1
|
Domínguez-Odio A, Delgado DLC. Global commercialization and research of veterinary vaccines against Pasteurella multocida: 2015-2022 technological surveillance. Vet World 2023; 16:946-956. [PMID: 37576757 PMCID: PMC10420726 DOI: 10.14202/vetworld.2023.946-956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 03/31/2023] [Indexed: 08/15/2023] Open
Abstract
Background and Aim Pasteurella multocida can infect a multitude of wild and domesticated animals, bacterial vaccines have become a crucial tool in combating antimicrobial resistance (AMR) in animal production. The study aimed to evaluate the current status and scientific trends related to veterinary vaccines against Pasteurella multocida during the 2015-2022 period. Material and Methods The characteristics of globally marketed vaccines were investigated based on the official websites of 22 pharmaceutical companies. VOSviewer® 1.6.18 was used to visualize networks of coauthorship and cooccurrence of keywords from papers published in English and available in Scopus. Results Current commercial vaccines are mostly inactivated (81.7%), adjuvanted in aluminum hydroxide (57.8%), and designed to immunize cattle (33.0%). Investigational vaccines prioritize the inclusion of attenuated strains, peptide fragments, recombinant proteins, DNA as antigens, aluminum compounds as adjuvants and poultry as the target species. Conclusion Despite advances in genetic engineering and biotechnology, there will be no changes in the commercial dominance of inactivated and aluminum hydroxide-adjuvanted vaccines in the short term (3-5 years). The future prospects for bacterial vaccines in animal production are promising, with advancements in vaccine formulation and genetic engineering, they have the potential to improve the sustainability of the industry. It is necessary to continue with the studies to improve the efficacy of the vaccines and their availability.
Collapse
Affiliation(s)
- Aníbal Domínguez-Odio
- Dirección de Ciencia e Innovación. Grupo Empresarial LABIOFAM. Avenida Independencia km 16½, Boyeros, La Habana, Cuba
| | - Daniel Leonardo Cala Delgado
- Animal Science Research Group, Universidad Cooperativa de Colombia, Sede Bucaramanga, Carrera 33 N°, 30ª-05 (4.162,49 km) 68000, Bucaramanga, Colombia
| |
Collapse
|
2
|
Omaleki L, Blackall PJ, Cuddihy T, White RT, Courtice JM, Turni C, Forde BM, Beatson SA. Phase variation in the glycosyltransferase genes of Pasteurella multocida associated with outbreaks of fowl cholera on free-range layer farms. Microb Genom 2022; 8. [PMID: 35266868 PMCID: PMC9176279 DOI: 10.1099/mgen.0.000772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fowl cholera caused by Pasteurella multocida has re-emerged in Australian poultry production since the increasing adoption of free-range production systems. Currently, autogenous killed whole-cell vaccines prepared from the isolates previously obtained from each farm are the main preventative measures used. In this study, we use whole-genome sequencing and phylogenomic analysis to investigate outbreak dynamics, as well as monitoring and comparing the variations in the lipopolysaccharide (LPS) outer core biosynthesis loci of the outbreak and vaccine strains. In total, 73 isolates from two different free-range layer farms were included. Our genomic analysis revealed that all investigated isolates within the two farms (layer A and layer B) carried LPS type L3, albeit with a high degree of genetic diversity between them. Additionally, the isolates belonged to five different sequence types (STs), with isolates belonging to ST9 and ST20 being the most prevalent. The isolates carried ST-specific mutations within their LPS type L3 outer core biosynthesis loci, including frameshift mutations in the outer core heptosyltransferase gene (htpE) (ST7 and ST274) or galactosyltransferase gene (gatG) (ST20). The ST9 isolates could be separated into three groups based on their LPS outer core biosynthesis loci sequences, with evidence for potential phase variation mechanisms identified. The potential phase variation mechanisms included a tandem repeat insertion in natC and a single base deletion in a homopolymer region of gatG. Importantly, our results demonstrated that two of the three ST9 groups shared identical rep-PCR (repetitive extragenic palindromic PCR) patterns, while carrying differences in their LPS outer core biosynthesis loci region. In addition, we found that ST9 isolates either with or without the natC tandem repeat insertion were both associated with a single outbreak, which would indicate the importance of screening more than one isolate within an outbreak. Our results strongly suggest the need for a metagenomics culture-independent approach, as well as a genetic typing scheme for LPS, to ensure an appropriate vaccine strain with a matching predicted LPS structure is used.
Collapse
Affiliation(s)
- Lida Omaleki
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD 4072, Australia.,Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia.,Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD 4072, Australia
| | - Thom Cuddihy
- QFAB Bioinformatics - Research Computing Centre, University of Queensland, St Lucia, QLD 4072, Australia.,Present address: University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital Campus, Herston, QLD 4029, Australia
| | - Rhys T White
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia.,Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Jodi M Courtice
- Division of Research and Innovation, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD 4072, Australia
| | - Brian M Forde
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia.,Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia.,Present address: University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital Campus, Herston, QLD 4029, Australia
| | - Scott A Beatson
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia.,Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
3
|
Saha O, Islam MR, Rahman MS, Hoque MN, Hossain MA, Sultana M. First report from Bangladesh on genetic diversity of multidrug-resistant Pasteurella multocida type B:2 in fowl cholera. Vet World 2021; 14:2527-2542. [PMID: 34840474 PMCID: PMC8613801 DOI: 10.14202/vetworld.2021.2527-2542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/13/2021] [Indexed: 01/05/2023] Open
Abstract
Background and Aim: Fowl cholera (FC) caused by Pasteurella multocida is a highly contagious bacterial disease of global importance for poultry production. The severity and incidence of FC caused by P. multocida may vary considerably depending on several factors associated with the host (including species and age of infected birds), the environment, and the bacterial strain. This study aimed to investigate the genetic diversity of multidrug-resistant P. multocida strains isolated from FC outbreaks in laying hens from commercial farms of Bangladesh. Materials and Methods: We collected 57 samples of suspected FC, including 36 live and 21 dead laying hens. P. multocida isolates were characterized by biochemical and molecular-biological methods. Results: Twenty-two strains of P. multocida were isolated from these samples through phenotypic and genotypic characterization. The strains were grouped into two distinct random amplification of polymorphic DNA (RAPD) biotypes harboring a range of pathogenic genes; exbB, ompH, ptfA, nanB, sodC, and hgbA. In this study, 90.90% and 81.82% P. multocida strains were multidrug-resistant and biofilm formers, respectively. Whole-genome sequencing of the two representative RAPD phylotypes confirmed as P. multocida type B: L2:ST122, harboring a number of virulence factors-associated genes (VFGs), and antimicrobial resistance (AMR) genes (ARGs). In addition, pan-genome analysis revealed 90 unique genes in the genomes of P. multocida predicted to be associated with versatile metabolic functions, pathogenicity, virulence, and AMR. Conclusion: This is first-ever report on the association of P. multocida genotype B: L2:ST122 and related VFGs and ARGs in the pathogenesis of FC in laying hens. This study also provides a genetic context for future researches on the evolutionary diversity of P. multocida strains and their host adaptation.
Collapse
Affiliation(s)
- Otun Saha
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - M Rafiul Islam
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - M Shaminur Rahman
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| | - M Nazmul Hoque
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh.,Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur-1706, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh.,Vice-Chancellor, Jashore University of Science and Technology, Jashore-7408, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka-1000, Bangladesh
| |
Collapse
|
4
|
Lamb HJ, Hayes BJ, Nguyen LT, Ross EM. The Future of Livestock Management: A Review of Real-Time Portable Sequencing Applied to Livestock. Genes (Basel) 2020; 11:E1478. [PMID: 33317066 PMCID: PMC7763041 DOI: 10.3390/genes11121478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Oxford Nanopore Technologies' MinION has proven to be a valuable tool within human and microbial genetics. Its capacity to produce long reads in real time has opened up unique applications for portable sequencing. Examples include tracking the recent African swine fever outbreak in China and providing a diagnostic tool for disease in the cassava plant in Eastern Africa. Here we review the current applications of Oxford Nanopore sequencing in livestock, then focus on proposed applications in livestock agriculture for rapid diagnostics, base modification detection, reference genome assembly and genomic prediction. In particular, we propose a future application: 'crush-side genotyping' for real-time on-farm genotyping for extensive industries such as northern Australian beef production. An initial in silico experiment to assess the feasibility of crush-side genotyping demonstrated promising results. SNPs were called from simulated Nanopore data, that included the relatively high base call error rate that is characteristic of the data, and calling parameters were varied to understand the feasibility of SNP calling at low coverages in a heterozygous population. With optimised genotype calling parameters, over 85% of the 10,000 simulated SNPs were able to be correctly called with coverages as low as 6×. These results provide preliminary evidence that Oxford Nanopore sequencing has potential to be used for real-time SNP genotyping in extensive livestock operations.
Collapse
Affiliation(s)
- Harrison J. Lamb
- Centre for Animal Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD 4067, Australia; (B.J.H.); (L.T.N.); (E.M.R.)
| | | | | | | |
Collapse
|
5
|
Omaleki L, Blackall PJ, Bisgaard M, Turni C. Molecular and serological characterization of Riemerella isolates associated with poultry in Australia. Avian Pathol 2020; 50:31-40. [PMID: 32990455 DOI: 10.1080/03079457.2020.1828568] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A total of 62 isolates of Riemerella-like organisms, originally isolated from Australian poultry (10 from chickens, 46 from ducks, five from unknown hosts and one vaccine strain), were included in this study. On the basis of two published polymerase chain reaction (PCR) assays that are reported to be specific for Riemerella anatipestifer, 51 of the isolates were identified as R. anatipestifer. Forty-six of these isolates had a detailed history and were sourced from ducks, while five were of unknown origin. The 11 remaining isolates failed to yield a positive reaction in either PCR with 10 originating from chickens and one from a duck. Amplification and sequencing of the 16S rRNA gene of these isolates identified the duck isolate as Moraxella lacunta. Phylogenetic analysis of the 10 chicken isolates identified one as R. columbina and the remaining nine isolates as Riemerella-like taxon 2. The 51 Australian R. anatipestifer isolates were assigned by gel diffusion test to serovars 1 (26 isolates), 6 (seven isolates), 8 (five isolates), 9 (two isolates), 13 (one isolate) and 14 (one isolate) while nine isolates gave no reaction to any antiserum. A commercial system was used to perform DNA fingerprinting using rep-PCR analysis, which revealed different clusters with a lack of a clear relationship between the clusters and the serovars.
Collapse
Affiliation(s)
- Lida Omaleki
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland Australia
| | - Patrick J Blackall
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland Australia
| | - Magne Bisgaard
- Professor Emeritus, Bisgaard Consulting, Viby Sjaelland, Denmark
| | - Conny Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Queensland Australia
| |
Collapse
|