1
|
Itadani K, Oonishi Y, Hisada H, Tanaka T, Mizunaga S, Yamagishi Y, Mikamo H. Distribution and Antimicrobial Susceptibility Pattern of CTX-M-type Extended-Spectrum β-Lactamase-Producing Escherichia coli Isolated in Chubu Region, Japan. Jpn J Infect Dis 2024; 77:334-341. [PMID: 38945858 DOI: 10.7883/yoken.jjid.2024.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The widespread prevalence of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli limits treatment options and is a worldwide problem. This study aimed to investigate the antimicrobial susceptibility and ESBL types of 204 strains of CTX-M-type ESBLsproducing E. coli isolated from 2011 to 2017 in the Chubu region of Japan and to identify factors correlated with susceptibility. Minimal inhibitory concentrations were determined in accordance with the guidelines of the Clinical and Laboratory Standards Institute. Genes encoding β-lactamases were detected by PCR amplification. The CTX-M subtypes were determined using sequence analyses. CTX- M-15-producing strains showed significantly lower susceptibility rates to tazobactam/piperacillin (TAZ/ PIPC) than CTX-M-14 and -27-producing strains. Additional analyses of secondary β-lactamases revealed that most of the OXA-1-positive strains were CTX-M-15-producing strains (94.7%). The OXA-1-positive strains displayed significantly lower susceptibility to TAZ/PIPC (47.4%), sulbactam/ ampicillin (0.0%), and amikacin (73.7%) than the OXA-1-negative strains, suggesting that the high non-susceptibility rate of the CTX-M-15-producing strain was due to the co-carriage of OXA-1. Statistical analyses showed that OXA-1-positive strains were present in significant amounts in patients aged ≥65 years, suggesting that older patients have a higher risk of being refractory to treatment.
Collapse
Affiliation(s)
- Kazuya Itadani
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, Japan
- Bio Science & Engineering Research Laboratories, FUJIFILM Corporation, Japan
| | | | | | | | - Shingo Mizunaga
- Bio Science & Engineering Research Laboratories, FUJIFILM Corporation, Japan
| | - Yuka Yamagishi
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, Japan
| | - Hiroshige Mikamo
- Department of Clinical Infectious Diseases, Aichi Medical University Graduate School of Medicine, Japan
| |
Collapse
|
2
|
Allain M, Morel-Journel T, Condamine B, Gibeaux B, Gachet B, Gschwind R, Denamur E, Landraud L. IncC plasmid genome rearrangements influence the vertical and horizontal transmission tradeoff in Escherichia coli. Antimicrob Agents Chemother 2024; 68:e0055424. [PMID: 39194203 PMCID: PMC11459957 DOI: 10.1128/aac.00554-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/07/2024] [Indexed: 08/29/2024] Open
Abstract
It has been shown that an evolutionary tradeoff between vertical (host growth rate) and horizontal (plasmid conjugation) transmissions contributes to global plasmid fitness. As conjugative IncC plasmids are important for the spread of multidrug resistance (MDR), in a broad range of bacterial hosts, we investigated vertical and horizontal transmissions of two multidrug-resistant IncC plasmids according to their backbones and MDR-region rearrangements, upon plasmid entry into a new host. We observed plasmid genome deletions after conjugation in three diverse natural Escherichia coli clinical strains, varying from null to high number depending on the plasmid, all occurring in the MDR region. The plasmid burden on bacterial fitness depended more on the strain background than on the structure of the MDR region, with deletions appearing to have no impact. Besides, we observed an increase in plasmid transfer rate, from ancestral host to new clinical recipient strains, when the IncC plasmid was rearranged. Finally, using a second set of conjugation experiments, we investigated the evolutionary tradeoff of the IncC plasmid during the critical period of plasmid establishment in E. coli K-12, by correlating the transfer rates of deleted or non-deleted IncC plasmids and their costs on the recipient strain. Plasmid deletions strongly improved conjugation efficiency with no negative growth effect. Our findings indicate that the flexibility of the MDR-region of the IncC plasmids can promote their dissemination, and provide diverse opportunities to capture new resistance genes. In a broader view, they suggest that the vertical-horizontal transmission tradeoff can be manipulated by the plasmid to improve its fitness.
Collapse
Affiliation(s)
- Margaux Allain
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| | - Thibaut Morel-Journel
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Bénédicte Condamine
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Benoist Gibeaux
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| | - Benoit Gachet
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Rémi Gschwind
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
| | - Erick Denamur
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
| | - Luce Landraud
- Université Paris Cité and Université Sorbonne Paris Nord, INSERM, IAME, Paris, France
- AP-HP, Laboratoire de Microbiologie Hygiène, Hôpital Louis Mourier, Colombes, France
| |
Collapse
|
3
|
Frolova D, Lima L, Roberts LW, Bohnenkämper L, Wittler R, Stoye J, Iqbal Z. Applying rearrangement distances to enable plasmid epidemiology with pling. Microb Genom 2024; 10:001300. [PMID: 39401066 PMCID: PMC11472880 DOI: 10.1099/mgen.0.001300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/05/2024] [Indexed: 10/15/2024] Open
Abstract
Plasmids are a key vector of antibiotic resistance, but the current bioinformatics toolkit is not well suited to tracking them. The rapid structural changes seen in plasmid genomes present considerable challenges to evolutionary and epidemiological analysis. Typical approaches are either low resolution (replicon typing) or use shared k-mer content to define a genetic distance. However, this distance can both overestimate plasmid relatedness by ignoring rearrangements, and underestimate by over-penalizing gene gain/loss. Therefore a model is needed which captures the key components of how plasmid genomes evolve structurally - through gene/block gain or loss, and rearrangement. A secondary requirement is to prevent promiscuous transposable elements (TEs) leading to over-clustering of unrelated plasmids. We choose the 'Double Cut and Join Indel' (DCJ-Indel) model, in which plasmids are studied at a coarse level, as a sequence of signed integers (representing genes or aligned blocks), and the distance between two plasmids is the minimum number of rearrangement events or indels needed to transform one into the other. We show how this gives much more meaningful distances between plasmids. We introduce a software workflow pling (https://github.com/iqbal-lab-org/pling), which uses the DCJ-Indel model, to calculate distances between plasmids and then cluster them. In our approach, we combine containment distances and DCJ-Indel distances to build a TE-aware plasmid network. We demonstrate superior performance and interpretability to other plasmid clustering tools on the 'Russian Doll' dataset and a hospital transmission dataset.
Collapse
Affiliation(s)
- Daria Frolova
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Leandro Lima
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
| | - Leah Wendy Roberts
- Centre for Immunology and Infection Control, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Leonard Bohnenkämper
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
- Graduate School "Digital Infrastructure for the Life Sciences" (DILS), Bielefeld University, Bielefeld, Germany
| | - Roland Wittler
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jens Stoye
- Faculty of Technology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Zamin Iqbal
- European Bioinformatics Institute, Hinxton, Cambridge CB10 1SD, UK
- Milner Centre for Evolution, University of Bath, Bath, UK
| |
Collapse
|
4
|
Zalewska M, Błażejewska A, Gawor J, Adamska D, Goryca K, Szeląg M, Kalinowski P, Popowska M. A newly identified IncY plasmid from multi-drug-resistant Escherichia coli isolated from dairy cattle feces in Poland. Microbiol Spectr 2024; 12:e0087724. [PMID: 39012117 PMCID: PMC11302260 DOI: 10.1128/spectrum.00877-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 06/27/2024] [Indexed: 07/17/2024] Open
Abstract
Comprehensive whole-genome sequencing was performed on two multi-drug-resistant Escherichia coli strains isolated from cattle manure from a typical dairy farm in Poland in 2020. The identified strains are resistant to beta-lactams, aminoglycosides, tetracyclines, trimethoprim/sulfamethoxazole, and fluoroquinolones. The complete sequences of the harbored plasmids revealed antibiotic-resistance genes located within many mobile genetic elements (e.g., insertional sequences or transposons) and genes facilitating conjugal transfer or promoting horizontal gene transfer. These plasmids are hitherto undescribed. Similar plasmids have been identified, but not in Poland. The identified plasmids carried resistance genes, including the tetracycline resistance gene tet(A), aph family aminoglycoside resistance genes aph(3″)-lb and aph (6)-ld, beta-lactam resistance genes blaTEM-1 and blaCTX-M-15, sulfonamide resistance gene sul2, fluoroquinolone resistance gene qnrS1, and the trimethoprim resistance gene dfrA14. The characterized resistance plasmids were categorized into the IncY incompatibility group, indicating a high possibility for dissemination among the Enterobacteriaceae. While similar plasmids (99% identity) have been found in environmental and clinical samples, none have been identified in farm animals. These findings are significant within the One Health framework, as they underline the potential for antimicrobial-resistant E. coli from livestock and food sources to be transmitted to humans and vice versa. It highlights the need for careful monitoring and strategies to limit the spread of antibiotic resistance in the One Health approach. IMPORTANCE This study reveals the identification of new strains of antibiotic-resistant Escherichia coli in cattle manure from a dairy farm in Poland, offering critical insights into the spread of drug resistance. Through whole-genome sequencing, researchers discovered novel plasmids within these bacteria, which carry genes resistant to multiple antibiotics. These findings are particularly alarming, as these plasmids can transfer between different bacterial species, potentially escalating the spread of antibiotic resistance. This research underscores the vital connection between the health of humans, animals, and the environment, emphasizing the concept of One Health. It points to the critical need for global vigilance and strategies to curb the proliferation of antibiotic resistance. By showcasing the presence of these strains and their advanced resistance mechanisms, the study calls for enhanced surveillance and preventive actions in both agricultural practices and healthcare settings to address the imminent challenge of antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Magdalena Zalewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Aleksandra Błażejewska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jan Gawor
- DNA Sequencing and Synthesis Facility, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Dorota Adamska
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Krzysztof Goryca
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Michał Szeląg
- Genomics Core Facility, Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Patryk Kalinowski
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Magdalena Popowska
- Department of Bacterial Physiology, Institute of Microbiology, Faculty of Biology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
5
|
Lipworth S, Matlock W, Shaw L, Vihta KD, Rodger G, Chau K, Barker L, George S, Kavanagh J, Davies T, Vaughan A, Andersson M, Jeffery K, Oakley S, Morgan M, Hopkins S, Peto T, Crook D, Walker AS, Stoesser N. The plasmidome associated with Gram-negative bloodstream infections: A large-scale observational study using complete plasmid assemblies. Nat Commun 2024; 15:1612. [PMID: 38383544 PMCID: PMC10881496 DOI: 10.1038/s41467-024-45761-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
Plasmids carry genes conferring antimicrobial resistance and other clinically important traits, and contribute to the rapid dissemination of such genes. Previous studies using complete plasmid assemblies, which are essential for reliable inference, have been small and/or limited to plasmids carrying antimicrobial resistance genes (ARGs). In this study, we sequenced 1,880 complete plasmids from 738 isolates from bloodstream infections in Oxfordshire, UK. The bacteria had been originally isolated in 2009 (194 isolates) and 2018 (368 isolates), plus a stratified selection from intervening years (176 isolates). We demonstrate that plasmids are largely, but not entirely, constrained to a single host species, although there is substantial overlap between species of plasmid gene-repertoire. Most ARGs are carried by a relatively small number of plasmid groups with biological features that are predictable. Plasmids carrying ARGs (including those encoding carbapenemases) share a putative 'backbone' of core genes with those carrying no such genes. These findings suggest that future surveillance should, in addition to tracking plasmids currently associated with clinically important genes, focus on identifying and monitoring the dissemination of high-risk plasmid groups with the potential to rapidly acquire and disseminate these genes.
Collapse
Affiliation(s)
- Samuel Lipworth
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK.
| | - William Matlock
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Liam Shaw
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| | | | - Gillian Rodger
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Kevin Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Leanne Barker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sophie George
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James Kavanagh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Timothy Davies
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Department of Zoology, University of Oxford, South Parks Road, Oxford, UK
| | - Alison Vaughan
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Katie Jeffery
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Sarah Oakley
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Marcus Morgan
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
| | - Susan Hopkins
- National Infection Service, United Kingdom Health Security Agency, Colindale, London, UK
| | - Timothy Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Derrick Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Oxford University Hospitals NHS Foundation Trust, Oxford, UK
- NIHR Oxford Biomedical Research Centre, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
6
|
Salinas L, Cárdenas P, Graham JP, Trueba G. IS 26 drives the dissemination of bla CTX-M genes in an Ecuadorian community. Microbiol Spectr 2024; 12:e0250423. [PMID: 38088550 PMCID: PMC10783052 DOI: 10.1128/spectrum.02504-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/06/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The horizontal gene transfer events are the major contributors to the current spread of CTX-M-encoding genes, the most common extended-spectrum β-lactamase (ESBL), and many clinically crucial antimicrobial resistance (AMR) genes. This study presents evidence of the critical role of IS26 transposable element for the mobility of bla CTX-M gene among Escherichia coli isolates from children and domestic animals in the community. We suggest that the nucleotide sequences of IS26-bla CTX-M could be used to study bla CTX-M transmission between humans, domestic animals, and the environment, because understanding of the dissemination patterns of AMR genes is critical to implement effective measures to slow down the dissemination of these clinically important genes.
Collapse
Affiliation(s)
- Liseth Salinas
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Quito, Pichincha, Ecuador
| | - Paúl Cárdenas
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Quito, Pichincha, Ecuador
| | - Jay P. Graham
- Environmental Health Sciences Division, University of California, Berkeley, California, USA
| | - Gabriel Trueba
- Universidad San Francisco de Quito, Colegio de Ciencias Biológicas y Ambientales, Instituto de Microbiología, Quito, Pichincha, Ecuador
| |
Collapse
|
7
|
Li W, Guo H, Gao Y, Yang X, Li R, Li S, Sun C, Du W, Chen S, Xu P, Huang W, Shi J, Yi X, Li X. Comparative genomic analysis of plasmids harboring bla OXA-48-like genes in Klebsiella pneumoniae. Front Cell Infect Microbiol 2022; 12:1082813. [PMID: 36605127 PMCID: PMC9807924 DOI: 10.3389/fcimb.2022.1082813] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
The emergence and spread of carbapenem-resistant Klebsiella pneumoniae (CRKP) is a serious medical problem worldwide. Acquired OXA-48-like carbapenemases encoded by plasmids are important causes of carbapenem resistance in K. pneumoniae. To explore the links between plasmids and bla OXA-48-like genes in K. pneumoniae, we systematically analyzed the variants of bla OXA-48-like plasmid replicon types, phylogenetic patterns, geographic distribution, conjugative transfer regions, and the genetic environments surrounding bla OXA-48-like of 191 bla OXA-48-like-harboring plasmids, which were identified from 4451 plasmids of K. pneumoniae downloaded from GenBank. Our results showed that seven different variants of bla OXA-48-like genes were identified from the 191 bla OXA-48-like-harboring plasmids in K. pneumoniae, with bla OXA-48, bla OXA-232, and bla OXA-181 being highly prevalent. In K. pneumoniae, bla OXA-48 was mainly carried by the composite transposon Tn1999.2 located on IncL/M-type conjugative plasmids, which were mainly geographically distributed in Switzerland, Germany, and China. In K. pneumoniae, the blaOXA-232 gene was mainly carried by 6.1-kb ColKP3-type mobilizable plasmids, which were mainly isolated in India. In K. pneumoniae, bla OXA-181 was mainly carried by a group of 50-kb ColKP3-IncX3 hybrid conjugative plasmids and a group of small ColKP3-type mobilizable plasmids with lengths of 5.9-9.3 kb, the former was sporadically discovered in China, South Korea, India, and Czech Republic, while the latter was almost all isolated in India. In addition, five bla OXA-245-harboring 65.9-kb IncL plasmids of K. pneumoniae isolated in Spain were found to have the genetic context of bla OXA-245 more complicated than that of bla OXA-48-harboring IncL/M-type plasmids, with two copies of IS1R inserted both upstream and downstream of bla OXA-245-lysR. These findings enhance our understanding of the genetic diversity of bla OXA-48-like-harboring plasmids in K. pneumoniae.
Collapse
Affiliation(s)
- Wang Li
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China,Binzhou Key Laboratory of Chemical Drug R&D and Quality Control (preparation), Binzhou, China
| | - Hengzhao Guo
- Department of Radiation Oncology, Zhuhai People’s Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China
| | - Yi Gao
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Xiaofan Yang
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Ruirui Li
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Shuangyu Li
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Chunlong Sun
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China,Binzhou Key Laboratory of Chemical Drug R&D and Quality Control (preparation), Binzhou, China
| | - Wen Du
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China,Binzhou Key Laboratory of Chemical Drug R&D and Quality Control (preparation), Binzhou, China
| | - Shaopeng Chen
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China,Binzhou Key Laboratory of Chemical Drug R&D and Quality Control (preparation), Binzhou, China
| | - Pengpeng Xu
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China,Binzhou Key Laboratory of Chemical Drug R&D and Quality Control (preparation), Binzhou, China
| | - Wenwen Huang
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China,Binzhou Key Laboratory of Chemical Drug R&D and Quality Control (preparation), Binzhou, China
| | - Jia Shi
- Department of Stomatology, Zhuhai People’s Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China,*Correspondence: Xiaobin Li, ; Xinfeng Yi, ; Jia Shi,
| | - Xinfeng Yi
- Department of Neurosurgery, Zhuhai People’s Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China,*Correspondence: Xiaobin Li, ; Xinfeng Yi, ; Jia Shi,
| | - Xiaobin Li
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, China,*Correspondence: Xiaobin Li, ; Xinfeng Yi, ; Jia Shi,
| |
Collapse
|
8
|
Ramamurthy T, Ghosh A, Chowdhury G, Mukhopadhyay AK, Dutta S, Miyoshi SI. Deciphering the genetic network and programmed regulation of antimicrobial resistance in bacterial pathogens. Front Cell Infect Microbiol 2022; 12:952491. [PMID: 36506027 PMCID: PMC9727169 DOI: 10.3389/fcimb.2022.952491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 10/25/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance (AMR) in bacteria is an important global health problem affecting humans, animals, and the environment. AMR is considered as one of the major components in the "global one health". Misuse/overuse of antibiotics in any one of the segments can impact the integrity of the others. In the presence of antibiotic selective pressure, bacteria tend to develop several defense mechanisms, which include structural changes of the bacterial outer membrane, enzymatic processes, gene upregulation, mutations, adaptive resistance, and biofilm formation. Several components of mobile genetic elements (MGEs) play an important role in the dissemination of AMR. Each one of these components has a specific function that lasts long, irrespective of any antibiotic pressure. Integrative and conjugative elements (ICEs), insertion sequence elements (ISs), and transposons carry the antimicrobial resistance genes (ARGs) on different genetic backbones. Successful transfer of ARGs depends on the class of plasmids, regulons, ISs proximity, and type of recombination systems. Additionally, phage-bacterial networks play a major role in the transmission of ARGs, especially in bacteria from the environment and foods of animal origin. Several other functional attributes of bacteria also get successfully modified to acquire ARGs. These include efflux pumps, toxin-antitoxin systems, regulatory small RNAs, guanosine pentaphosphate signaling, quorum sensing, two-component system, and clustered regularly interspaced short palindromic repeats (CRISPR) systems. The metabolic and virulence state of bacteria is also associated with a range of genetic and phenotypic resistance mechanisms. In spite of the availability of a considerable information on AMR, the network associations between selection pressures and several of the components mentioned above are poorly understood. Understanding how a pathogen resists and regulates the ARGs in response to antimicrobials can help in controlling the development of resistance. Here, we provide an overview of the importance of genetic network and regulation of AMR in bacterial pathogens.
Collapse
Affiliation(s)
- Thandavarayan Ramamurthy
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India,*Correspondence: Thandavarayan Ramamurthy,
| | - Amit Ghosh
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, ICMR-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shin-inchi Miyoshi
- Collaborative Research Centre of Okayama University for Infectious Diseases at ICMR- National Institute of Cholera and Enteric Diseases, Kolkata, India,Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
9
|
Yao M, Zhu Q, Zou J, Shenkutie AM, Hu S, Qu J, He Z, Leung PHM. Genomic Characterization of a Uropathogenic Escherichia coli ST405 Isolate Harboring bla CTX-M-15-Encoding IncFIA-FIB Plasmid, bla CTX-M-24-Encoding IncI1 Plasmid, and Phage-Like Plasmid. Front Microbiol 2022; 13:845045. [PMID: 35479623 PMCID: PMC9037040 DOI: 10.3389/fmicb.2022.845045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli sequence type 405 is an emerging antibiotic-resistant clonal group associated with the global dissemination of extended-spectrum β-lactamase-producing E. coli. In this study, we report the genome assembly and characterization of a uropathogenic E. coli ST405 strain, SZESBLEC201, based on long and short reads obtained from the Nanopore and Illumina sequencing platforms, respectively. Whole-genome sequencing revealed that SZESBLEC201 harbors a 5,020,403 bp chromosome and three plasmids, namely, pSZESBLEC201-1, pSZESBLEC201-2, and pSZESBLEC201-3. pSZESBLEC201-1 (111,621 bp) belongs to the IncFIA-FIB type and harbors bla CTX-M-15. However, this plasmid does not harbor conjugative transfer-associated genes, rendering pSZESBLEC201-1 unable to be conjugatively transferred. pSZESBLEC201-2 (95,138 bp) is a phage-like plasmid that shows a strong genome synteny with Escherichia phage P1 but with the absence of mobile genetic elements and some regulatory genes. pSZESBLEC201-3 (92,865 bp) belongs to the IncI1 type and carries bla CTX-M-24. In contrast to pSZESBLEC201-1, pSZESBLEC201-3 retains its full active conjugation machinery and can be transferred via conjugation. The genetic features of the genome show that the SZESBLEC201 has a unique virulence pattern compared with genetically similar strains found in the same country (China). The plasmid backbones exhibit a high degree of similarity to those of geographically distant isolates, highlighting the global spread of bla CTX-M genes and the genome plasticity of this clonal group. The coexistence of two bla CTX-M variants in the same strain increases the risk of the emergence of new bla CTX-M variants. Further studies on phage-like plasmids are necessary to provide insights into their biological activities and clinical significance.
Collapse
Affiliation(s)
- Mianzhi Yao
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| | - Qianhui Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Zou
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Abebe Mekuria Shenkutie
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China.,Department of Microbiology, Immunology, and Parasitology, St. Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Songnian Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, China
| | - Zilong He
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Interdisciplinary Innovation Institute of Medicine and Engineering, Beihang University, Beijing, China.,School of Engineering Medicine, Beihang University, Beijing, China
| | - Polly H M Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong SAR, China
| |
Collapse
|
10
|
Bird MT, Greig DR, Nair S, Jenkins C, Godbole G, Gharbia SE. Use of Nanopore Sequencing to Characterise the Genomic Architecture of Mobile Genetic Elements Encoding bla CTX-M-15 in Escherichia coli Causing Travellers' Diarrhoea. Front Microbiol 2022; 13:862234. [PMID: 35422790 PMCID: PMC9002331 DOI: 10.3389/fmicb.2022.862234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Increasing levels of antimicrobial resistance (AMR) have been documented in Escherichia coli causing travellers’ diarrhoea, particularly to the third-generation cephalosporins. Diarrhoeagenic E. coli (DEC) can act as a reservoir for the exchange of AMR genes between bacteria residing in the human gut, enabling them to survive and flourish through the selective pressures of antibiotic treatments. Using Oxford Nanopore Technology (ONT), we sequenced eight isolates of DEC from four patients’ specimens who had all recently returned to the United Kingdome from Pakistan. Sequencing yielded two DEC harbouring blaCTX-M-15 per patient, all with different sequence types (ST) and belonging to five different pathotypes. The study aimed to determine whether blaCTX-M-15 was located on the chromosome or plasmid and to characterise the drug-resistant regions to better understand the mechanisms of onward transmission of AMR determinants. Patients A and C both had one isolate where blaCTX-M-15 was located on the plasmid (899037 & 623213, respectively) and one chromosomally encoded (899091 & 623214, respectively). In patient B, blaCTX-M-15 was plasmid-encoded in both DEC isolates (786605 & 7883090), whereas in patient D, blaCTX-M-15 was located on the chromosome in both DEC isolates (542093 & 542099). The two blaCTX-M-15-encoding plasmids associated with patient B were different although the blaCTX-M-15-encoding plasmid isolated from 788309 (IncFIB) exhibited high nucleotide similarity to the blaCTX-M-15-encoding plasmid isolated from 899037 (patient A). In the four isolates where blaCTX-M-15 was chromosomally encoded, two isolates (899091 & 542099) shared the same insertion site. The blaCTX-M-15 insertion site in isolate 623214 was described previously, whereas that of isolate 542093 was unique to this study. Analysis of Nanopore sequencing data enables us to characterise the genomic architecture of mobile genetic elements encoding AMR determinants. These data may contribute to a better understanding of persistence and onward transmission of AMR determinants in multidrug-resistant (MDR) E. coli causing gastrointestinal and extra-intestinal infections.
Collapse
Affiliation(s)
- Matthew T Bird
- National Infection Service, UK Health Security Agency, London, United Kingdom.,Health Protection Research Unit in Genomes and Enabling Data, Warwick, United Kingdom
| | - David R Greig
- National Infection Service, UK Health Security Agency, London, United Kingdom.,NIRH Health Protection Research Unit for Gastrointestinal Pathogens, Liverpool, United Kingdom.,Division of Infection and Immunity, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom
| | - Satheesh Nair
- National Infection Service, UK Health Security Agency, London, United Kingdom
| | - Claire Jenkins
- National Infection Service, UK Health Security Agency, London, United Kingdom.,NIRH Health Protection Research Unit for Gastrointestinal Pathogens, Liverpool, United Kingdom
| | - Gauri Godbole
- National Infection Service, UK Health Security Agency, London, United Kingdom
| | - Saheer E Gharbia
- National Infection Service, UK Health Security Agency, London, United Kingdom.,Health Protection Research Unit in Genomes and Enabling Data, Warwick, United Kingdom
| |
Collapse
|
11
|
Zhang C, Yang M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics (Basel) 2022; 11:antibiotics11030349. [PMID: 35326812 PMCID: PMC8944448 DOI: 10.3390/antibiotics11030349] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Infection of multidrug-resistant (MDR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Enterobacteriaceae (CRE), and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, brings public health issues and causes economic burden. Pathogenic bacteria develop several methods to resist antibiotic killing or inhibition, such as mutation of antibiotic function sites, activation of drug efflux pumps, and enzyme-mediated drug degradation. Antibiotic resistance components can be transferred between bacteria by mobile genetic elements including plasmids, transposons, and integrons, as well as bacteriophages. The development of antibiotic resistance limits the treatment options for bacterial infection, especially for MDR bacteria. Therefore, novel or alternative antibacterial agents are urgently needed. Antimicrobial peptides (AMPs) display multiple killing mechanisms against bacterial infections, including directly bactericidal activity and immunomodulatory function, as potential alternatives to antibiotics. In this review, the development of antibiotic resistance, the killing mechanisms of AMPs, and especially, the design, optimization, and delivery of AMPs are reviewed. Strategies such as structural change, amino acid substitution, conjugation with cell-penetration peptide, terminal acetylation and amidation, and encapsulation with nanoparticles will improve the antimicrobial efficacy, reduce toxicity, and accomplish local delivery of AMPs. In addition, clinical trials in AMP studies or applications of AMPs within the last five years were summarized. Overall, AMPs display diverse mechanisms of action against infection of pathogenic bacteria, and future research studies and clinical investigations will accelerate AMP application.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212, USA;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
12
|
Zhao S, Wu Y, Dai Z, Chen Y, Zhou X, Zhao J. Risk factors for antibiotic resistance and mortality in patients with bloodstream infection of Escherichia coli. Eur J Clin Microbiol Infect Dis 2022; 41:713-721. [PMID: 35190911 DOI: 10.1007/s10096-022-04423-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/11/2022] [Indexed: 12/19/2022]
Abstract
This study aimed to investigate the risk factors for bloodstream infection (BSI) caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli (E. coli) and related mortality. The clinical data of 388 patients with E. coli BSI were analyzed. Blood cultures were performed and the antimicrobial susceptibility profiles of the resulting isolates were determined. Four single-nucleotide polymorphisms (rs231775, rs12343816, rs16944, and rs2233406) were genotyped using real-time PCR. ESBL were detected by disk diffusion confirmatory testing. Univariate and multivariate regression analyses were applied to identify the risk factors for ESBL-producing isolates and the BSI-induced mortality. The prevalence of ESBL-producing E. coli in BSI patients was 40.98%. E. coli isolates were commonly susceptible to carbapenem and β-lactam/β-lactamase inhibitor combinations. The major ESBL genes were CTX-M-14, CTX-M-55, CTX-M-15, and CTX-M-27. The proportion of CTX-M-15 was significantly higher in patients over 70 years and those receiving stomach tube catheterization. Nosocomial infection, biliary tract infection, stomach tube catheterization, and previous cephalosporin administration were independent risk factors for ESBL-producing isolates. ESBL positivity, nosocomial infection, and cancer were independent risk factors of mortality. Two genetic polymorphisms associated with inflammation activation, rs231775 A allele and rs2233406 T allele, significantly increased the mortality risk of E. coli BSI with a risk ratio (95% CI) of 1.93 (1.05-3.55) and 4.38 (2.07-9.29), respectively. For patients with nosocomial infection, biliary tract infection, and cancer, the monitor of BSI and antibiotic susceptibility should be enhanced. The invasive procedures should be minimized. rs231775 and rs2233406 are promising prognostic markers for E. coli BSI patients.
Collapse
Affiliation(s)
- Shunjin Zhao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Lanxi Branch (Lanxi People's Hospital), Lanxi, 321100, China
| | - Yingjing Wu
- Emergency Department, The Second Affiliated Hospital of Zhejiang University School of Medicine, Lanxi Branch (Lanxi People's Hospital), Lanxi, 321100, China
| | - Zhong Dai
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Lanxi Branch (Lanxi People's Hospital), Lanxi, 321100, China
| | - Yijing Chen
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Lanxi Branch (Lanxi People's Hospital), Lanxi, 321100, China
| | - Xiaojuan Zhou
- Bacterium Room, The Second Affiliated Hospital of Zhejiang University School of Medicine, Lanxi Branch (Lanxi People's Hospital), Lanxi, 321100, China
| | - Jun Zhao
- Department of Respiratory and Critical Care Medicine, Zhejiang Medical & Health Group Hangzhou Hospital, 1 Banshan Road, Hangzhou, 310022, China.
| |
Collapse
|
13
|
Hooton SPT, Pritchard ACW, Asiani K, Gray-Hammerton CJ, Stekel DJ, Crossman LC, Millard AD, Hobman JL. Laboratory Stock Variants of the Archetype Silver Resistance Plasmid pMG101 Demonstrate Plasmid Fusion, Loss of Transmissibility, and Transposition of Tn 7/ pco/ sil Into the Host Chromosome. Front Microbiol 2021; 12:723322. [PMID: 34489913 PMCID: PMC8417528 DOI: 10.3389/fmicb.2021.723322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
Salmonella Typhimurium carrying the multidrug resistance (MDR) plasmid pMG101 was isolated from three burns patients in Boston United States in 1973. pMG101 was transferrable into other Salmonella spp. and Escherichia coli hosts and carried what was a novel and unusual combination of AMR genes and silver resistance. Previously published short-read DNA sequence of pMG101 showed that it was a 183.5Kb IncHI plasmid, where a Tn7-mediated transposition of pco/sil resistance genes into the chromosome of the E. coli K-12 J53 host strain had occurred. We noticed differences in streptomycin resistance and plasmid size between two stocks of E. coli K-12 J53 pMG101 we possessed, which had been obtained from two different laboratories (pMG101-A and pMG101-B). Long-read sequencing (PacBio) of the two strains unexpectedly revealed plasmid and chromosomal rearrangements in both. pMG101-A is a non-transmissible 383Kb closed-circular plasmid consisting of an IncHI2 plasmid sequence fused to an IncFI/FIIA plasmid. pMG101-B is a mobile closed-circular 154 Kb IncFI/FIIA plasmid. Sequence identity of pMG101-B with the fused IncFI/IncFIIA region of pMG101-A was >99%. Assembled host sequence reads of pMG101-B showed Tn7-mediated transposition of pco/sil into the E. coli J53 chromosome between yhiM and yhiN. Long read sequence data in combination with laboratory experiments have demonstrated large scale changes in pMG101. Loss of conjugation function and movement of resistance genes into the chromosome suggest that even under long-term laboratory storage, mobile genetic elements such as transposons and insertion sequences can drive the evolution of plasmids and host. This study emphasises the importance of utilising long read sequencing technologies of plasmids and host strains at the earliest opportunity.
Collapse
Affiliation(s)
- Steven P T Hooton
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, United Kingdom.,Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Alexander C W Pritchard
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, United Kingdom
| | - Karishma Asiani
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, United Kingdom
| | - Charlotte J Gray-Hammerton
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, United Kingdom
| | - Dov J Stekel
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, United Kingdom
| | - Lisa C Crossman
- Sequenceanalysis.Co.uk, Innovation Centre, Norwich, United Kingdom.,School of Biological Sciences, University of East Anglia, Norwich, United Kingdom
| | - Andrew D Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Jon L Hobman
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Sutton Bonington, United Kingdom
| |
Collapse
|
14
|
Matlock W, Chau KK, AbuOun M, Stubberfield E, Barker L, Kavanagh J, Pickford H, Gilson D, Smith RP, Gweon HS, Hoosdally SJ, Swann J, Sebra R, Bailey MJ, Peto TEA, Crook DW, Anjum MF, Read DS, Walker AS, Stoesser N, Shaw LP. Genomic network analysis of environmental and livestock F-type plasmid populations. THE ISME JOURNAL 2021; 15:2322-2335. [PMID: 33649550 PMCID: PMC8319146 DOI: 10.1038/s41396-021-00926-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 12/02/2022]
Abstract
F-type plasmids are diverse and of great clinical significance, often carrying genes conferring antimicrobial resistance (AMR) such as extended-spectrum β-lactamases, particularly in Enterobacterales. Organising this plasmid diversity is challenging, and current knowledge is largely based on plasmids from clinical settings. Here, we present a network community analysis of a large survey of F-type plasmids from environmental (influent, effluent and upstream/downstream waterways surrounding wastewater treatment works) and livestock settings. We use a tractable and scalable methodology to examine the relationship between plasmid metadata and network communities. This reveals how niche (sampling compartment and host genera) partition and shape plasmid diversity. We also perform pangenome-style analyses on network communities. We show that such communities define unique combinations of core genes, with limited overlap. Building plasmid phylogenies based on alignments of these core genes, we demonstrate that plasmid accessory function is closely linked to core gene content. Taken together, our results suggest that stable F-type plasmid backbone structures can persist in environmental settings while allowing dramatic variation in accessory gene content that may be linked to niche adaptation. The association of F-type plasmids with AMR may reflect their suitability for rapid niche adaptation.
Collapse
Affiliation(s)
- William Matlock
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Kevin K Chau
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Manal AbuOun
- Animal and Plant Health Agency, Weybridge, Addlestone, UK
| | | | - Leanne Barker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - James Kavanagh
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Hayleah Pickford
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Daniel Gilson
- Animal and Plant Health Agency, Weybridge, Addlestone, UK
| | | | - H Soon Gweon
- UK Centre for Ecology & Hydrology, Wallingford, UK
- University of Reading, Reading, UK
| | | | - Jeremy Swann
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Robert Sebra
- Icahn Institute of Data Science and Genomic Technology, Mt Sinai, NY, USA
| | | | - Timothy E A Peto
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR HPRU in Healthcare-Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Derrick W Crook
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR HPRU in Healthcare-Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Muna F Anjum
- Animal and Plant Health Agency, Weybridge, Addlestone, UK
| | | | - A Sarah Walker
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- NIHR HPRU in Healthcare-Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK
| | - Nicole Stoesser
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- NIHR HPRU in Healthcare-Associated Infection and Antimicrobial Resistance, University of Oxford, Oxford, UK.
- NIHR Oxford Biomedical Research Centre, University of Oxford, Oxford, UK.
| | - Liam P Shaw
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Petitjean M, Condamine B, Burdet C, Denamur E, Ruppé E. Phylum barrier and Escherichia coli intra-species phylogeny drive the acquisition of antibiotic-resistance genes. Microb Genom 2021; 7:000489. [PMID: 34435947 PMCID: PMC8549366 DOI: 10.1099/mgen.0.000489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 06/07/2021] [Indexed: 01/31/2023] Open
Abstract
Escherichia coli is a ubiquitous bacterium that has been widely exposed to antibiotics over the last 70 years. It has adapted by acquiring different antibiotic-resistance genes (ARGs), the census of which we aim to characterize here. To do so, we analysed 70 301 E. coli genomes obtained from the EnteroBase database and detected 1 027 651 ARGs using the AMRFinder, Mustard and ResfinderFG ARG databases. We observed a strong phylogroup and clonal lineage specific distribution of some ARGs, supporting the argument for epistasis between ARGs and the strain genetic background. However, each phylogroup had ARGs conferring a similar antibiotic class resistance pattern, indicating phenotypic adaptive convergence. The G+C content or the type of ARG was not associated with the frequency of the ARG in the database. In addition, we identified ARGs from anaerobic, non-Proteobacteria bacteria in four genomes of E. coli, supporting the hypothesis that the transfer between anaerobic bacteria and E. coli can spontaneously occur but remains exceptional. In conclusion, we showed that phylum barrier and intra-species phylogenetic history are major drivers of the acquisition of a resistome in E. coli.
Collapse
Affiliation(s)
| | | | - Charles Burdet
- IAME, INSERM, Université de Paris, F-75018 Paris, France
- Département d’Epidémiologie, Biostatistique et Recherche Clinique, Hôpital Bichat, APHP, F-75018 Paris, France
| | - Erick Denamur
- IAME, INSERM, Université de Paris, F-75018 Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat, APHP, F-75018 Paris, France
| | - Etienne Ruppé
- IAME, INSERM, Université de Paris, F-75018 Paris, France
- Laboratoire de Bactériologie, Hôpital Bichat, APHP, F-75018 Paris, France
| |
Collapse
|
16
|
Schierack P, Heiden SE, Khan MM, Nikolaus L, Kolenda R, Stubbe M, Lkhagvasuren D, Rödiger S, Guenther S, Schaufler K. Genomic and Phenotypic Analysis of an ESBL-Producing E. coli ST1159 Clonal Lineage From Wild Birds in Mongolia. Front Microbiol 2020; 11:1699. [PMID: 32793163 PMCID: PMC7385280 DOI: 10.3389/fmicb.2020.01699] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/29/2020] [Indexed: 12/05/2022] Open
Abstract
Background In addition to the broad dissemination of pathogenic extended-spectrum beta-lactamase (ESBL)-producing Escherichia (E.) coli in human and veterinary medicine and the community, their occurrence in wildlife and the environment is a growing concern. Wild birds in particular often carry clinically relevant ESBL-producing E. coli. Objectives We analyzed ESBL-producing and non-ESBL-producing E. coli obtained from wild birds in Mongolia to identify phylogenetic and functional characteristics that would explain the predominance of a particular E. coli clonal lineage in this area. Methods We investigated ESBL-producing E. coli using whole-genome sequencing and phylogenetics to describe the population structure, resistance and virulence features and performed phenotypic experiments like biofilm formation and adhesion to epithelial cells. We compared the phenotypic characteristics to non-ESBL-producing E. coli from the same background (Mongolian wild birds) and genomic results to publicly available genomes. Results and Conclusion We found ESBL-producing E. coli sequence type (ST) 1159 among wild birds in Mongolia. This clonal lineage carried virulence features typical for extra-intestinal pathogenic or enterotoxigenic E. coli. Comparative functional experiments suggested no burden of resistance in the ST1159 isolates, which is despite their carriage of ESBL-plasmids. Wild birds will likely disseminate these antibiotic-resistant pathogens further during migration.
Collapse
Affiliation(s)
- Peter Schierack
- Multiparametric Diagnostics, Brandenburg University of Technology Cottbus - Senftenberg, Senftenberg, Germany
| | - Stefan E Heiden
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Muhammad Moman Khan
- Multiparametric Diagnostics, Brandenburg University of Technology Cottbus - Senftenberg, Senftenberg, Germany
| | - Lena Nikolaus
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Rafal Kolenda
- Multiparametric Diagnostics, Brandenburg University of Technology Cottbus - Senftenberg, Senftenberg, Germany
| | - Michael Stubbe
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Davaa Lkhagvasuren
- Department of Biology, National University of Mongolia, Ulaanbaatar, Mongolia
| | - Stefan Rödiger
- Multiparametric Diagnostics, Brandenburg University of Technology Cottbus - Senftenberg, Senftenberg, Germany.,Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Senftenberg, Germany
| | | | | |
Collapse
|
17
|
De Angelis G, Del Giacomo P, Posteraro B, Sanguinetti M, Tumbarello M. Molecular Mechanisms, Epidemiology, and Clinical Importance of β-Lactam Resistance in Enterobacteriaceae. Int J Mol Sci 2020; 21:ijms21145090. [PMID: 32708513 PMCID: PMC7404273 DOI: 10.3390/ijms21145090] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/16/2022] Open
Abstract
Despite being members of gut microbiota, Enterobacteriaceae are associated with many severe infections such as bloodstream infections. The β-lactam drugs have been the cornerstone of antibiotic therapy for such infections. However, the overuse of these antibiotics has contributed to select β-lactam-resistant Enterobacteriaceae isolates, so that β-lactam resistance is nowadays a major concern worldwide. The production of enzymes that inactivate β-lactams, mainly extended-spectrum β-lactamases and carbapenemases, can confer multidrug resistance patterns that seriously compromise therapeutic options. Further, β-lactam resistance may result in increases in the drug toxicity, mortality, and healthcare costs associated with Enterobacteriaceae infections. Here, we summarize the updated evidence about the molecular mechanisms and epidemiology of β-lactamase-mediated β-lactam resistance in Enterobacteriaceae, and their potential impact on clinical outcomes of β-lactam-resistant Enterobacteriaceae infections.
Collapse
Affiliation(s)
- Giulia De Angelis
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Paola Del Giacomo
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Brunella Posteraro
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze Gastroenterologiche, Endocrino-Metaboliche e Nefro-Urologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (G.D.A.); (B.P.); (M.S.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Mario Tumbarello
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Dipartimento di Sicurezza e Bioetica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence:
| |
Collapse
|
18
|
Comparison of Commensal and Clinical Isolates for Diversity of Plasmids in Escherichia coli and Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 64:AAC.02064-19. [PMID: 32122890 DOI: 10.1128/aac.02064-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/24/2020] [Indexed: 01/23/2023] Open
Abstract
In this study, the plasmid content of clinical and commensal strains was analyzed and compared. The replicon profile was similar in both populations, except for L, M, A/C, and N (detected only in clinical strains) and HI1 (only in commensal strains). Although I1 and F were the most frequent replicons, only IncI1, sequence type 12 (ST12) was associated with bla CMY-2 in both populations. In contrast, the widespread resistant IncF plasmids were not linked to a single epidemic plasmid.
Collapse
|
19
|
Goswami C, Fox S, Holden MTG, Connor M, Leanord A, Evans TJ. Origin, maintenance and spread of antibiotic resistance genes within plasmids and chromosomes of bloodstream isolates of Escherichia coli. Microb Genom 2020; 6. [PMID: 32160146 PMCID: PMC7276700 DOI: 10.1099/mgen.0.000353] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blood stream invasion by Escherichia coli is the commonest cause of bacteremia in the UK and elsewhere with an attributable mortality of about 15-20 %; antibiotic resistance to multiple agents is common in this microbe and is associated with worse outcomes. Genes conferring antimicrobial resistance, and their frequent location on horizontally transferred genetic elements is well-recognised, but the origin of these determinants, and their ability to be maintained and spread within clinically-relevant bacterial populations is unclear. Here, we set out to examine the distribution of antimicrobial resistance genes in chromosomes and plasmids of 16 bloodstream isolates of E. coli from patients within Scotland, and how these genes are maintained and spread. Using a combination of short and long-read whole genome sequencing methods, we were able to assemble complete sequences of 44 plasmids, with 16 Inc group F and 20 col plasmids; antibiotic resistance genes located almost exclusively within the F group. bla CTX-M15 genes had re-arranged in some strains into the chromosome alone (five strains), while others contained plasmid copies alone (two strains). Integrons containing multiple antibiotic genes were widespread in plasmids, notably many with a dfrA7 gene encoding resistance to trimethoprim, thus linking trimethoprim resistance to the other antibiotic resistance genes within the plasmids. This will allow even narrow spectrum antibiotics such as trimethoprim to act as a selective agent for plasmids containing antibiotic resistance genes mediating much broader resistance, including blaCTX-M15. To our knowledge, this is the first analysis to provide complete sequence data of chromosomes and plasmids in a collection of pathogenic human bloodstream isolates of E. coli. Our findings reveal the interplay between plasmids and integrative and conjugative elements in the maintenance and spread of antibiotic resistance genes within pathogenic E. coli.
Collapse
Affiliation(s)
- Cosmika Goswami
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Stephen Fox
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | | | | | - Alistair Leanord
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Thomas J Evans
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| |
Collapse
|
20
|
Adelowo OO, Ikhimiukor OO, Knecht C, Vollmers J, Bhatia M, Kaster AK, Müller JA. A survey of extended-spectrum beta-lactamase-producing Enterobacteriaceae in urban wetlands in southwestern Nigeria as a step towards generating prevalence maps of antimicrobial resistance. PLoS One 2020; 15:e0229451. [PMID: 32130234 PMCID: PMC7055906 DOI: 10.1371/journal.pone.0229451] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/06/2020] [Indexed: 01/30/2023] Open
Abstract
In many countries, emission of insufficiently treated wastewater into water bodies appears to be an important factor in spreading clinically relevant antimicrobial resistant bacteria. In this study, we looked for the presence of Enterobacteriaceae strains with resistance to 3rd generation cephalosporin antibiotics in four urban wetlands in southwestern Nigeria by isolation, whole genome sequencing and qPCR enumeration of marker genes. Genome analysis of multi-drug resistant and potentially pathogenic Escherichia coli isolates (members of the widely distributed ST10 complex) revealed the presence of the extended spectrum beta-lactamase gene blaCTX-M-15 on self-transmissible IncF plasmids. The gene was also present together with a blaTEM-1B gene on self-transmissible IncH plasmids in multi-drug resistant Enterobacter cloacae isolates. A Citrobacter freundii isolate carried blaTEM-1B on an IncR-type plasmid without discernable conjugation apparatus. All strains were isolated from a wetland for which previous qPCR enumeration of marker genes, in particular the ratio of intI1 to 16S rRNA gene copy numbers, had indicated a strong anthropogenic impact. Consistent with the isolation origin, qPCR analysis in this study showed that the blaCTX-M gene was present at an abundance of 1x10-4 relative to bacterial 16S rRNA gene copy numbers. The results indicate that contamination of these urban aquatic ecosystems with clinically relevant antibiotic resistant bacteria is substantial in some areas. Measures should therefore be put in place to mitigate the propagation of clinically relevant antimicrobial resistance within the Nigerian aquatic ecosystems.
Collapse
Affiliation(s)
- Olawale Olufemi Adelowo
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
- * E-mail: , (OOA); (JAM)
| | - Odion Osebhahiemen Ikhimiukor
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Environmental Microbiology and Biotechnology Laboratory, Department of Microbiology, University of Ibadan, Ibadan, Nigeria
| | - Camila Knecht
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- Otto-von-Guericke-Universität Magdeburg—Institute of Apparatus and Environmental Technology, Magdeburg, Germany
| | - John Vollmers
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Mudit Bhatia
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
| | - Anne-Kirstin Kaster
- Institute for Biological Interfaces (IBG5), Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Jochen A. Müller
- Department of Environmental Biotechnology, Helmholtz Centre for Environmental Research—UFZ, Leipzig, Germany
- * E-mail: , (OOA); (JAM)
| |
Collapse
|
21
|
Sukmawinata E, Uemura R, Sato W, Mitoma S, Kanda T, Sueyoshi M. IncI1 Plasmid Associated with blaCTX-M-2 Transmission in ESBL-Producing Escherichia coli Isolated from Healthy Thoroughbred Racehorse, Japan. Antibiotics (Basel) 2020; 9:antibiotics9020070. [PMID: 32046117 PMCID: PMC7167754 DOI: 10.3390/antibiotics9020070] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/29/2022] Open
Abstract
In our previous study, extended spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBLEC) were isolated from healthy Thoroughbred racehorse feces samples in Japan. Some ESBL genes were predicted to be located on the conjugative plasmid. PCR-based replicon typing (PBRT) is a useful method to monitor and detect the association of replicons with specific plasmid-borne resistant genes. This study aimed to evaluate the plasmid replicon associated with ESBLEC isolated from healthy Thoroughbred racehorses at Japan Racing Association Training Centers in Japan. A total of 24 ESBLECs isolated from 23 (10.8%) individual Thoroughbred racehorse feces samples were used in this study. ESBL gene transfer was performed using a conjugation assay. Then, replicon types of ESBLEC isolates and their transconjugants were determined using PBRT. Pulsed-field gel electrophoresis (PFGE) was performed to look at the clonality of the ESBLECs isolates. ESBLECs were detected from 10.8% of healthy Thoroughbred racehorses. The blaCTX-M-2 was identified as the dominant type of ESBL gene, followed by blaCTX-M-1 and blaTEM-116. In this study, only the blaCTX-M-2 and the IncI1 plasmid were transferred to transconjugants. The PFGE results showed that ESBL genes were distributed in diversity of ESBLECs. This finding suggested that the IncI1 plasmid was associated with the dissemination of blaCTX-M-2 in Thoroughbred racehorses in Japan.
Collapse
Affiliation(s)
- Eddy Sukmawinata
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (E.S.); (S.M.); (T.K.); (M.S.)
| | - Ryoko Uemura
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
- Correspondence: ; Tel.: +81-985-58-7283
| | - Wataru Sato
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
| | - Shuya Mitoma
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (E.S.); (S.M.); (T.K.); (M.S.)
| | - Takuya Kanda
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (E.S.); (S.M.); (T.K.); (M.S.)
| | - Masuo Sueyoshi
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, Miyazaki 889-1692, Japan; (E.S.); (S.M.); (T.K.); (M.S.)
- Department of Veterinary Sciences, Faculty of Agriculture, University of Miyazaki, Miyazaki 889-2192, Japan;
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| |
Collapse
|
22
|
Advantage of the F2:A1:B- IncF Pandemic Plasmid over IncC Plasmids in In Vitro Acquisition and Evolution of bla CTX-M Gene-Bearing Plasmids in Escherichia coli. Antimicrob Agents Chemother 2019; 63:AAC.01130-19. [PMID: 31332067 PMCID: PMC6761558 DOI: 10.1128/aac.01130-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum β-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. Despite a fitness cost imposed on bacterial hosts, large conjugative plasmids play a key role in the diffusion of resistance determinants, such as CTX-M extended-spectrum β-lactamases. Among the large conjugative plasmids, IncF plasmids are the most predominant group, and an F2:A1:B- IncF-type plasmid encoding a CTX-M-15 variant was recently described as being strongly associated with the emerging worldwide Escherichia coli sequence type 131 (ST131)-O25b:H4 H30Rx/C2 sublineage. In this context, we investigated the fitness cost of narrow-range F-type plasmids, including the F2:A1:B- IncF-type CTX-M-15 plasmid, and of broad-range C-type plasmids in the K-12-like J53-2 E. coli strain. Although all plasmids imposed a significant fitness cost to the bacterial host immediately after conjugation, we show, using an experimental-evolution approach, that a negative impact on the fitness of the host strain was maintained throughout 1,120 generations with the IncC-IncR plasmid, regardless of the presence or absence of cefotaxime, in contrast to the F2:A1:B- IncF plasmid, whose cost was alleviated. Many chromosomal and plasmid rearrangements were detected after conjugation in transconjugants carrying the IncC plasmids but not in transconjugants carrying the F2:A1:B- IncF plasmid, except for insertion sequence (IS) mobilization from the fliM gene leading to the restoration of motility of the recipient strains. Only a few mutations occurred on the chromosome of each transconjugant throughout the experimental-evolution assay. Our findings indicate that the F2:A1:B- IncF CTX-M-15 plasmid is well adapted to the E. coli strain studied, contrary to the IncC-IncR CTX-M-15 plasmid, and that such plasmid-host adaptation could participate in the evolutionary success of the CTX-M-15-producing pandemic E. coli ST131-O25b:H4 lineage.
Collapse
|
23
|
Branger C, Ledda A, Billard-Pomares T, Doublet B, Barbe V, Roche D, Médigue C, Arlet G, Denamur E. Specialization of small non-conjugative plasmids in Escherichia coli according to their family types. Microb Genom 2019; 5. [PMID: 31389782 PMCID: PMC6807383 DOI: 10.1099/mgen.0.000281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We undertook a comprehensive comparative analysis of a collection of 30 small (<25 kb) non-conjugative Escherichia coli plasmids previously classified by the gene sharing approach into 10 families, as well as plasmids found in the National Center for Biotechnology Information (NCBI) nucleotide database sharing similar genomic sequences. In total, 302 mobilizable (belonging to 2 MOBrep and 5 MOBRNA families) and 106 non-transferable/relaxase-negative (belonging to three ReLRNA families) plasmids were explored. The most striking feature was the specialization of the plasmid family types that was not related to their transmission mode and replication system. We observed a range of host strain specificity, from narrow E. coli host specificity to broad host range specificity, including a wide spectrum of Enterobacteriaceae. We found a wide variety of toxin/antitoxin systems and colicin operons in the plasmids, whose numbers and types varied according to the plasmid family type. The plasmids carried genes conferring resistance spanning almost all of the antibiotic classes, from those to which resistance developed early, such as sulphonamides, to those for which resistance has only developed recently, such as colistin. However, the prevalence of the resistance genes varied greatly according to the family type, ranging from 0 to 100 %. The evolutionary history of the plasmids based on the family type core genes showed variability within family nucleotide divergences in the range of E. coli chromosomal housekeeping genes, indicating long-term co-evolution between plasmids and host strains. In rare cases, a low evolutionary divergence suggested the massive spread of an epidemic plasmid. Overall, the importance of these small non-conjugative plasmids in bacterial adaptation varied greatly according to the type of family they belonged to, with each plasmid family having specific hosts and genetic traits.
Collapse
Affiliation(s)
- Catherine Branger
- Université de Paris, IAME, INSERM, UMR1137, UFR de Médecine, F-75018 Paris, France
| | - Alice Ledda
- Present address: Department of Infectious Disease Epidemiology, Imperial College, London, W2 1PG, UK.,Université de Paris, IAME, INSERM, UMR1137, UFR de Médecine, F-75018 Paris, France
| | - Typhaine Billard-Pomares
- APHP, Service de Microbiologie Clinique, Hôpital Avicenne, F-93000, Bobigny, France.,Université de Paris, IAME, INSERM, UMR1137, UFR de Médecine, F-75018 Paris, France
| | - Benoît Doublet
- ISP, INRA, Université François Rabelais de Tours, UMR 1282, F-37380 Nouzilly, France
| | - Valérie Barbe
- Laboratoire de Biologie Moléculaire pour l'Etude des Génomes (LBioMEG), CEA, Genoscope, Institut de Biologie François-Jacob, F-9100, Evry, France
| | - David Roche
- UMR8030, CNRS, CEA, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, Genoscope, Institut de Biologie François-Jacob, Université Évry-Val d'Essonne, F-91000, Evry, France
| | - Claudine Médigue
- UMR8030, CNRS, CEA, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, Genoscope, Institut de Biologie François-Jacob, Université Évry-Val d'Essonne, F-91000, Evry, France
| | - Guillaume Arlet
- CIMI, UMR 1135, INSERM, Faculté de Médecine Sorbonne Université, CR7, F-75013, Paris, France
| | - Erick Denamur
- APHP, Hôpital Bichat, Laboratoire de Génétique Moléculaire, F-75018 Paris, France.,Université de Paris, IAME, INSERM, UMR1137, UFR de Médecine, F-75018 Paris, France
| |
Collapse
|
24
|
Billard-Pomares T, Clermont O, Castellanos M, Magdoud F, Royer G, Condamine B, Fouteau S, Barbe V, Roche D, Cruveiller S, Médigue C, Pognard D, Glodt J, Dion S, Rigal O, Picard B, Denamur E, Branger C. The Arginine Deiminase Operon Is Responsible for a Fitness Trade-Off in Extended-Spectrum-β-Lactamase-Producing Strains of Escherichia coli. Antimicrob Agents Chemother 2019; 63:e00635-19. [PMID: 31138573 PMCID: PMC6658758 DOI: 10.1128/aac.00635-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 05/20/2019] [Indexed: 02/06/2023] Open
Abstract
We previously identified an operon involved in an arginine deiminase (ADI) pathway (arc operon) on a CTX-M-producing plasmid from an O102-ST405 strain of Escherichia coli As the ADI pathway was shown to be involved in the virulence of various Gram-positive bacteria, we tested whether the ADI pathway could be involved in the epidemiological success of extended-spectrum-β-lactamase (ESBL)-producing E. coli strains. We studied two collections of human E. coli isolated in France (n = 493) and England (n = 1,509) and show that the prevalence of the arc operon (i) is higher in ESBL-producing strains (12.1%) than in nonproducers (2.5%), (ii) is higher in CTX-M-producing strains (16%) than in other ESBL producers (3.5%), and (iii) increased over time in ESBL-producing strains from 0% before 2000 to 43.3% in 2011 to 2012. The arc operon, found in strains from various phylogenetic backgrounds, is carried by IncF plasmids (85%) or chromosomes (15%) in regions framed by numerous insertion sequences, indicating multiple arrivals. Competition experiments showed that the arc operon enhances fitness of the strain in vitro in lysogeny broth with arginine. In vivo competition experiments showed that the arc operon is advantageous for the strain in a mouse model of urinary tract infection (UTI), whereas it is a burden in a mouse model of intestinal colonization. In summary, we have identified a trait linked to CTX-M-producing strains that is responsible for a trade-off between two main E. coli lifestyles, UTI and gut commensalism. This trait alone cannot explain the wide spread of ESBLs in E. coli but merits epidemiological surveillance.
Collapse
Affiliation(s)
- Typhaine Billard-Pomares
- IAME, UMR 1137, INSERM, Université Paris Diderot, Université Paris 13, Sorbonne Paris Cité, Paris, France
- APHP, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Olivier Clermont
- IAME, UMR 1137, INSERM, Université Paris Diderot, Université Paris 13, Sorbonne Paris Cité, Paris, France
| | - Miguel Castellanos
- IAME, UMR 1137, INSERM, Université Paris Diderot, Université Paris 13, Sorbonne Paris Cité, Paris, France
| | - Fatma Magdoud
- APHP, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Guilhem Royer
- IAME, UMR 1137, INSERM, Université Paris Diderot, Université Paris 13, Sorbonne Paris Cité, Paris, France
- UMR 8030, CNRS, Institut de Génomique-Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université Évry-Val-d'Essonne, CEA, Évry, France
| | - Bénédicte Condamine
- IAME, UMR 1137, INSERM, Université Paris Diderot, Université Paris 13, Sorbonne Paris Cité, Paris, France
| | - Stéphanie Fouteau
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Valérie Barbe
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - David Roche
- UMR 8030, CNRS, Institut de Génomique-Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université Évry-Val-d'Essonne, CEA, Évry, France
| | - Stéphane Cruveiller
- UMR 8030, CNRS, Institut de Génomique-Genoscope, Laboratoire d'Analyses Bioinformatiques pour la Génomique et le Métabolisme, Université Évry-Val-d'Essonne, CEA, Évry, France
| | - Claudine Médigue
- Génomique Métabolique, Genoscope, Institut de biologie François Jacob, CEA, CNRS, Université Evry, Université Paris-Saclay, Evry, France
| | - Dominique Pognard
- APHP, Hôpital Louis Mourier, Service de Microbiologie, Colombes, France
| | - Jeremy Glodt
- IAME, UMR 1137, INSERM, Université Paris Diderot, Université Paris 13, Sorbonne Paris Cité, Paris, France
- APHP, Hôpital Louis Mourier, Service de Microbiologie, Colombes, France
| | - Sara Dion
- IAME, UMR 1137, INSERM, Université Paris Diderot, Université Paris 13, Sorbonne Paris Cité, Paris, France
| | - Odile Rigal
- Service de Biochimie-Hormonologie, Hôpital Robert Debré, Paris, France
| | - Bertrand Picard
- IAME, UMR 1137, INSERM, Université Paris Diderot, Université Paris 13, Sorbonne Paris Cité, Paris, France
- APHP, Hôpital Avicenne, Service de Microbiologie clinique, Bobigny, France
| | - Erick Denamur
- IAME, UMR 1137, INSERM, Université Paris Diderot, Université Paris 13, Sorbonne Paris Cité, Paris, France
- APHP, Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, France
| | - Catherine Branger
- IAME, UMR 1137, INSERM, Université Paris Diderot, Université Paris 13, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
25
|
Royer G, Decousser JW, Branger C, Dubois M, Médigue C, Denamur E, Vallenet D. PlaScope: a targeted approach to assess the plasmidome from genome assemblies at the species level. Microb Genom 2019; 4. [PMID: 30265232 PMCID: PMC6202455 DOI: 10.1099/mgen.0.000211] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Plasmid prediction may be of great interest when studying bacteria of medical importance such as Enterobacteriaceae as well as Staphylococcus aureus or Enterococcus. Indeed, many resistance and virulence genes are located on such replicons with major impact in terms of pathogenicity and spreading capacities. Beyond strain outbreak, plasmid outbreaks have been reported in particular for some extended-spectrum beta-lactamase- or carbapenemase-producing Enterobacteriaceae. Several tools are now available to explore the ‘plasmidome’ from whole-genome sequences with various approaches, but none of them are able to combine high sensitivity and specificity. With this in mind, we developed PlaScope, a targeted approach to recover plasmidic sequences in genome assemblies at the species or genus level. Based on Centrifuge, a metagenomic classifier, and a custom database containing complete sequences of chromosomes and plasmids from various curated databases, PlaScope classifies contigs from an assembly according to their predicted location. Compared to other plasmid classifiers, PlasFlow and cBar, it achieves better recall (0.87), specificity (0.99), precision (0.96) and accuracy (0.98) on a dataset of 70 genomes of Escherichia coli containing plasmids. In a second part, we identified 20 of the 21 chromosomal integrations of the extended-spectrum beta-lactamase coding gene in a clinical dataset of E. coli strains. In addition, we predicted virulence gene and operon locations in agreement with the literature. We also built a database for Klebsiella and correctly assigned the location for the majority of resistance genes from a collection of 12 Klebsiella pneumoniae strains. Similar approaches could also be developed for other well-characterized bacteria.
Collapse
Affiliation(s)
- G Royer
- 2Université Paris Diderot, INSERM, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France.,3LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France.,1Département de Microbiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Université Paris Est Créteil, F-94000 Créteil, France
| | - J W Decousser
- 2Université Paris Diderot, INSERM, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France.,1Département de Microbiologie, Assistance Publique-Hôpitaux de Paris, Hôpital Henri Mondor, Université Paris Est Créteil, F-94000 Créteil, France
| | - C Branger
- 2Université Paris Diderot, INSERM, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France
| | - M Dubois
- 3LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - C Médigue
- 3LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| | - E Denamur
- 4Assistance Publique-Hôpitaux de Paris, Hôpital Bichat, Laboratoire de Génétique Moléculaire, F-75018 Paris, France.,2Université Paris Diderot, INSERM, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France
| | - D Vallenet
- 3LABGeM, Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Evry, France
| |
Collapse
|
26
|
Decano AG, Ludden C, Feltwell T, Judge K, Parkhill J, Downing T. Complete Assembly of Escherichia coli Sequence Type 131 Genomes Using Long Reads Demonstrates Antibiotic Resistance Gene Variation within Diverse Plasmid and Chromosomal Contexts. mSphere 2019; 4:e00130-19. [PMID: 31068432 PMCID: PMC6506616 DOI: 10.1128/msphere.00130-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/24/2019] [Indexed: 11/20/2022] Open
Abstract
The incidence of infections caused by extraintestinal Escherichia coli (ExPEC) is rising globally, which is a major public health concern. ExPEC strains that are resistant to antimicrobials have been associated with excess mortality, prolonged hospital stays, and higher health care costs. E. coli sequence type 131 (ST131) is a major ExPEC clonal group worldwide, with variable plasmid composition, and has an array of genes enabling antimicrobial resistance (AMR). ST131 isolates frequently encode the AMR genes blaCTX-M-14, blaCTX-M-15, and blaCTX-M-27, which are often rearranged, amplified, and translocated by mobile genetic elements (MGEs). Short DNA reads do not fully resolve the architecture of repetitive elements on plasmids to allow MGE structures encoding blaCTX-M genes to be fully determined. Here, we performed long-read sequencing to decipher the genome structures of six E. coli ST131 isolates from six patients. Most long-read assemblies generated entire chromosomes and plasmids as single contigs, in contrast to more fragmented assemblies created with short reads alone. The long-read assemblies highlighted diverse accessory genomes with blaCTX-M-15, blaCTX-M-14, and blaCTX-M-27 genes identified in three, one, and one isolates, respectively. One sample had no blaCTX-M gene. Two samples had chromosomal blaCTX-M-14 and blaCTX-M-15 genes, and the latter was at three distinct locations, likely transposed by the adjacent MGEs: ISEcp1, IS903B, and Tn2 This study showed that AMR genes exist in multiple different chromosomal and plasmid contexts, even between closely related isolates within a clonal group such as E. coli ST131.IMPORTANCE Drug-resistant bacteria are a major cause of illness worldwide, and a specific subtype called Escherichia coli ST131 causes a significant number of these infections. ST131 bacteria become resistant to treatments by modifying their DNA and by transferring genes among one another via large packages of genes called plasmids, like a game of pass-the-parcel. Tackling infections more effectively requires a better understanding of what plasmids are being exchanged and their exact contents. To achieve this, we applied new high-resolution DNA sequencing technology to six ST131 samples from infected patients and compared the output to that of an existing approach. A combination of methods shows that drug resistance genes on plasmids are highly mobile because they can jump into ST131's chromosomes. We found that the plasmids are very elastic and undergo extensive rearrangements even in closely related samples. This application of DNA sequencing technologies illustrates at a new level the highly dynamic nature of ST131 genomes.
Collapse
Affiliation(s)
| | - Catherine Ludden
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
- London School of Hygiene & Tropical Medicine, London, United Kingdom
| | | | - Kim Judge
- Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
27
|
Influence of primary care antibiotic prescribing on incidence rates of multidrug-resistant Gram-negative bacteria in hospitalised patients. Infection 2019; 47:781-791. [PMID: 31065996 DOI: 10.1007/s15010-019-01305-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 04/02/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE Use of antibiotics can give rise to the selection of resistant bacteria. It remains unclear whether antibiotic use in primary care can influence bacterial resistance incidence in patients when hospitalised. The aim of this study is to explore the impact of prior community antibiotic usage on hospital-detected multidrug-resistant Gram-negative (MRGN) incidence rate. METHODS This pharmacoepidemiological study was case-control in design, and was carried out in the Antrim Area Hospital (N. Ireland) in two phases. In phase 1, the controls were matched according to: age, gender, admission ward, date of admission, and age-adjusted Charlson co-morbidity index score. During the second phase, controls were selected randomly from the total population of admissions to the hospital over the 2-year study period. RESULTS In phase 1, multivariate analysis revealed that prior exposure to the second- and third-generation cephalosporins (p = 0.004) and fluoroquinolones (p = 0.023) in primary care was associated with an increased likelihood of MRGN detection in inpatients. In phase 2, an independent relationship between an increased risk of identification of MRGN, while hospitalised was associated with: prolonged hospitalisation (p < 0.001), being elderly (p < 0.001), being female (p = 0.007), and having genitourinary disease (p < 0.001). CONCLUSION This study provides clear evidence which supports the need to optimise antibiotic use in primary care to help reduce MRGN incidence in hospitalised patients.
Collapse
|