1
|
Zhang P, Zhao X, Li Q, Xu Y, Cheng Z, Yang L, Wang H, Tao Y, Huang G, Wu R, Zhou H, Zhao S. Proband-independent haplotyping based on NGS-based long-read sequencing for detecting pathogenic variant carrier status in preimplantation genetic testing for monogenic diseases. Front Mol Biosci 2024; 11:1329580. [PMID: 38516188 PMCID: PMC10955336 DOI: 10.3389/fmolb.2024.1329580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Preimplantation genetic testing for monogenic diseases (PGT-M) can be used to select embryos that do not develop disease phenotypes or carry disease-causing genes for implantation into the mother's uterus, to block disease transmission to the offspring, and to increase the birth rate of healthy newborns. However, the traditional PGT-M technique has some limitations, such as its time consumption, experimental procedural complexity, and the need for a complete family or reference embryo to construct the haplotype. In this study, proband-independent haplotyping based on NGS-based long-read sequencing (Phbol-seq) was used to effectively construct haplotypes. By targeting the mutation sites of single gene disease point mutations and small fragment deletion carriers, embryos carrying parental disease-causing mutations were successfully identified by linkage analysis. The efficiency of embryo resolution was then verified by classical Sanger sequencing, and it was confirmed that the construction of haplotype and SNP linkage analysis by Phbol-seq could accurately and effectively detect whether embryos carried parental pathogenic mutations. After the embryos confirmed to be nonpathogenic by Phbol-seq-based PGT-M and confirmed to have normal copy number variation by Phbol-seq-based PGT-A were transplanted into the uterus, gene detection in amniotic fluid of the implanted embryos was performed, and the results confirmed that Phbol-seq technology could accurately distinguish normal genotype embryos from genetically modified carrier embryos. Our results suggest that Phbol-seq is an effective strategy for accurately locating mutation sites and accurately distinguishing between embryos that inherit disease-causing genes and normal embryos that do not. This is critical for Phbol-seq-based PGT-M and could help more single-gene disease carriers with incomplete families, de novo mutations or suspected germline mosaicism to have healthy babies with normal phenotypes. It also helps to reduce the transmission of monogenic genetic diseases in the population.
Collapse
Affiliation(s)
- Peiyu Zhang
- Department of Obstetrics and Gynecology, Guizhou Medical University, Guiyang, China
| | - Xiaomei Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology of the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Qinshan Li
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
- Prenatal Diagnosis Center, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yaqiong Xu
- Department of Obstetrics and Gynecology, Guizhou Medical University, Guiyang, China
| | - Zengmei Cheng
- Department of Obstetrics and Gynecology, Guizhou Medical University, Guiyang, China
| | - Lu Yang
- Department of Obstetrics and Gynecology, Guizhou Medical University, Guiyang, China
| | - Houmei Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yang Tao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology of The First People’s Hospital of Bijie, Bijie, China
| | - Guanyou Huang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology of the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Rui Wu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology of the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hua Zhou
- Reproductive Medicine Center, Department of Obstetrics and Gynecology of the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shuyun Zhao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology of the Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
2
|
Colombini L, Santoro F, Tirziu M, Lazzeri E, Morelli L, Pozzi G, Iannelli F. The mobilome of Lactobacillus crispatus M247 includes two novel genetic elements: Tn 7088 coding for a putative bacteriocin and the siphovirus prophage ΦM247. Microb Genom 2023; 9:001150. [PMID: 38085804 PMCID: PMC10763512 DOI: 10.1099/mgen.0.001150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
Lactobacillus crispatus is a member of the vaginal and gastrointestinal human microbiota. Here we determined the complete genome sequence of the probiotic strain M247 combining Nanopore and Illumina technologies. The M247 genome is organized in one circular chromosome of 2 336 109 bp, with a GC content of 37.04 % and 2303 ORFs, of which 1962 could be annotated. Analysis of the M247 mobilome, which accounts for 14 % of the whole genome, revealed the presence of: (i) Tn7088, a novel 14 105 bp long integrative and mobilizable element (IME) containing 16 ORFs; (ii) ΦM247, a novel 42 510 bp long siphovirus prophage containing 52 ORFs; (iii) three clustered regularly interspaced short palindromic repeats (CRISPRs); and (iv) 226 insertion sequences (ISs) belonging to 14 different families. Tn7088 has a modular organization including a mobilization module encoding FtsK homologous proteins and a relaxase, an integration/excision module coding for an integrase and an excisionase, and an adaptation module coding for a class I bacteriocin and homologous to the listeriolysin S (lls) locus of Listeria monocytogenes. Genome-wide homology search analysis showed the presence of Tn7088-like elements in 12 out of 23 L. crispatus complete public genomes. Mobilization and integration/excision modules are essentially conserved, while the adaptation module is variable since it is the target site for the integration of different ISs. Prophage ΦM247 contains genes for phage structural proteins, DNA replication and packaging, lysogenic and lytic cycles. ΦM247-like prophages are present in seven L. crispatus complete genomes, with sequence variability mainly due to the integration of ISs. PCR and sequencing showed that the Tn7088 IME excises from the M247 chromosome producing a circular form at a concentration of 4.32×10-5 copies per chromosome, and reconstitution of the Tn7088 chromosomal target site occurred at 6.65×10-4 copies per chromosome. The ΦM247 prophage produces an excised form and a reconstituted target site at a level of 3.90×10-5 and 2.48×10-5 copies per chromosome, respectively. This study identified two novel genetic elements in L. crispatus. Tn7088 represents the first example of an IME carrying a biosynthetic gene cluster for a class I bacteriocin in L. crispatus.
Collapse
Affiliation(s)
- Lorenzo Colombini
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Mariana Tirziu
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Elisa Lazzeri
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Lorenzo Morelli
- Università Cattolica del Sacro Cuore, Department of Food Science and Technologies for a Sustainable Agri-food Supply Chain (DiSTAS), University of Piacenza, 53100 Piacenza, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology, Department of Medical Biotechnologies, University of Siena, 53100 Siena, Italy
| |
Collapse
|
3
|
Characterization of Bordetella pertussis Strains Isolated from India. Pathogens 2022; 11:pathogens11070794. [PMID: 35890038 PMCID: PMC9322502 DOI: 10.3390/pathogens11070794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/11/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022] Open
Abstract
Despite high level vaccination and the availability of two different types of vaccines, whole cell (wP) and acellular vaccines (aP), the resurgence of pertussis has been reported in many countries. Antigenic variation within circulating and vaccine strains is the most documented reason reported for the resurgence of pertussis. Research on genetic divergence among circulating and vaccine strains has largely been reported in countries using aP vaccines. There are inadequate data available for antigenic variation in B. pertussis from wP-using countries. India has used wP for more than 40 years in their primary immunization program. The present study reports five clinical isolates of B. pertussis from samples of pediatric patients with pertussis symptoms observed in India. Genotypic and phenotypic characterization of clinical isolates were performed by serotyping, genotyping, whole genome analyses and comparative genomics. All clinical isolates showed serotype 1, 2 and 3 based on the presence of fimbriae 2 and 3. Genotyping showed genetic similarities in allele types for five aP genes within vaccine strains and clinical isolates reported from India. The presence of the ptxP3 genotype was observed in two out of five clinical isolates. Whole-genome sequencing was performed for clinical isolates using the hybrid strategy of combining Illumina (short reads) and oxford nanopore (long reads) sequencing strategies. Clinical isolates (n = 5) and vaccine strains (n = 7) genomes of B. pertussis from India were compared with 744 B. pertussis closed genomes available in the public databases. The phylogenomic comparison of B. pertussis genomes reported from India will be advantageous in better understanding pertussis resurgence reported globally with respect to pathogen adaptation.
Collapse
|
4
|
Brandal LT, Vestrheim DF, Bruvik T, Roness RB, Bjørnstad ML, Greve-Isdahl M, Steens A, Brynildsrud OB. Evolution of Bordetella pertussis in the acellular vaccine era in Norway, 1996 to 2019. Eur J Clin Microbiol Infect Dis 2022; 41:913-924. [PMID: 35543837 PMCID: PMC9135841 DOI: 10.1007/s10096-022-04453-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/28/2022] [Indexed: 01/16/2023]
Abstract
We described the population structure of Bordetella pertussis (B. pertussis) in Norway from 1996 to 2019 and determined if there were evolutionary shifts and whether these correlated with changes in the childhood immunization program. We selected 180 B. pertussis isolates, 22 from the whole cell vaccine (WCV) era (1996-1997) and 158 from the acellular vaccine (ACV) era (1998-2019). We conducted whole genome sequencing and determined the distribution and frequency of allelic variants and temporal changes of ACV genes. Norwegian B. pertussis isolates were evenly distributed across a phylogenetic tree that included global strains. We identified seven different allelic profiles of ACV genes (A-F), in which profiles A1, A2, and B dominated (89%), all having pertussis toxin (ptxA) allele 1, pertussis toxin promoter (ptxP) allele 3, and pertactin (prn) allele 2 present. Isolates with ptxP1 and prn1 were not detected after 2007, whereas the prn2 allele likely emerged prior to 1972, and ptxP3 before the early 1980s. Allele conversions of ACV genes all occurred prior to the introduction of ACV. Sixteen percent of our isolates showed mutations within the prn gene. ACV and its booster doses (implemented for children in 2007 and adolescents in 2013) might have contributed to evolvement of a more uniform B. pertussis population, with recent circulating strains having ptxA1, ptxP3, and prn2 present, and an increasing number of prn mutations. These strains clearly deviate from ACV strains (ptxA1, ptxP1, prn1), and this could have implications for vaccine efficiency and, therefore, prevention and control of pertussis.
Collapse
Affiliation(s)
- Lin T Brandal
- Norwegian Institute of Public Health, Oslo, Norway.
- European Program for Public Health Microbiology Training (EUPHEM), European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden.
| | | | | | | | | | | | | | - Ola B Brynildsrud
- Norwegian Institute of Public Health, Oslo, Norway
- Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
5
|
Pinzauti D, Iannelli F, Pozzi G, Santoro F. DNA isolation methods for Nanopore sequencing of the Streptococcus mitis genome. Microb Genom 2022; 8. [PMID: 35171093 PMCID: PMC8942023 DOI: 10.1099/mgen.0.000764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Streptococcus mitis is a Gram-positive bacterium, member of the oral commensal microbiota, which can occasionally be the etiologic agent of diseases such as infective endocarditis, bacteraemia and septicaemia. The highly recombinogenic and repetitive nature of the S. mitis genome impairs the assembly of a complete genome relying only on short sequencing reads. Oxford Nanopore sequencing can overcome this limitation by generating long reads, enabling the resolution of genomic repeated regions and the assembly of a complete genome sequence. Since the output of a Nanopore sequencing run is strongly influenced by genomic DNA quality and molecular weight, the DNA isolation is the crucial step for an optimal sequencing run. In the present work, we have set up and compared three DNA isolation methods on two S. mitis strains, evaluating their capability of preserving genomic DNA integrity and purity. Sequencing of DNA isolated with a mechanical lysis-based method, despite being cheaper and quicker, did not generate ultra-long reads (maximum read length of 59516 bases) and did not allow the assembly of a circular complete genome. Two methods based on enzymatic lysis of the bacterial cell wall, followed by either (i) a modified CTAB DNA isolation procedure, or (ii) a DNA purification after osmotic lysis of the protoplasts allowed the sequencing of ultra-long reads up to 107294 and 181199 bases in length, respectively. The reconstruction of a circular complete genome was possible sequencing DNAs isolated using the enzymatic lysis-based methods.
Collapse
Affiliation(s)
- David Pinzauti
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Iannelli
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Gianni Pozzi
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Francesco Santoro
- Laboratory of Molecular Microbiology and Biotechnology (LAMMB), Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
6
|
Abrahams JS, Weigand MR, Ring N, MacArthur I, Etty J, Peng S, Williams MM, Bready B, Catalano AP, Davis JR, Kaiser MD, Oliver JS, Sage JM, Bagby S, Tondella ML, Gorringe AR, Preston A. Towards comprehensive understanding of bacterial genetic diversity: large-scale amplifications in Bordetella pertussis and Mycobacterium tuberculosis. Microb Genom 2022; 8:000761. [PMID: 35143385 PMCID: PMC8942028 DOI: 10.1099/mgen.0.000761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 12/11/2021] [Indexed: 11/18/2022] Open
Abstract
Bacterial genetic diversity is often described solely using base-pair changes despite a wide variety of other mutation types likely being major contributors. Tandem duplication/amplifications are thought to be widespread among bacteria but due to their often-intractable size and instability, comprehensive studies of these mutations are rare. We define a methodology to investigate amplifications in bacterial genomes based on read depth of genome sequence data as a proxy for copy number. We demonstrate the approach with Bordetella pertussis, whose insertion sequence element-rich genome provides extensive scope for amplifications to occur. Analysis of data for 2430 B. pertussis isolates identified 272 putative amplifications, of which 94 % were located at 11 hotspot loci. We demonstrate limited phylogenetic connection for the occurrence of amplifications, suggesting unstable and sporadic characteristics. Genome instability was further described in vitro using long-read sequencing via the Nanopore platform, which revealed that clonally derived laboratory cultures produced heterogenous populations rapidly. We extended this research to analyse a population of 1000 isolates of another important pathogen, Mycobacterium tuberculosis. We found 590 amplifications in M. tuberculosis, and like B. pertussis, these occurred primarily at hotspots. Genes amplified in B. pertussis include those involved in motility and respiration, whilst in M. tuberuclosis, functions included intracellular growth and regulation of virulence. Using publicly available short-read data we predicted previously unrecognized, large amplifications in B. pertussis and M. tuberculosis. This reveals the unrecognized and dynamic genetic diversity of B. pertussis and M. tuberculosis, highlighting the need for a more holistic understanding of bacterial genetics.
Collapse
Affiliation(s)
- Jonathan S. Abrahams
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Michael R. Weigand
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Natalie Ring
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Iain MacArthur
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Joss Etty
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - Scott Peng
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Margaret M. Williams
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | | | | | | | | | | | - Stefan Bagby
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| | - M. Lucia Tondella
- Division of Bacterial Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - Andrew Preston
- Department of Biology and Biochemistry and Milner Centre for Evolution, University of Bath, Bath, UK
| |
Collapse
|
7
|
Ring N, Davies H, Morgan J, Sundaresan M, Tiong A, Preston A, Bagby S. Comparative genomics of Bordetella pertussis isolates from New Zealand, a country with an uncommonly high incidence of whooping cough. Microb Genom 2022; 8:000756. [PMID: 35084300 PMCID: PMC8914352 DOI: 10.1099/mgen.0.000756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/03/2021] [Indexed: 11/18/2022] Open
Abstract
Whooping cough, the respiratory disease caused by Bordetella pertussis, has undergone a wide-spread resurgence over the last several decades. Previously, we developed a pipeline to assemble the repetitive B. pertussis genome into closed sequences using hybrid nanopore and Illumina sequencing. Here, this sequencing pipeline was used to conduct a more high-throughput, longitudinal screen of 66 strains isolated between 1982 and 2018 in New Zealand. New Zealand has a higher incidence of whooping cough than many other countries; usually at least twice as many cases per 100000 people as the USA and UK and often even higher, despite similar rates of vaccine uptake. To the best of our knowledge, these strains are the first New Zealand B. pertussis isolates to be sequenced. The analyses here show that, on the whole, genomic trends in New Zealand B. pertussis isolates, such as changing allelic profile in vaccine-related genes and increasing pertactin deficiency, have paralleled those seen elsewhere in the world. At the same time, phylogenetic comparisons of the New Zealand isolates with global isolates suggest that a number of strains are circulating in New Zealand, which cluster separately from other global strains, but which are closely related to each other. The results of this study add to a growing body of knowledge regarding recent changes to the B. pertussis genome, and are the first genetic investigation into B. pertussis isolates from New Zealand.
Collapse
Affiliation(s)
- Natalie Ring
- Department of Biology and Biochemistry, University of Bath, UK
- Roslin Institute, University of Edinburgh, UK
| | - Heather Davies
- Institute of Environmental Science and Research, Porirua, New Zealand
| | - Julie Morgan
- Institute of Environmental Science and Research, Porirua, New Zealand
| | | | - Audrey Tiong
- Institute of Environmental Science and Research, Porirua, New Zealand
| | - Andrew Preston
- Department of Biology and Biochemistry, University of Bath, UK
| | - Stefan Bagby
- Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
8
|
Dienstbier A, Amman F, Petráčková D, Štipl D, Čapek J, Zavadilová J, Fabiánová K, Držmíšek J, Kumar D, Wildung M, Pouchnik D, Večerek B. Comparative Omics Analysis of Historic and Recent Isolates of Bordetella pertussis and Effects of Genome Rearrangements on Evolution. Emerg Infect Dis 2021; 27:57-68. [PMID: 33350934 PMCID: PMC7774529 DOI: 10.3201/eid2701.191541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Despite high vaccination coverage, pertussis is increasing in many industrialized countries, including the Czech Republic. To better understand Bordetella pertussis resurgence, we analyzed historic strains and recent clinical isolates by using a comparative omics approach. Whole-genome sequencing showed that historic and recent isolates of B. pertussis have substantial variation in genome organization and form separate phylogenetic clusters. Subsequent RNA sequence analysis and liquid chromatography with mass tandem spectrometry analyses showed that these variations translated into discretely separated transcriptomic and proteomic profiles. When compared with historic strains, recent isolates showed increased expression of flagellar genes and genes involved in lipopolysaccharide biosynthesis and decreased expression of polysaccharide capsule genes. Compared with reference strain Tohama I, all strains had increased expression and production of the type III secretion system apparatus. We detected the potential link between observed effects and insertion sequence element–induced changes in gene context only for a few genes.
Collapse
|
9
|
Ramkissoon S, MacArthur I, Ibrahim M, de Graaf H, Read RC, Preston A. A qPCR assay for Bordetella pertussis cells that enumerates both live and dead bacteria. PLoS One 2020; 15:e0232334. [PMID: 32353041 PMCID: PMC7192480 DOI: 10.1371/journal.pone.0232334] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/13/2020] [Indexed: 02/03/2023] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough, commonly referred to as pertussis. Although the incidence of pertussis was reduced through vaccination, during the last thirty years it has returned to high levels in a number of countries. This resurgence has been linked to the switch from the use of whole-cell to acellular vaccines. Protection afforded by acellular vaccines appears to be short-lived compared to that afforded by whole cell vaccines. In order to inform future vaccine improvement by identifying immune correlates of protection, a human challenge model of B. pertussis colonisation has been developed. Accurate measurement of colonisation status in this model has required development of a qPCR-based assay to enumerate B. pertussis in samples that distinguishes between viable and dead bacteria. Here we report the development of this assay and its performance in the quantification of B. pertussis from human challenge model samples. This assay has future utility in diagnostic labs and in research where a quantitative measure of both B. pertussis number and viability is required.
Collapse
Affiliation(s)
- Stacy Ramkissoon
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Iain MacArthur
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Muktar Ibrahim
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- School of Clinical Experimental Sciences, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Hans de Graaf
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- School of Clinical Experimental Sciences, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Robert C. Read
- Faculty of Medicine and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
- School of Clinical Experimental Sciences, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- NIHR Clinical Research Facility, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
- NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, University of Southampton, Southampton, United Kingdom
| | - Andrew Preston
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Molina-Mora JA, Campos-Sánchez R, Rodríguez C, Shi L, García F. High quality 3C de novo assembly and annotation of a multidrug resistant ST-111 Pseudomonas aeruginosa genome: Benchmark of hybrid and non-hybrid assemblers. Sci Rep 2020; 10:1392. [PMID: 31996747 PMCID: PMC6989561 DOI: 10.1038/s41598-020-58319-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 01/06/2020] [Indexed: 12/14/2022] Open
Abstract
Genotyping methods and genome sequencing are indispensable to reveal genomic structure of bacterial species displaying high level of genome plasticity. However, reconstruction of genome or assembly is not straightforward due to data complexity, including repeats, mobile and accessory genetic elements of bacterial genomes. Moreover, since the solution to this problem is strongly influenced by sequencing technology, bioinformatics pipelines, and selection criteria to assess assemblers, there is no systematic way to select a priori the optimal assembler and parameter settings. To assembly the genome of Pseudomonas aeruginosa strain AG1 (PaeAG1), short reads (Illumina) and long reads (Oxford Nanopore) sequencing data were used in 13 different non-hybrid and hybrid approaches. PaeAG1 is a multiresistant high-risk sequence type 111 (ST-111) clone that was isolated from a Costa Rican hospital and it was the first report of an isolate of P. aeruginosa carrying both blaVIM-2 and blaIMP-18 genes encoding for metallo-β-lactamases (MBL) enzymes. To assess the assemblies, multiple metrics regard to contiguity, correctness and completeness (3C criterion, as we define here) were used for benchmarking the 13 approaches and select a definitive assembly. In addition, annotation was done to identify genes (coding and RNA regions) and to describe the genomic content of PaeAG1. Whereas long reads and hybrid approaches showed better performances in terms of contiguity, higher correctness and completeness metrics were obtained for short read only and hybrid approaches. A manually curated and polished hybrid assembly gave rise to a single circular sequence with 100% of core genes and known regions identified, >98% of reads mapped back, no gaps, and uniform coverage. The strategy followed to obtain this high-quality 3C assembly is detailed in the manuscript and we provide readers with an all-in-one script to replicate our results or to apply it to other troublesome cases. The final 3C assembly revealed that the PaeAG1 genome has 7,190,208 bp, a 65.7% GC content and 6,709 genes (6,620 coding sequences), many of which are included in multiple mobile genomic elements, such as 57 genomic islands, six prophages, and two complete integrons with blaVIM-2 and blaIMP-18 MBL genes. Up to 250 and 60 of the predicted genes are anticipated to play a role in virulence (adherence, quorum sensing and secretion) or antibiotic resistance (β-lactamases, efflux pumps, etc). Altogether, the assembly and annotation of the PaeAG1 genome provide new perspectives to continue studying the genomic diversity and gene content of this important human pathogen.
Collapse
Affiliation(s)
- José Arturo Molina-Mora
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica.
| | - Rebeca Campos-Sánchez
- Centro de Investigación en Biología Celular y Molecular, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - César Rodríguez
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Leming Shi
- Human Phenome Institute of Fudan University, Shanghai, China
| | - Fernando García
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| |
Collapse
|
11
|
Kuleshov KV, Margos G, Fingerle V, Koetsveld J, Goptar IA, Markelov ML, Kolyasnikova NM, Sarksyan DS, Kirdyashkina NP, Shipulin GA, Hovius JW, Platonov AE. Whole genome sequencing of Borrelia miyamotoi isolate Izh-4: reference for a complex bacterial genome. BMC Genomics 2020; 21:16. [PMID: 31906865 PMCID: PMC6945570 DOI: 10.1186/s12864-019-6388-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/12/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND The genus Borrelia comprises spirochaetal bacteria maintained in natural transmission cycles by tick vectors and vertebrate reservoir hosts. The main groups are represented by a species complex including the causative agents of Lyme borreliosis and relapsing fever group Borrelia. Borrelia miyamotoi belongs to the relapsing fever group of spirochetes and forms distinct populations in North America, Asia, and Europe. As all Borrelia species B. miyamotoi possess an unusual and complex genome consisting of a linear chromosome and a number of linear and circular plasmids. The species is considered an emerging human pathogen and an increasing number of human cases are being described in the Northern hemisphere. The aim of this study was to produce a high quality reference genome that will facilitate future studies into genetic differences between different populations and the genome plasticity of B. miyamotoi. RESULTS We used multiple available sequencing methods, including Pacific Bioscience single-molecule real-time technology (SMRT) and Oxford Nanopore technology (ONT) supplemented with highly accurate Illumina sequences, to explore the suitability for whole genome assembly of the Russian B. miyamotoi isolate, Izh-4. Plasmids were typed according to their potential plasmid partitioning genes (PF32, 49, 50, 57/62). Comparing and combining results of both long-read (SMRT and ONT) and short-read methods (Illumina), we determined that the genome of the isolate Izh-4 consisted of one linear chromosome, 12 linear and two circular plasmids. Whilst the majority of plasmids had corresponding contigs in the Asian B. miyamotoi isolate FR64b, there were only four that matched plasmids of the North American isolate CT13-2396, indicating differences between B. miyamotoi populations. Several plasmids, e.g. lp41, lp29, lp23, and lp24, were found to carry variable major proteins. Amongst those were variable large proteins (Vlp) subtype Vlp-α, Vlp-γ, Vlp-δ and also Vlp-β. Phylogenetic analysis of common plasmids types showed the uniqueness in Russian/Asian isolates of B. miyamotoi compared to other isolates. CONCLUSIONS We here describe the genome of a Russian B. miyamotoi clinical isolate, providing a solid basis for future comparative genomics of B. miyamotoi isolates. This will be a great impetus for further basic, molecular and epidemiological research on this emerging tick-borne pathogen.
Collapse
Affiliation(s)
- Konstantin V Kuleshov
- Central Research Institute of Epidemiology, Moscow, 111123, Russia.
- Federal State Budget Scientific Institution "Federal Scientific Center VIEV", Moscow, Russia.
| | - Gabriele Margos
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764, Oberschleissheim, Germany.
| | - Volker Fingerle
- Bavarian Health and Food Safety Authority, German National Reference Centre for Borrelia, Veterinärstr. 2, 85764, Oberschleissheim, Germany
| | - Joris Koetsveld
- Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Irina A Goptar
- Izmerov Research Institute of Occupational Health, Moscow, Russia
| | | | - Nadezhda M Kolyasnikova
- Central Research Institute of Epidemiology, Moscow, 111123, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and- Biological Products of Russian Academy of Sciences, Moscow, Russia
| | - Denis S Sarksyan
- Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Izhevsk State Medical Academy, Izhevsk, Russia
| | | | - German A Shipulin
- Center of Strategical Planning and Management of Biomedical Health Risks of the Ministry of Health, Moscow, Russia
| | - Joppe W Hovius
- Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | |
Collapse
|
12
|
Rapid, multiplexed, whole genome and plasmid sequencing of foodborne pathogens using long-read nanopore technology. Sci Rep 2019; 9:16350. [PMID: 31704961 PMCID: PMC6841976 DOI: 10.1038/s41598-019-52424-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 10/16/2019] [Indexed: 12/11/2022] Open
Abstract
U.S. public health agencies have employed next-generation sequencing (NGS) as a tool to quickly identify foodborne pathogens during outbreaks. Although established short-read NGS technologies are known to provide highly accurate data, long-read sequencing is still needed to resolve highly-repetitive genomic regions and genomic arrangement, and to close the sequences of bacterial chromosomes and plasmids. Here, we report the use of long-read nanopore sequencing to simultaneously sequence the entire chromosome and plasmid of Salmonella enterica subsp. enterica serovar Bareilly and Escherichia coli O157:H7. We developed a rapid and random sequencing approach coupled with de novo genome assembly within a customized data analysis workflow that uses publicly-available tools. In sequencing runs as short as four hours, using the MinION instrument, we obtained full-length genomes with an average identity of 99.87% for Salmonella Bareilly and 99.89% for E. coli in comparison to the respective MiSeq references. These nanopore-only assemblies provided readily available information on serotype, virulence factors, and antimicrobial resistance genes. We also demonstrate the potential of nanopore sequencing assemblies for rapid preliminary phylogenetic inference. Nanopore sequencing provides additional advantages as very low capital investment and footprint, and shorter (10 hours library preparation and sequencing) turnaround time compared to other NGS technologies.
Collapse
|
13
|
Sydenham TV, Overballe-Petersen S, Hasman H, Wexler H, Kemp M, Justesen US. Complete hybrid genome assembly of clinical multidrug-resistant Bacteroides fragilis isolates enables comprehensive identification of antimicrobial-resistance genes and plasmids. Microb Genom 2019; 5:e000312. [PMID: 31697231 PMCID: PMC6927303 DOI: 10.1099/mgen.0.000312] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/17/2019] [Indexed: 02/06/2023] Open
Abstract
Bacteroides fragilis constitutes a significant part of the normal human gut microbiota and can also act as an opportunistic pathogen. Antimicrobial resistance (AMR) and the prevalence of AMR genes are increasing, and prediction of antimicrobial susceptibility based on sequence information could support targeted antimicrobial therapy in a clinical setting. Complete identification of insertion sequence (IS) elements carrying promoter sequences upstream of resistance genes is necessary for prediction of AMR. However, de novo assemblies from short reads alone are often fractured due to repeat regions and the presence of multiple copies of identical IS elements. Identification of plasmids in clinical isolates can aid in the surveillance of the dissemination of AMR, and comprehensive sequence databases support microbiome and metagenomic studies. We tested several short-read, hybrid and long-lead assembly pipelines by assembling the type strain B. fragilis CCUG4856T (=ATCC25285=NCTC9343) with Illumina short reads and long reads generated by Oxford Nanopore Technologies (ONT) MinION sequencing. Hybrid assembly with Unicycler, using quality filtered Illumina reads and Filtlong filtered and Canu-corrected ONT reads, produced the assembly of highest quality. This approach was then applied to six clinical multidrug-resistant B. fragilis isolates and, with minimal manual finishing of chromosomal assemblies of three isolates, complete, circular assemblies of all isolates were produced. Eleven circular, putative plasmids were identified in the six assemblies, of which only three corresponded to a known cultured Bacteroides plasmid. Complete IS elements could be identified upstream of AMR genes; however, there was not complete correlation between the absence of IS elements and antimicrobial susceptibility. As our knowledge on factors that increase expression of resistance genes in the absence of IS elements is limited, further research is needed prior to implementing AMR prediction for B. fragilis from whole-genome sequencing.
Collapse
Affiliation(s)
- Thomas V. Sydenham
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
- Department of Clinical Microbiology, Lillebaelt Hospital, Vejle, Denmark
| | | | - Henrik Hasman
- Bacteria, Parasites and Fungi, Statens Serum Institut, Copenhagen, Denmark
| | - Hannah Wexler
- GLAVA Health Care System and David Geffen School of Medicine, UCLA (University of California, Los Angeles), Los Angeles, CA, USA
| | - Michael Kemp
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| | - Ulrik S. Justesen
- Research Unit of Clinical Microbiology, Department of Clinical Research, University of Southern Denmark, Odense, Denmark
- Department of Clinical Microbiology, Odense University Hospital, Odense, Denmark
| |
Collapse
|
14
|
How Genomics Is Changing What We Know About the Evolution and Genome of Bordetella pertussis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:1-17. [PMID: 31321755 DOI: 10.1007/5584_2019_401] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The evolution of Bordetella pertussis from a common ancestor similar to Bordetella bronchiseptica has occurred through large-scale gene loss, inactivation and rearrangements, largely driven by the spread of insertion sequence element repeats throughout the genome. B. pertussis is widely considered to be monomorphic, and recent evolution of the B. pertussis genome appears to, at least in part, be driven by vaccine-based selection. Given the recent global resurgence of whooping cough despite the wide-spread use of vaccination, a more thorough understanding of B. pertussis genomics could be highly informative. In this chapter we discuss the evolution of B. pertussis, including how vaccination is changing the circulating B. pertussis population at the gene-level, and how new sequencing technologies are revealing previously unknown levels of inter- and intra-strain variation at the genome-level.
Collapse
|