp. nov., Two Novel Genera Isolated from Chicken Caeca. Microbiol Spectr 2022; 10:e0195421. [PMID: 35170999 PMCID: PMC8849064 DOI: 10.1128/spectrum.01954-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Three difficult-to-cultivate, strictly anaerobic strains, AN20T, AN421T, and AN502, were analyzed within a project studying possible probiotics for newly hatched chickens. Phylogenetic analyses showed that strains AN20T, AN421T, and AN502 formed two well-separated phylogenetic lineages in all phylogenetic and phylogenomic trees comprising members of the family Bacteroidaceae. Comparison to reference genomes of type species Bacteroides fragilis NCTC 9343T, Phocaeicola abscessus CCUG 55929T, and Capsularis zoogleoformans ATCC 33285T showed low relatedness based on the calculated genome-to-genome distance and orthologous average nucleotide identity. Analysis of fatty acid profiles showed iso-C15:0, anteiso-C15:0, C16:0, C18:1ω9c, and iso-C17:0 3OH as the major fatty acids for all three strains and additionally C16:0 3OH for AN421T and AN502. A specific combination of respiratory quinones different from related taxa was found in analyzed strains, MK-5 plus MK-11 in strain AN20T and MK-5 plus MK-10 in strains AN421T and AN502. Strains AN421T and AN502 harbor complete CRISPR loci with CRISPR array, type II-C, accompanied by a set of cas genes (cas9, cas1, and cas2) in close proximity. Interestingly, strain AN20T was found to harbor two copies of nimB gene with >95% similarity to nimB of B. fragilis, suggesting a horizontal gene transfer between these taxa. In summary, three isolates characterized in this study represent two novel species, which we proposed to be classified in two novel genera of the family Bacteroidaceae, for which the names Paraphocaeicola brunensis sp. nov. (AN20T = CCM 9041T = DSM 111154T) and Caecibacteroides pullorum sp. nov. (AN421T= CCM 9040T = DSM 111155T) are proposed. IMPORTANCE This study represents follow-up research on three difficult-to-cultivate anaerobic isolates originally isolated within a project focused on strains that are able to stably colonize newly hatched chickens, thus representing possible probiotics. This project is exceptional in that it successfully isolates several miscellaneous strains that required modified and richly supplemented anaerobic media, as information on many gut-colonizing bacteria is based predominantly on metagenomic studies. Superior colonization of newly hatched chickens by Bacteroides spp., Phocaeicola spp., or related taxa can be considered of importance for development of future probiotics. Although different experiments can also be performed with provisionally characterized isolates, precise taxonomical definition is necessary for subsequent broad communication. The aim of this study is therefore to thoroughly characterize these isolates that represent novel genera and precisely determine their taxonomic position among related taxa to facilitate further research and communication involving these strains.
Collapse
|
9
|
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done? Pathogens 2021; 10:pathogens10091124. [PMID: 34578156 PMCID: PMC8472099 DOI: 10.3390/pathogens10091124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
Collapse
|
10
|
Berná L, Greif G, Pita S, Faral-Tello P, Díaz-Viraqué F, Souza RDCMD, Vallejo GA, Alvarez-Valin F, Robello C. Maxicircle architecture and evolutionary insights into Trypanosoma cruzi complex. PLoS Negl Trop Dis 2021; 15:e0009719. [PMID: 34437557 PMCID: PMC8425572 DOI: 10.1371/journal.pntd.0009719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 09/08/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
We sequenced maxicircles from T. cruzi strains representative of the species evolutionary diversity by using long-read sequencing, which allowed us to uncollapse their repetitive regions, finding that their real lengths range from 35 to 50 kb. T. cruzi maxicircles have a common architecture composed of four regions: coding region (CR), AT-rich region, short (SR) and long repeats (LR). Distribution of genes, both in order and in strand orientation are conserved, being the main differences the presence of deletions affecting genes coding for NADH dehydrogenase subunits, reinforcing biochemical findings that indicate that complex I is not functional in T. cruzi. Moreover, the presence of complete minicircles into maxicircles of some strains lead us to think about the origin of minicircles. Finally, a careful phylogenetic analysis was conducted using coding regions of maxicircles from up to 29 strains, and 1108 single copy nuclear genes from all of the DTUs, clearly establishing that taxonomically T. cruzi is a complex of species composed by group 1 that contains clades A (TcI), B (TcIII) and D (TcIV), and group 2 (1 and 2 do not coincide with groups I and II described decades ago) containing clade C (TcII), being all hybrid strains of the BC type. Three variants of maxicircles exist in T. cruzi: a, b and c, in correspondence with clades A, B, and C from mitochondrial phylogenies. While A and C carry maxicircles a and c respectively, both clades B and D carry b maxicircle variant; hybrid strains also carry the b- variant. We then propose a new nomenclature that is self-descriptive and makes use of both the phylogenetic relationships and the maxicircle variants present in T. cruzi.
Collapse
Affiliation(s)
- Luisa Berná
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Sección Biomatemática—Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Gonzalo Greif
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Sebastián Pita
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Sección Genética, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Paula Faral-Tello
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Florencia Díaz-Viraqué
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Gustavo Adolfo Vallejo
- Laboratorio de investigaciones en Parasitología Tropical (LIPT), Facultad de Ciencias, Universidad del Tolima, Tolima, Colombia
| | - Fernando Alvarez-Valin
- Sección Biomatemática—Unidad de Genómica Evolutiva, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero-Patógeno, Unidad de Biología Molecular, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- * E-mail:
| |
Collapse
|
11
|
Souvorov A, Agarwala R. SAUTE: sequence assembly using target enrichment. BMC Bioinformatics 2021; 22:375. [PMID: 34289805 PMCID: PMC8293564 DOI: 10.1186/s12859-021-04174-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 05/05/2021] [Indexed: 01/25/2023] Open
Abstract
Background Illumina is the dominant sequencing technology at this time. Short length, short insert size, some systematic biases, and low-level carryover contamination in Illumina reads continue to make assembly of repeated regions a challenging problem. Some applications also require finding multiple well supported variants for assembled regions. Results To facilitate assembly of repeat regions and to report multiple well supported variants when a user can provide target sequences to assist the assembly, we propose SAUTE and SAUTE_PROT assemblers. Both assemblers use de Bruijn graph on reads. Targets can be transcripts or proteins for RNA-seq reads and transcripts, proteins, or genomic regions for genomic reads. Target sequences are nucleotide and protein sequences for SAUTE and SAUTE_PROT, respectively. Conclusions For RNA-seq, comparisons with Trinity, rnaSPAdes, SPAligner, and SPAdes assembly of reads aligned to target proteins by DIAMOND show that SAUTE_PROT finds more coding sequences that translate to benchmark proteins. Using AMRFinderPlus calls, we find SAUTE has higher sensitivity and precision than SPAdes, plasmidSPAdes, SPAligner, and SPAdes assembly of reads aligned to target regions by HISAT2. It also has better sensitivity than SKESA but worse precision. Supplementary Information The online version contains supplementary material available at 10.1186/s12859-021-04174-9.
Collapse
Affiliation(s)
| | - Richa Agarwala
- NCBI/NLM/NIH/DHHS, 8600 Rockville Pike, Bethesda, MD, 20894, USA.
| |
Collapse
|
12
|
Majeau A, Murphy L, Herrera C, Dumonteil E. Assessing Trypanosoma cruzi Parasite Diversity through Comparative Genomics: Implications for Disease Epidemiology and Diagnostics. Pathogens 2021; 10:212. [PMID: 33669197 PMCID: PMC7919814 DOI: 10.3390/pathogens10020212] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 01/21/2023] Open
Abstract
Chagas disease is an important vector-borne neglected tropical disease that causes great health and economic losses. The etiological agent, Trypanosoma cruzi, is a protozoan parasite endemic to the Americas, comprised by important diversity, which has been suggested to contribute to poor serological diagnostic performance. Current nomenclature describes seven discrete typing units (DTUs), or lineages. We performed the first large scale analysis of T. cruzi diversity among 52 previously published genomes from strains covering multiple countries and parasite DTUs and assessed how different markers summarize this genetic diversity. We also examined how seven antigens currently used in commercial serologic tests are conserved across this diversity of strains. DTU structuration was confirmed at the whole-genome level, with evidence of sub-DTU diversity, associated in part to geographic structuring. We observed very comparable phylogenetic tree topographies for most of the 32 markers investigated, with clear clustering of sequences by DTU, and a few of these markers suggested some degree of intra-lineage diversity. At least three of the currently used antigens represent poorly conserved sequences, with sequences used in tests quite divergent from sequences in many strains. Most markers are well suited for estimating parasite diversity to DTU level, and a few are particularly well-suited to assess intra-DTU diversity. Analysis of antigen sequences across all strains indicates that antigenic diversity is a likely explanation for limited diagnostic performance in Central and North America.
Collapse
Affiliation(s)
| | | | - Claudia Herrera
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector Borne Infectious Disease Research Center, Tulane University, New Orleans, LA 70112, USA; (A.M.); (L.M.)
| | - Eric Dumonteil
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Vector Borne Infectious Disease Research Center, Tulane University, New Orleans, LA 70112, USA; (A.M.); (L.M.)
| |
Collapse
|
13
|
Masri RA, Karagodin DA, Sharma A, Sharakhova MV. A Gene-Based Method for Cytogenetic Mapping of Repeat-Rich Mosquito Genomes. INSECTS 2021; 12:138. [PMID: 33561960 PMCID: PMC7916018 DOI: 10.3390/insects12020138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Long-read sequencing technologies have opened up new avenues of research on the mosquito genome biology, enabling scientists to better understand the remarkable abilities of vectors for transmitting pathogens. Although new genome mapping technologies such as Hi-C scaffolding and optical mapping may significantly improve the quality of genomes, only cytogenetic mapping, with the help of fluorescence in situ hybridization (FISH), connects genomic scaffolds to a particular chromosome and chromosome band. This mapping approach is important for creating and validating chromosome-scale genome assemblies for mosquitoes with repeat-rich genomes, which can potentially be misassembled. In this study, we describe a new gene-based physical mapping approach that was optimized using the newly assembled Aedes albopictus genome, which is enriched with transposable elements. To avoid amplification of the repetitive DNA, 15 protein-coding gene transcripts were used for the probe design. Instead of using genomic DNA, complementary DNA was utilized as a template for development of the PCR-amplified probes for FISH. All probes were successfully amplified and mapped to specific chromosome bands. The genome-unique probes allowed to perform unambiguous mapping of genomic scaffolds to chromosome regions. The method described in detail here can be used for physical genome mapping in other insects.
Collapse
Affiliation(s)
- Reem A. Masri
- Department of Entomology and the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Dmitriy A. Karagodin
- Laboratory of Evolutionary Genomics of Insects, The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| | - Atashi Sharma
- Department of Biochemistry and the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
| | - Maria V. Sharakhova
- Department of Entomology and the Fralin Life Sciences Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA;
- Laboratory of Evolutionary Genomics of Insects, The Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia;
| |
Collapse
|
14
|
Schwabl P, Maiguashca Sánchez J, Costales JA, Ocaña-Mayorga S, Segovia M, Carrasco HJ, Hernández C, Ramírez JD, Lewis MD, Grijalva MJ, Llewellyn MS. Culture-free genome-wide locus sequence typing (GLST) provides new perspectives on Trypanosoma cruzi dispersal and infection complexity. PLoS Genet 2020; 16:e1009170. [PMID: 33326438 PMCID: PMC7743988 DOI: 10.1371/journal.pgen.1009170] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 10/02/2020] [Indexed: 12/30/2022] Open
Abstract
Analysis of genetic polymorphism is a powerful tool for epidemiological surveillance and research. Powerful inference from pathogen genetic variation, however, is often restrained by limited access to representative target DNA, especially in the study of obligate parasitic species for which ex vivo culture is resource-intensive or bias-prone. Modern sequence capture methods enable pathogen genetic variation to be analyzed directly from host/vector material but are often too complex and expensive for resource-poor settings where infectious diseases prevail. This study proposes a simple, cost-effective 'genome-wide locus sequence typing' (GLST) tool based on massive parallel amplification of information hotspots throughout the target pathogen genome. The multiplexed polymerase chain reaction amplifies hundreds of different, user-defined genetic targets in a single reaction tube, and subsequent agarose gel-based clean-up and barcoding completes library preparation at under 4 USD per sample. Our study generates a flexible GLST primer panel design workflow for Trypanosoma cruzi, the parasitic agent of Chagas disease. We successfully apply our 203-target GLST panel to direct, culture-free metagenomic extracts from triatomine vectors containing a minimum of 3.69 pg/μl T. cruzi DNA and further elaborate on method performance by sequencing GLST libraries from T. cruzi reference clones representing discrete typing units (DTUs) TcI, TcIII, TcIV, TcV and TcVI. The 780 SNP sites we identify in the sample set repeatably distinguish parasites infecting sympatric vectors and detect correlations between genetic and geographic distances at regional (< 150 km) as well as continental scales. The markers also clearly separate TcI, TcIII, TcIV and TcV + TcVI and appear to distinguish multiclonal infections within TcI. We discuss the advantages, limitations and prospects of our method across a spectrum of epidemiological research.
Collapse
Affiliation(s)
- Philipp Schwabl
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| | - Jalil Maiguashca Sánchez
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Jaime A. Costales
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Sofía Ocaña-Mayorga
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Maikell Segovia
- Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Hernán J. Carrasco
- Laboratorio de Biología Molecular de Protozoarios, Instituto de Medicina Tropical, Universidad Central de Venezuela, Caracas, Venezuela
| | - Carolina Hernández
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Michael D. Lewis
- London School of Hygiene & Tropical Medicine, Keppel Street, London, United Kingdom
| | - Mario J. Grijalva
- Centro de Investigación para la Salud en América Latina, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
- Infectious and Tropical Disease Institute, Biomedical Sciences Department, Heritage College of Osteopathic Medicine, Ohio University, Athens, OH, United States of America
| | - Martin S. Llewellyn
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
15
|
DeCuir J, Tu W, Dumonteil E, Herrera C. Sequence of Trypanosoma cruzi reference strain SC43 nuclear genome and kinetoplast maxicircle confirms a strong genetic structure among closely related parasite discrete typing units. Genome 2020; 64:525-531. [PMID: 33086026 DOI: 10.1139/gen-2020-0092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chagas disease is a zoonotic, parasitic, vector-borne neglected tropical disease that affects the lives of over 6 million people throughout the Americas. Trypanosoma cruzi, the causative agent, presents extensive genetic diversity. Here we report the genome sequence of reference strain SC43cl1, a hybrid strain belonging to the TcV discrete typing unit (DTU). The assembled diploid genome was 79 Mbp in size, divided into 1236 contigs with an average coverage reaching 180×. There was extensive synteny of SC43cl1 genome with closely related TcV and TcVI genomes, with limited sequence rearrangements. TcVI genomes included several expansions not present in TcV strains. Comparative analysis of both nuclear and kinetoplast sequences clearly separated TcV from TcVI strains, which strongly supports the current DTU classification.
Collapse
Affiliation(s)
- James DeCuir
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Weihong Tu
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Eric Dumonteil
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Claudia Herrera
- Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA.,Department of Tropical Medicine, Vector-Borne and Infectious Disease Research Center, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| |
Collapse
|
16
|
Herreros-Cabello A, Callejas-Hernández F, Gironès N, Fresno M. Trypanosoma Cruzi Genome: Organization, Multi-Gene Families, Transcription, and Biological Implications. Genes (Basel) 2020; 11:E1196. [PMID: 33066599 PMCID: PMC7602482 DOI: 10.3390/genes11101196] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 01/20/2023] Open
Abstract
Chagas disease caused by the parasite Trypanosoma cruzi affects millions of people. Although its first genome dates from 2005, its complexity hindered a complete assembly and annotation. However, the new sequencing methods have improved genome annotation of some strains elucidating the broad genetic diversity and complexity of this parasite. Here, we reviewed the genomic structure and regulation, the genetic diversity, and the analysis of the principal multi-gene families of the recent genomes for several strains. The telomeric and sub-telomeric regions are sites with high recombination events, the genome displays two different compartments, the core and the disruptive, and the genome plasticity seems to play a key role in the survival and the infection process. Trypanosoma cruzi (T. cruzi) genome is composed mainly of multi-gene families as the trans-sialidases, mucins, and mucin-associated surface proteins. Trans-sialidases are the most abundant genes in the genome and show an important role in the effectiveness of the infection and the parasite survival. Mucins and MASPs are also important glycosylated proteins of the surface of the parasite that play a major biological role in both insect and mammal-dwelling stages. Altogether, these studies confirm the complexity of T. cruzi genome revealing relevant concepts to better understand Chagas disease.
Collapse
Affiliation(s)
- Alfonso Herreros-Cabello
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
| | - Francisco Callejas-Hernández
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
| | - Núria Gironès
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain; (A.H.-C.); (F.C.-H.)
- Instituto Sanitario de Investigación Princesa, 28006 Madrid, Spain
| |
Collapse
|
17
|
Rivas-García L, Carballo-Amador MA, Flores-López CA. Design of a AFLP-PCR and PCR-RFLP test that identify the majority of discrete typing units of Trypanosoma cruzi. PLoS One 2020; 15:e0237180. [PMID: 32750094 PMCID: PMC7402520 DOI: 10.1371/journal.pone.0237180] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/21/2020] [Indexed: 11/18/2022] Open
Abstract
Background Chagas disease, caused by the intracellular parasite Trypanosoma cruzi, is one of the most important parasitological infections in the Americas. It is estimated to infect approximately 6 million people from mostly low income countries in Latin America, although recent infections have been reported in southern US states. Several studies have described an extensive genetic diversity among T. cruzi isolates throughout its geographic distribution in the American continent. This diversity has been correlated with the pathology developed during an infection. However, due to a lack of a single reliable test, current diagnosis practices of the disease are not straightforward since several different tests are applied. The use of current genomic sequence data allows for the selection of molecular markers (MM) that have the ability to identify the Discrete Typing Unit (DTU) of T. cruzi in a given infection, without the need of any sequencing reaction. Methodology/principal findings Applying three criteria on the genomic sequencing data of four different phylogenetic lineages of T. cruzi, we designed several molecular tests that can be used for the molecular typing of the parasite. The criteria used were: (1) single-copy orthologs of T. cruzi, (2) T. cruzi unique loci, and (3) T. cruzi polymorphic loci. All criteria combined allowed for the selection of 15 MM, 12 of which were confirmed to be functional and replicable in the laboratory with sylvatic samples. Furthermore, one MM produced distinct polymerase chain reaction (PCR) amplicon sizes among distinct T. cruzi DTUs, allowing the use of a AFLP-PCR test to distinguish DTUs I, II/IV, V and VI. Whereas two MM can differentiate DTUs I, II, IV and V/VI out of the six current DTUs with a PCR-RFLP test. Conclusions/significance The designed molecular tests provide a practical and inexpensive molecular typing test for the majority of DTUs of T. cruzi, excluding the need to perform any sequencing reaction. This provides the scientific community with an additional specific, quick and inexpensive test that can enhance the understanding of the correlation between the DTU of T. cruzi and the pathology developed during the infection.
Collapse
Affiliation(s)
- Lynneth Rivas-García
- Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | | | | |
Collapse
|
18
|
Lobo M, Balouz V, Melli L, Carlevaro G, Cortina ME, Cámara MDLM, Cánepa GE, Carmona SJ, Altcheh J, Campetella O, Ciocchini AE, Agüero F, Mucci J, Buscaglia CA. Molecular and antigenic characterization of Trypanosoma cruzi TolT proteins. PLoS Negl Trop Dis 2019; 13:e0007245. [PMID: 30870417 PMCID: PMC6435186 DOI: 10.1371/journal.pntd.0007245] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 03/26/2019] [Accepted: 02/14/2019] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND TolT was originally described as a Trypanosoma cruzi molecule that accumulated on the trypomastigote flagellum bearing similarity to bacterial TolA colicins receptors. Preliminary biochemical studies indicated that TolT resolved in SDS-PAGE as ~3-5 different bands with sizes between 34 and 45 kDa, and that this heterogeneity could be ascribed to differences in polypeptide glycosylation. However, the recurrent identification of TolT-deduced peptides, and variations thereof, in trypomastigote proteomic surveys suggested an intrinsic TolT complexity, and prompted us to undertake a thorough reassessment of this antigen. METHODS/PRINCIPLE FINDINGS Genome mining exercises showed that TolT constitutes a larger-than-expected family of genes, with at least 12 polymorphic members in the T. cruzi CL Brener reference strain and homologs in different trypanosomes. According to structural features, TolT deduced proteins could be split into three robust groups, termed TolT-A, TolT-B, and TolT-C, all of them showing marginal sequence similarity to bacterial TolA proteins and canonical signatures of surface localization/membrane association, most of which were herein experimentally validated. Further biochemical and microscopy-based characterizations indicated that this grouping may have a functional correlate, as TolT-A, TolT-B and TolT-C molecules showed differences in their expression profile, sub-cellular distribution, post-translational modification(s) and antigenic structure. We finally used a recently developed fluorescence magnetic beads immunoassay to validate a recombinant protein spanning the central and mature region of a TolT-B deduced molecule for Chagas disease serodiagnosis. CONCLUSION/SIGNIFICANCE This study unveiled an unexpected genetic and biochemical complexity within the TolT family, which could be exploited for the development of novel T. cruzi biomarkers with diagnostic/therapeutic applications.
Collapse
Affiliation(s)
- Maite Lobo
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Virginia Balouz
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Luciano Melli
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Giannina Carlevaro
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - María E Cortina
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - María de Los Milagros Cámara
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Gaspar E Cánepa
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Santiago J Carmona
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Jaime Altcheh
- Servicio de Parasitología-Chagas, Hospital de Niños Ricardo Gutiérrez, Buenos Aires, Argentina
| | - Oscar Campetella
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Andrés E Ciocchini
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Juan Mucci
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| | - Carlos A Buscaglia
- Instituto de Investigaciones Biotecnológicas "Dr Rodolfo Ugalde" (IIB-INTECh, Universidad Nacional de San Martín and CONICET), Buenos Aires, Argentina
| |
Collapse
|
19
|
Reis-Cunha JL, Bartholomeu DC. Trypanosoma cruzi Genome Assemblies: Challenges and Milestones of Assembling a Highly Repetitive and Complex Genome. Methods Mol Biol 2019; 1955:1-22. [PMID: 30868515 DOI: 10.1007/978-1-4939-9148-8_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Trypanosoma cruzi present one of the most complex parasite genomes sequenced to date. Among its features are 600-kb-long repetitive multigene families' clusters, hybrid strains, and aneuploidies, which hampered genome assembly completeness and contiguity. Several approaches, such as Sanger sequencing in 2005, next-generation sequencing in 2011 and third-generation sequencing in 2018, were used to improve draft assemblies of different strains of this parasite. Hence, the study of T. cruzi genome assemblies' history is an excellent way to describe the evolution of genome sequencing methodologies and compare their efficiency and limitations to assembly complex genomes. In this book chapter, we summarize the principal findings and methodologies of T. cruzi genome assembly projects to date, highlighting the improvements and limitations of each approach.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniella C Bartholomeu
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|
20
|
Reis-Cunha JL, Baptista RP, Rodrigues-Luiz GF, Coqueiro-Dos-Santos A, Valdivia HO, de Almeida LV, Cardoso MS, D'Ávila DA, Dias FHC, Fujiwara RT, Galvão LMC, Chiari E, Cerqueira GC, Bartholomeu DC. Whole genome sequencing of Trypanosoma cruzi field isolates reveals extensive genomic variability and complex aneuploidy patterns within TcII DTU. BMC Genomics 2018; 19:816. [PMID: 30424726 PMCID: PMC6234542 DOI: 10.1186/s12864-018-5198-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 10/23/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trypanosoma cruzi, the etiologic agent of Chagas disease, is currently divided into six discrete typing units (DTUs), named TcI-TcVI. TcII is among the major DTUs enrolled in human infections in South America southern cone, where it is associated with severe cardiac and digestive symptoms. Despite the importance of TcII in Chagas disease epidemiology and pathology, so far, no genome-wide comparisons of the mitochondrial and nuclear genomes of TcII field isolates have been performed to track the variability and evolution of this DTU in endemic regions. RESULTS In the present work, we have sequenced and compared the whole nuclear and mitochondrial genomes of seven TcII strains isolated from chagasic patients from the central and northeastern regions of Minas Gerais, Brazil, revealing an extensive genetic variability within this DTU. A comparison of the phylogeny based on the nuclear or mitochondrial genomes revealed that the majority of branches were shared by both sequences. The subtle divergences in the branches are probably consequence of mitochondrial introgression events between TcII strains. Two T. cruzi strains isolated from patients living in the central region of Minas Gerais, S15 and S162a, were clustered in the nuclear and mitochondrial phylogeny analysis. These two strains were isolated from the other five by the Espinhaço Mountains, a geographic barrier that could have restricted the traffic of insect vectors during T. cruzi evolution in the Minas Gerais state. Finally, the presence of aneuploidies was evaluated, revealing that all seven TcII strains have a different pattern of chromosomal duplication/loss. CONCLUSIONS Analysis of genomic variability and aneuploidies suggests that there is significant genomic variability within Minas Gerais TcII strains, which could be exploited by the parasite to allow rapid selection of favorable phenotypes. Also, the aneuploidy patterns vary among T. cruzi strains and does not correlate with the nuclear phylogeny, suggesting that chromosomal duplication/loss are recent and frequent events in the parasite evolution.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Rodrigo P Baptista
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,The University of Georgia, Athens, USA
| | - Gabriela F Rodrigues-Luiz
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, Brazil
| | | | - Hugo O Valdivia
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,U.S. Naval Medical Research, Lima, Peru
| | - Laila Viana de Almeida
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Santos Cardoso
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Lúcia M C Galvão
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Egler Chiari
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Daniella C Bartholomeu
- Departamento de Parasitologia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.
| |
Collapse
|