1
|
Jackson E, Li J, Weerasinghe T, Li X. The Ubiquitous Wilt-Inducing Pathogen Fusarium oxysporum-A Review of Genes Studied with Mutant Analysis. Pathogens 2024; 13:823. [PMID: 39452695 PMCID: PMC11510031 DOI: 10.3390/pathogens13100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024] Open
Abstract
Fusarium oxysporum is one of the most economically important plant fungal pathogens, causing devastating Fusarium wilt diseases on a diverse range of hosts, including many key crop plants. Consequently, F. oxysporum has been the subject of extensive research to help develop and improve crop protection strategies. The sequencing of the F. oxysporum genome 14 years ago has greatly accelerated the discovery and characterization of key genes contributing to F. oxysporum biology and virulence. In this review, we summarize important findings on the molecular mechanisms of F. oxysporum growth, reproduction, and virulence. In particular, we focus on genes studied through mutant analysis, covering genes involved in diverse processes such as metabolism, stress tolerance, sporulation, and pathogenicity, as well as the signaling pathways that regulate them. In doing so, we hope to present a comprehensive review of the molecular understanding of F. oxysporum that will aid the future study of this and related species.
Collapse
Affiliation(s)
- Edan Jackson
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Josh Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Thilini Weerasinghe
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Xin Li
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
2
|
Duan C, Wang S, Yao Y, Pan Y, Liu G. MFS Transporter as the Molecular Switch Unlocking the Production of Cage-Like Acresorbicillinol C. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19061-19070. [PMID: 39148224 DOI: 10.1021/acs.jafc.4c05177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Sorbicillinoids are a class of fungal polyketides with diverse structures and distinguished bioactivities. Although remarkable progress has been achieved in their chemistry and biosynthesis, the efflux of sorbicillinoids is poorly understood. Here, we found MFS transporter AcsorT was responsible for the biosynthesis of sorbicillinoids in Acremonium chrysogenum. Combinatorial knockout and subcellular location demonstrated that the plasma membrane-associated AcsorT was responsible for the transportation of sorbicillinol and subsequent formation of oxosorbicillinol and acresorbicillinol C via the berberine bridge enzyme-like oxidase AcsorD in the periplasm. Homology modeling and site-directed mutation revealed that Tyr303 and Arg436 were the key residues of AcsorT, which was further explained by molecular dynamics simulation. Based on our study, it was suggested that AcsorT modulates sorbicillinoid production by coordinating its biosynthesis and export, and a transport model of sorbicillinoids was proposed in A. chrysogenum.
Collapse
Affiliation(s)
- Chengbao Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiyuan Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongpeng Yao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuanyuan Pan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Gang Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Biosensor approach for electrochemical quantitative assessment and qualitative characterization of the effect of fusaric acid on a culture-receptor. J Biotechnol 2022; 357:1-8. [PMID: 35963592 DOI: 10.1016/j.jbiotec.2022.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 08/09/2022] [Indexed: 11/23/2022]
Abstract
Fusaric acid (FA) is a secondary fungal metabolite, which is widespread on corn and corn-based feed and food; FA has non-specific toxicity. Biosensor method is an express and easy-to-use method for quantitative and qualitative assessment of FA effect. Search for cultures has been performed for the formation of laboratory models of FA biosensor with the Clark-type oxygen electrode as transducer: respiration intensity of chosen cultures changed in the presence of FA. Resting cells of Fusarium oxysporum f. sp. vasinfectum and Bacillus subtilis were used as receptors of the amperometric biosensor for FA determination in aqueous solution. To enhance the sensitivity of detection, induction by substrate was performed for Bacillus subtilis. Response-concentration linear dependencies were obtained in a range of 0.5-500 FA mg/L. Biosensor models were applied to characterize influence of FA on microbial cells and investigate some features of FA transport. The dependences of the cells' response to FA on FA concentration were obtained; the kinetic parameters S0.5 and Vmax were determined for each culture. Inhibition-threshold FA (Sit) concentrations were similar for both studied cultures. At concentrations lower than Sit, the process of simple diffusion governed FA transport into cells and caused the cells' response to FA for non-induced culture.
Collapse
|
4
|
Rangel LI, Bolton MD. The unsung roles of microbial secondary metabolite effectors in the plant disease cacophony. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102233. [PMID: 35679804 DOI: 10.1016/j.pbi.2022.102233] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/30/2022] [Accepted: 05/02/2022] [Indexed: 06/15/2023]
Abstract
Plants counter disease with an array of responses to styme pathogen ingress. In contrast to this cacophony, plant pathogens orchestrate a finely tuned repertoire of virulence mechanisms in their attempt to cause disease. One such example is the production of secondary metabolite effectors (SMEs). Despite many attempts to functionally categorize SMEs, their many roles in plant disease have proven they march to the beat of their producer's drum. Some lesser studied features of SMEs in plant disease include self-resistance (SR) and manipulation of the microbiome to enhance pathogen virulence. SR can be accomplished in three general compositions, with the first being the transport of the SME to a benign location; the second being modification of the SME so it cannot harm the producer; and the third being metabolic regulation of the SME or the producer homolog of the SME target. SMEs may also play an interlude prior to disease by shaping the plant microbial community, allowing producers to better establish themselves. Taken together, SMEs are integral players in the phytopathology canon.
Collapse
Affiliation(s)
- Lorena I Rangel
- Edward T. Schafer Agricultural Research Center, U.S. Dept. Agriculture, Fargo, ND, USA
| | - Melvin D Bolton
- Edward T. Schafer Agricultural Research Center, U.S. Dept. Agriculture, Fargo, ND, USA.
| |
Collapse
|
5
|
Antifungal activity of volatile compounds generated by endophytic fungi Sarocladium brachiariae HND5 against Fusarium oxysporum f. sp. cubense. PLoS One 2021; 16:e0260747. [PMID: 34855862 PMCID: PMC8639089 DOI: 10.1371/journal.pone.0260747] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/16/2021] [Indexed: 11/19/2022] Open
Abstract
The soil-born filamentous fungal pathogen Fusarium oxysporum f. sp. cubense (FOC), which causes vascular wilt disease in banana plants, is one of the most economically important Fusarium species. Biocontrol using endophytic microorganisms is among the most effective methods for controlling banana Fusarium wilt. In this study, volatile organic compounds (VOCs) showed strong antifungal activity against FOC. Seventeen compounds were identified from the VOCs produced by endophytic fungi Sarocladium brachiariae HND5, and three (2-methoxy-4-vinylphenol, 3,4-dimethoxystyrol and caryophyllene) showed antifungal activity against FOC with 50% effective concentrations of 36, 60 and 2900 μL/L headspace, respectively. Transmission electron microscopy (TEM) and double fluorescence staining revealed that 2-methoxy-4-vinylphenol and 3,4-dimethoxystyrol damaged the plasma membranes, resulting in cell death. 3,4-dimethoxystyrol also could induce expression of chitin synthases genes and altered the cell walls of FOC hyphae. Dichloro-dihydro-fluorescein diacetate staining indicated the caryophyllene induced accumulation of reactive oxygen species (ROS) in FOC hyphae. FOC secondary metabolism also responded to active VOC challenge by producing less fusaric acid and expressions of genes related to fusaric acid production were interrupted at sublethal concentrations. These findings indicate the potential of S. brachiariae HND5 as a biocontrol agent against FOC and the antifungal VOCs as fumigants.
Collapse
|
6
|
Phasha MM, Wingfield BD, Wingfield MJ, Coetzee MPA, Hammerbacher A, Steenkamp ET. Deciphering the effect of FUB1 disruption on fusaric acid production and pathogenicity in Fusarium circinatum. Fungal Biol 2021; 125:1036-1047. [PMID: 34776231 DOI: 10.1016/j.funbio.2021.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 10/20/2022]
Abstract
Fusarium circinatum is an important pathogen of pine trees. However, little is known regarding the molecular processes underlying its pathogenesis. We explored the potential role of the phytotoxin fusaric acid (FA) in the pathogenicity of the fungus. FA is produced by products of the FUB biosynthesis gene cluster, containing FUB1-12. Of these, FUB1 encodes the core polyketide synthase, which we disrupted. We used the resulting mutant strain to investigate whether FUB1 and FA production play a role in the virulence of F. circinatum on pine. Our results showed that FA production was abolished both in vitro and in planta. However, bikaverin production was increased in the knockout mutant. FUB1 disruption also corresponded with downregulation of a F. circinatum homologue of LaeA, a master transcriptional regulator of secondary metabolism. Lesion lengths produced by the FUB1 knockout mutant on inoculated Pinus patula seedlings were significantly smaller than those produced by the wild type strain. Collectively, these results show that FUB1 plays a role in FA production in F. circinatum, and that this gene contributes to the aggressiveness of F. circinatum on P. patula. This study will contribute to the limited knowledge we have about the molecular basis of pathogenicity in this fungus.
Collapse
Affiliation(s)
- M M Phasha
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| | - B D Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| | - M J Wingfield
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| | - M P A Coetzee
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| | - A Hammerbacher
- Department of Zoology and Entomology, FABI, Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| | - E T Steenkamp
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), Faculty of Natural and Agricultural Sciences, University of Pretoria, South Africa.
| |
Collapse
|
7
|
Piombo E, Vetukuri RR, Broberg A, Kalyandurg PB, Kushwaha S, Funck Jensen D, Karlsson M, Dubey M. Role of Dicer-Dependent RNA Interference in Regulating Mycoparasitic Interactions. Microbiol Spectr 2021; 9:e0109921. [PMID: 34549988 PMCID: PMC8557909 DOI: 10.1128/spectrum.01099-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/11/2021] [Indexed: 12/17/2022] Open
Abstract
Dicer-like proteins (DCLs) play a vital role in RNA interference (RNAi), by cleaving RNA filament into small RNAs. Although DCL-mediated RNAi can regulate interspecific communication between pathogenic/mutualistic organisms and their hosts, its role in mycoparasitic interactions is yet to be investigated. In this study, we deleted dcl genes in the mycoparasitic fungus Clonostachys rosea and characterize the functions of DCL-dependent RNAi in mycoparasitism. Deletion of dcl2 resulted in a mutant with reduced secondary metabolite production, antagonism toward the plant-pathogenic fungus Botrytis cinerea, and reduced ability to control Fusarium foot rot disease on wheat, caused by Fusarium graminearum. Transcriptome sequencing of the in vitro interaction between the C. rosea Δdcl2 strain and B. cinerea or F. graminearum identified the downregulation of genes coding for transcription factors, membrane transporters, hydrolytic enzymes, and secondary metabolites biosynthesis enzymes putatively involved in antagonistic interactions, in comparison with the C. rosea wild-type interaction. A total of 61 putative novel microRNA-like RNAs (milRNAs) were identified in C. rosea, and 11 were downregulated in the Δdcl2 mutant. In addition to putative endogenous gene targets, these milRNAs were predicted to target B. cinerea and F. graminearum virulence factor genes, which showed an increased expression during interaction with the Δdcl2 mutant incapable of producing the targeting milRNAs. In summary, this study constitutes the first step in elucidating the role of RNAi in mycoparasitic interactions, with important implications for biological control of plant diseases, and poses the base for future studies focusing on the role of cross-species RNAi regulating mycoparasitic interactions. IMPORTANCE Small RNAs mediated RNA interference (RNAi) known to regulate several biological processes. Dicer-like endoribonucleases (DCLs) play a vital role in the RNAi pathway by generating sRNAs. In this study, we investigated a role of DCL-mediated RNAi in interference interactions between mycoparasitic fungus Clonostachys rosea and the two fungal pathogens Botrytis cinerea and Fusarium graminearum (here called mycohosts). We found that the dcl mutants were not able to produce 11 sRNAs predicted to finetune the regulatory network of genes known to be involved in production of hydrolytic enzymes, antifungal compounds, and membrane transporters needed for antagonistic action of C. rosea. We also found C. rosea sRNAs putatively targeting known virulence factors in the mycohosts, indicating RNAi-mediated cross-species communication. Our study expanded the understanding of underlying mechanisms of cross-species communication during interference interactions and poses a base for future works studying the role of DCL-based cross-species RNAi in fungal interactions.
Collapse
Affiliation(s)
- Edoardo Piombo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Ramesh R. Vetukuri
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Anders Broberg
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pruthvi B. Kalyandurg
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Sandeep Kushwaha
- Department of Plant Breeding, Horticum, Swedish University of Agricultural Sciences, Lomma, Sweden
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Dan Funck Jensen
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Karlsson
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mukesh Dubey
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
8
|
Zhang Q, Yang F, Liao S, Wang B, Li R, Dong Y, Zhou M, Yang Y, Xu G. Synthesis, Antibacterial Activity, and Structure–Activity Relationship of Fusaric Acid Analogs. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qing‐Yan Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics Guiyang Guizhou 550004 China
| | - Fei‐Yu Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| | - Shang‐Gao Liao
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| | - Bing Wang
- School of Biology & Engineering Guizhou Medical University Guian New District Guizhou 550025 China
| | - Rui Li
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| | - Yong‐Xi Dong
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| | - Meng Zhou
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM Ministry of Education & Guizhou Provincial Key Laboratory of Pharmaceutics Guiyang Guizhou 550004 China
| | - Yuan‐Yong Yang
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| | - Guo‐Bo Xu
- State Key Laboratory of Functions and Applications of Medicinal Plants & School of Pharmacy Guizhou Medical University Guian New District Guizhou 550025 China
| |
Collapse
|
9
|
Grund ME, Choi SJ, McNitt DH, Barbier M, Hu G, LaSala PR, Cote CK, Berisio R, Lukomski S. Burkholderia collagen-like protein 8, Bucl8, is a unique outer membrane component of a putative tetrapartite efflux pump in Burkholderia pseudomallei and Burkholderia mallei. PLoS One 2020; 15:e0242593. [PMID: 33227031 PMCID: PMC7682875 DOI: 10.1371/journal.pone.0242593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/06/2020] [Indexed: 12/19/2022] Open
Abstract
Bacterial efflux pumps are an important pathogenicity trait because they extrude a variety of xenobiotics. Our laboratory previously identified in silico Burkholderia collagen-like protein 8 (Bucl8) in the hazardous pathogens Burkholderia pseudomallei and Burkholderia mallei. We hypothesize that Bucl8, which contains two predicted tandem outer membrane efflux pump domains, is a component of a putative efflux pump. Unique to Bucl8, as compared to other outer membrane proteins, is the presence of an extended extracellular region containing a collagen-like (CL) domain and a non-collagenous C-terminus (Ct). Molecular modeling and circular dichroism spectroscopy with a recombinant protein, corresponding to this extracellular CL-Ct portion of Bucl8, demonstrated that it adopts a collagen triple helix, whereas functional assays screening for Bucl8 ligands identified binding to fibrinogen. Bioinformatic analysis of the bucl8 gene locus revealed it resembles a classical efflux-pump operon. The bucl8 gene is co-localized with downstream fusCDE genes encoding fusaric acid (FA) resistance, and with an upstream gene, designated as fusR, encoding a LysR-type transcriptional regulator. Using reverse transcriptase (RT)-qPCR, we defined the boundaries and transcriptional organization of the fusR-bucl8-fusCDE operon. We found exogenous FA induced bucl8 transcription over 80-fold in B. pseudomallei, while deletion of the entire bucl8 locus decreased the minimum inhibitory concentration of FA 4-fold in its isogenic mutant. We furthermore showed that the putative Bucl8-associated pump expressed in the heterologous Escherichia coli host confers FA resistance. On the contrary, the Bucl8-associated pump did not confer resistance to a panel of clinically-relevant antimicrobials in Burkholderia and E. coli. We finally demonstrated that deletion of the bucl8-locus drastically affects the growth of the mutant in L-broth. We determined that Bucl8 is a component of a novel tetrapartite efflux pump, which confers FA resistance, fibrinogen binding, and optimal growth.
Collapse
Affiliation(s)
- Megan E. Grund
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
| | - Soo J. Choi
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
| | - Dudley H. McNitt
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
| | - Mariette Barbier
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
| | - Gangqing Hu
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
- Cancer Center, West Virginia University, Morgantown, WV, United States of
America
- Bioinformatics Core, West Virginia University, Morgantown, WV, United
States of America
| | - P. Rocco LaSala
- Department of Pathology, West Virginia University, Morgantown, WV, United
States of America
| | - Christopher K. Cote
- Bacteriology Division, The United States Army Medical Research Institute
of Infectious Diseases (USAMRIID), Frederick, MD, United States of
America
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council,
Naples, Italy
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of
Medicine, West Virginia University, Morgantown, WV, United States of
America
- Cancer Center, West Virginia University, Morgantown, WV, United States of
America
| |
Collapse
|
10
|
Fumero MV, Sulyok M, Ramirez ML, Leslie JF, Chulze SN. Effects of water activity and temperature on fusaric and fusarinolic acid production by Fusarium temperatum. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
11
|
Xie XG, Huang CY, Cai ZD, Chen Y, Dai CC. Targeted Acquisition of Fusarium oxysporum f. sp. niveum Toxin-Deficient Mutant and Its Effects on Watermelon Fusarium Wilt. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:8536-8547. [PMID: 31310520 DOI: 10.1021/acs.jafc.9b02172] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Watermelon Fusarium wilt is a common soil-borne disease that has significantly affected its yield. In this study, fusaric acid-deficient mutant designated as ΔFUBT (mutated from Fusarium oxysporum f. sp. niveum, FON) was obtained. The ΔFUBT mutant showed significant decrease in fusaric acid production but maintained wild-type characteristics, such as in vitro colony morphology, size, and conidiation. A field pot experiment demonstrated that ΔFUBT could successfully colonize the rhizosphere and the roots of watermelon, leading to significant reduction in FON colonization in the watermelon plant. In addition, ΔFUBT inoculation significantly improved the rhizosphere microenvironment and effectively increased the resistance in watermelon. This study demonstrated that a nonpathogenic Fusarium mutant (ΔFUBT) could be developed as an effective microbial control agent to alleviate Fusarium wilt disease in watermelon and increase its yield.
Collapse
Affiliation(s)
- Xing-Guang Xie
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences , Nanjing Normal University , Nanjing , Jiangsu Province 210023 , China
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences , Chinese Academy of Sciences , Shanghai 200032 , China
| | - Chun-Yan Huang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences , Nanjing Normal University , Nanjing , Jiangsu Province 210023 , China
| | - Zhen-Dong Cai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences , Nanjing Normal University , Nanjing , Jiangsu Province 210023 , China
- Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang Province , Ningbo University , Ningbo , Zhejiang Province 315211 , China
| | - Yan Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science , Chinese Academy of Sciences , Nanjing , Jiangsu Province 210008 , China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences , Nanjing Normal University , Nanjing , Jiangsu Province 210023 , China
| |
Collapse
|
12
|
Yan Y, Yuan Q, Tang J, Huang J, Hsiang T, Wei Y, Zheng L. Colletotrichum higginsianum as a Model for Understanding Host⁻Pathogen Interactions: A Review. Int J Mol Sci 2018; 19:E2142. [PMID: 30041456 PMCID: PMC6073530 DOI: 10.3390/ijms19072142] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 07/18/2018] [Accepted: 07/18/2018] [Indexed: 11/16/2022] Open
Abstract
Colletotrichum higginsianum is a hemibiotrophic ascomycetous fungus that causes economically important anthracnose diseases on numerous monocot and dicot crops worldwide. As a model pathosystem, the Colletotrichum⁻Arabidopsis interaction has the significant advantage that both organisms can be manipulated genetically. The goal of this review is to provide an overview of the system and to point out recent significant studies that update our understanding of the pathogenesis of C. higginsianum and resistance mechanisms of Arabidopsis against this hemibiotrophic fungus. The genome sequence of C. higginsianum has provided insights into how genome structure and pathogen genetic variability has been shaped by transposable elements, and allows systematic approaches to longstanding areas of investigation, including infection structure differentiation and fungal⁻plant interactions. The Arabidopsis-Colletotrichum pathosystem provides an integrated system, with extensive information on the host plant and availability of genomes for both partners, to illustrate many of the important concepts governing fungal⁻plant interactions, and to serve as an excellent starting point for broad perspectives into issues in plant pathology.
Collapse
Affiliation(s)
- Yaqin Yan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Qinfeng Yuan
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Jintian Tang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Junbin Huang
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Yangdou Wei
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada.
| | - Lu Zheng
- The Key Lab of Plant Pathology of Hubei Province, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
13
|
López-Díaz C, Rahjoo V, Sulyok M, Ghionna V, Martín-Vicente A, Capilla J, Di Pietro A, López-Berges MS. Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. MOLECULAR PLANT PATHOLOGY 2018; 19:440-453. [PMID: 28093838 PMCID: PMC6638071 DOI: 10.1111/mpp.12536] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/30/2016] [Accepted: 01/10/2017] [Indexed: 05/03/2023]
Abstract
Fusaric acid (FA) is amongst the oldest identified secondary metabolites produced by Fusarium species, known for a long time to display strong phytotoxicity and moderate toxicity to animal cells; however, the cellular targets of FA and its function in fungal pathogenicity remain unknown. Here, we investigated the role of FA in Fusarium oxysporum, a soil-borne cross-kingdom pathogen that causes vascular wilt on more than 100 plant species and opportunistic infections in humans. Targeted deletion of fub1, encoding a predicted orthologue of the polyketide synthase involved in FA biosynthesis in F. verticillioides and F. fujikuroi, abolished the production of FA and its derivatives in F. oxysporum. We further showed that the expression of fub1 was positively controlled by the master regulator of secondary metabolism LaeA and the alkaline pH regulator PacC through the modulation of chromatin accessibility at the fub1 locus. FA exhibited strong phytotoxicity on tomato plants, which was rescued by the exogenous supply of copper, iron or zinc, suggesting a possible function of FA as a chelating agent of these metal ions. Importantly, the severity of vascular wilt symptoms on tomato plants and the mortality of immunosuppressed mice were significantly reduced in fub1Δ mutants and fully restored in the complemented strains. Collectively, these results provide new insights into the regulation and mode of action of FA, as well as on the function of this phytotoxin during the infection process of F. oxysporum.
Collapse
Affiliation(s)
- Cristina López-Díaz
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, Campus de Excelencia Agroalimentario (ceiA3), Córdoba, E-14071, Spain
| | - Vahid Rahjoo
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, Campus de Excelencia Agroalimentario (ceiA3), Córdoba, E-14071, Spain
| | - Michael Sulyok
- Department for Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad Lorenz Str. 20, Tulln, 3430, Austria
| | - Veronica Ghionna
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, Campus de Excelencia Agroalimentario (ceiA3), Córdoba, E-14071, Spain
| | - Adela Martín-Vicente
- Mycology Unit, Medical School, Universitat Rovira i Virgili, IISPV, Reus, 43204, Spain
| | - Javier Capilla
- Mycology Unit, Medical School, Universitat Rovira i Virgili, IISPV, Reus, 43204, Spain
| | - Antonio Di Pietro
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, Campus de Excelencia Agroalimentario (ceiA3), Córdoba, E-14071, Spain
| | - Manuel S López-Berges
- Departamento de Genética, Facultad de Ciencias, Universidad de Córdoba, Campus de Excelencia Agroalimentario (ceiA3), Córdoba, E-14071, Spain
| |
Collapse
|
14
|
Crutcher FK, Puckhaber LS, Stipanovic RD, Bell AA, Nichols RL, Lawrence KS, Liu J. Microbial Resistance Mechanisms to the Antibiotic and Phytotoxin Fusaric Acid. J Chem Ecol 2017; 43:996-1006. [PMID: 28986689 DOI: 10.1007/s10886-017-0889-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 09/20/2017] [Accepted: 09/25/2017] [Indexed: 12/21/2022]
Abstract
Fusaric acid (FA) produced by Fusarium oxysporum plays an important role in disease development in plants, including cotton. This non-specific toxin also has antibiotic effects on microorganisms. Thus, one expects a potential pool of diverse detoxification mechanisms of FA in nature. Bacteria and fungi from soils infested with Fusarium and from laboratory sources were evaluated for their ability to grow in the presence of FA and to alter the structure of FA into less toxic compounds. None of the bacterial strains were able to chemically modify FA. Highly FA-resistant strains were found only in Gram-negative bacteria, mainly in the genus of Pseudomonas. The FA resistance of the Gram-negative bacteria was positively correlated with the number of predicted genes for FA efflux pumps present in the genome. Phylogenetic analysis of predicted FA resistance proteins (FUSC, an inner membrane transporter component of the efflux pump) revealed that FUSC proteins having high sequence identities with the functionally characterized FA resistance protein FusC or Fdt might be the major contributors of FA resistance. In contrast, most fungi converted FA to less toxic compounds regardless of the level of FA resistance they exhibited. Five derivatives were detected, and the detoxification of FA involved either oxidative reactions on the butyl side chain or reductive reactions on the carboxylic acid group. The production of these metabolites from widely different phyla indicates that resistance to FA by altering its structure is highly conserved. A few FA resistant saprophytic or biocontrol strains of fungi were incapable of altering FA, indicating a possible involvement of efflux transporters. Deployment of both efflux and derivatization mechanisms may be a common feature of fungal FA resistance.
Collapse
Affiliation(s)
- Frankie K Crutcher
- USDA-ARS, Southern Plains Agricultural Research Center, 2765 F&B Road, College Station, TX, 77845, USA.,Eastern Agricultural Research Center, Montana State University, 1501 N Central Ave, Sidney, MT, 59270, USA
| | - Lorraine S Puckhaber
- USDA-ARS, Southern Plains Agricultural Research Center, 2765 F&B Road, College Station, TX, 77845, USA
| | - Robert D Stipanovic
- USDA-ARS, Southern Plains Agricultural Research Center, 2765 F&B Road, College Station, TX, 77845, USA
| | - Alois A Bell
- USDA-ARS, Southern Plains Agricultural Research Center, 2765 F&B Road, College Station, TX, 77845, USA
| | | | - Katheryn S Lawrence
- Department of Entomology and Plant Pathology, Auburn University, 209 Rouse Life Science Building, Auburn, AL, 36849, USA
| | - Jinggao Liu
- USDA-ARS, Southern Plains Agricultural Research Center, 2765 F&B Road, College Station, TX, 77845, USA.
| |
Collapse
|
15
|
Deng H, Gao R, Liao X, Cai Y. Characterization of a major facilitator superfamily transporter in Shiraia bambusicola. Res Microbiol 2017; 168:664-672. [DOI: 10.1016/j.resmic.2017.05.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/03/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
|
16
|
Gold SE, Paz Z, García-Pedrajas MD, Glenn AE. Rapid Deletion Production in Fungi via Agrobacterium Mediated Transformation of OSCAR Deletion Constructs. J Vis Exp 2017. [PMID: 28654073 DOI: 10.3791/55239] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Precise deletion of gene(s) of interest, while leaving the rest of the genome unchanged, provides the ideal product to determine that particular gene's function in the living organism. In this protocol the OSCAR method of precise and rapid deletion plasmid construction is described. OSCAR relies on the cloning system in which a single recombinase reaction is carried out containing the purified PCR-amplified 5' and 3' flanks of the gene of interest and two plasmids, pA-Hyg OSCAR (the marker vector) and pOSCAR (the assembly vector). Confirmation of the correctly assembled deletion vector is carried out by restriction digestion mapping followed by sequencing. Agrobacterium tumefaciens is then used to mediate introduction of the deletion construct into fungal spores (referred to as ATMT). Finally, a PCR assay is described to determine if the deletion construct integrated by homologous or non-homologous recombination, indicating gene deletion or ectopic integration, respectively. This approach has been successfully used for deletion of numerous genes in Verticillium dahliae and in Fusarium verticillioides among other species.
Collapse
Affiliation(s)
- Scott E Gold
- Toxicology and Mycotoxin Research Unit, NPRC, USDA-ARS;
| | | | - María D García-Pedrajas
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" - Universidad de Málaga - Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Estación Experimental "La Mayora"
| | | |
Collapse
|
17
|
Janevska S, Arndt B, Niehaus EM, Burkhardt I, Rösler SM, Brock NL, Humpf HU, Dickschat JS, Tudzynski B. Gibepyrone Biosynthesis in the Rice Pathogen Fusarium fujikuroi Is Facilitated by a Small Polyketide Synthase Gene Cluster. J Biol Chem 2016; 291:27403-27420. [PMID: 27856636 PMCID: PMC5207165 DOI: 10.1074/jbc.m116.753053] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 11/14/2016] [Indexed: 11/06/2022] Open
Abstract
The 2H-pyran-2-one gibepyrone A and its oxidized derivatives gibepyrones B-F have been isolated from the rice pathogenic fungus Fusarium fujikuroi already more than 20 years ago. However, these products have not been linked to the respective biosynthetic genes, and therefore, their biosynthesis has not yet been analyzed on a molecular level. Feeding experiments with isotopically labeled precursors clearly supported a polyketide origin for the formal monoterpenoid gibepyrone A, whereas the terpenoid pathway could be excluded. Targeted gene deletion verified that the F. fujikuroi polyketide synthase PKS13, designated Gpy1, is responsible for gibepyrone A biosynthesis. Next to Gpy1, the ATP-binding cassette transporter Gpy2 is encoded by the gibepyrone gene cluster. Gpy2 was shown to have only a minor impact on the actual efflux of gibepyrone A out of the cell. Instead, we obtained evidence that Gpy2 is involved in gene regulation as it represses GPY1 gene expression. Thus, GPY1 was up-regulated and gibepyrone A production was enhanced both extra- and intracellularly in Δgpy2 mutants. Furthermore, expression of GPY genes is strictly repressed by members of the fungus-specific velvet complex, Vel1, Vel2, and Lae1, whereas Sge1, a major regulator of secondary metabolism in F. fujikuroi, affects gibepyrone biosynthesis in a positive manner. The gibepyrone A derivatives gibepyrones B and D were shown to be produced by cluster-independent P450 monooxygenases, probably to protect the fungus from the toxic product. In contrast, the formation of gibepyrones E and F from gibepyrone A is a spontaneous process and independent of enzymatic activity.
Collapse
Affiliation(s)
- Slavica Janevska
- From the Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster
| | - Birgit Arndt
- the Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, D-48149 Münster, and
| | - Eva-Maria Niehaus
- From the Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster
| | - Immo Burkhardt
- the Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | - Sarah M Rösler
- From the Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster
- the Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, D-48149 Münster, and
| | - Nelson L Brock
- the Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | - Hans-Ulrich Humpf
- the Institut für Lebensmittelchemie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 45, D-48149 Münster, and
| | - Jeroen S Dickschat
- the Kekulé-Institut für Organische Chemie und Biochemie, Rheinische Friedrich Wilhelms-Universität Bonn, Gerhard-Domagk-Strasse 1, D-53121 Bonn, Germany
| | - Bettina Tudzynski
- From the Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 8, D-48143 Münster,
| |
Collapse
|
18
|
Dai Y, Cao Z, Huang L, Liu S, Shen Z, Wang Y, Wang H, Zhang H, Li D, Song F. CCR4-Not Complex Subunit Not2 Plays Critical Roles in Vegetative Growth, Conidiation and Virulence in Watermelon Fusarium Wilt Pathogen Fusarium oxysporum f. sp. niveum. Front Microbiol 2016; 7:1449. [PMID: 27695445 PMCID: PMC5025516 DOI: 10.3389/fmicb.2016.01449] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 08/30/2016] [Indexed: 11/24/2022] Open
Abstract
CCR4-Not complex is a multifunctional regulator that plays important roles in multiple cellular processes in eukaryotes. In the present study, the biological function of FonNot2, a core subunit of the CCR4-Not complex, was explored in Fusarium oxysporum f. sp. niveum (Fon), the causal agent of watermelon wilt disease. FonNot2 was expressed at higher levels in conidia and germinating conidia and during infection in Fon-inoculated watermelon roots than in mycelia. Targeted disruption of FonNot2 resulted in retarded vegetative growth, reduced conidia production, abnormal conidial morphology, and reduced virulence on watermelon. Scanning electron microscopy observation of infection behaviors and qRT-PCR analysis of in planta fungal growth revealed that the ΔFonNot2 mutant was defective in the ability to penetrate watermelon roots and showed reduced fungal biomass in root and stem of the inoculated plants. Phenotypic and biochemical analyses indicated that the ΔFonNot2 mutant displayed hypersensitivity to cell wall perturbing agents (e.g., Congo Red and Calcofluor White) and oxidative stress (e.g., H2O2 and paraquat), decreased fusaric acid content, and reduced reactive oxygen species (ROS) production during spore germination. Our data demonstrate that FonNot2 plays critical roles in regulating vegetable growth, conidiogenesis and conidia morphology, and virulence on watermelon via modulating cell wall integrity, oxidative stress response, ROS production and FA biosynthesis through the regulation of transcription of genes involved in multiple pathways.
Collapse
Affiliation(s)
- Yi Dai
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Zhongye Cao
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Lihong Huang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Shixia Liu
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Zhihui Shen
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Yuyan Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Hui Wang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Huijuan Zhang
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Dayong Li
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| | - Fengming Song
- State Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University Hangzhou, China
| |
Collapse
|
19
|
Bohni N, Hofstetter V, Gindro K, Buyck B, Schumpp O, Bertrand S, Monod M, Wolfender JL. Production of Fusaric Acid by Fusarium spp. in Pure Culture and in Solid Medium Co-Cultures. Molecules 2016; 21:370. [PMID: 26999098 PMCID: PMC6274276 DOI: 10.3390/molecules21030370] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 01/10/2016] [Accepted: 01/25/2016] [Indexed: 01/13/2023] Open
Abstract
The ability of fungi isolated from nails of patients suffering from onychomycosis to induce de novo production of bioactive compounds in co-culture was examined. Comparison between the metabolite profiles produced by Sarocladium strictum, by Fusarium oxysporum, and by these two species in co-culture revealed de novo induction of fusaric acid based on HRMS. Structure confirmation of this toxin, using sensitive microflow NMR, required only three 9-cm Petri dishes of fungal culture. A targeted metabolomics study based on UHPLC-HRMS confirmed that the production of fusaric acid was strain-dependent. Furthermore, the detected toxin levels suggested that onychomycosis-associated fungal strains of the F. oxysporum and F. fujikuroi species complexes are much more frequently producing fusaric acid, and in higher amount, than strains of the F. solani species complex. Fusarium strains producing no significant amounts of this compound in pure culture, were shown to de novo produce that compound when grown in co-culture. The role of fusaric acid in fungal virulence and defense is discussed.
Collapse
Affiliation(s)
- Nadine Bohni
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| | - Valérie Hofstetter
- Mycology and Biotechnology Group, Institute for Plant Production Sciences IPS, Agroscope, Route de Duillier 50, P. O. Box 1012, CH-1260 Nyon, Switzerland.
| | - Katia Gindro
- Mycology and Biotechnology Group, Institute for Plant Production Sciences IPS, Agroscope, Route de Duillier 50, P. O. Box 1012, CH-1260 Nyon, Switzerland.
| | - Bart Buyck
- Muséum National d'Histoire Naturelle, Département Systématique et Évolution, CP 39, ISYEB, UMR 7205 CNRS MNHN UPMC EPHE, 12 rue Buffon, F-75005 Paris, France.
| | - Olivier Schumpp
- Mycology and Biotechnology Group, Institute for Plant Production Sciences IPS, Agroscope, Route de Duillier 50, P. O. Box 1012, CH-1260 Nyon, Switzerland.
| | - Samuel Bertrand
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| | - Michel Monod
- Department of Dermatology and Venereology, Laboratory of Mycology, Centre Hospitalier Universitaire Vaudois, CH-1011 Lausanne, Switzerland.
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, EPGL, University of Geneva, University of Lausanne, Quai Ernest-Ansermet 30, CH-1211 Geneva 4, Switzerland.
| |
Collapse
|
20
|
Studt L, Janevska S, Niehaus EM, Burkhardt I, Arndt B, Sieber CMK, Humpf HU, Dickschat JS, Tudzynski B. Two separate key enzymes and two pathway-specific transcription factors are involved in fusaric acid biosynthesis in Fusarium fujikuroi. Environ Microbiol 2016; 18:936-56. [PMID: 26662839 DOI: 10.1111/1462-2920.13150] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 11/18/2015] [Accepted: 11/23/2015] [Indexed: 01/03/2023]
Abstract
Fusaric acid (FSA) is a mycotoxin produced by several fusaria, including the rice pathogen Fusarium fujikuroi. Genes involved in FSA biosynthesis were previously identified as a cluster containing a polyketide synthase (PKS)-encoding (FUB1) and four additional genes (FUB2-FUB5). However, the biosynthetic steps leading to FSA as well as the origin of the nitrogen atom, which is incorporated into the polyketide backbone, remained unknown. In this study, seven additional cluster genes (FUB6-FUB12) were identified via manipulation of the global regulator FfSge1. The extended FUB gene cluster encodes two Zn(II)2 Cys6 transcription factors: Fub10 positively regulates expression of all FUB genes, whereas Fub12 is involved in the formation of the two FSA derivatives, i.e. dehydrofusaric acid and fusarinolic acid, serving as a detoxification mechanism. The major facilitator superfamily transporter Fub11 functions in the export of FSA out of the cell and is essential when FSA levels become critical. Next to Fub1, a second key enzyme was identified, the non-canonical non-ribosomal peptide synthetase Fub8. Chemical analyses of generated mutant strains allowed for the identification of a triketide as PKS product and the proposition of an FSA biosynthetic pathway, thereby unravelling the unique formation of a hybrid metabolite consisting of this triketide and an amino acid moiety.
Collapse
Affiliation(s)
- Lena Studt
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University, Schlossplatz 8, 48143, Münster, Germany
| | - Slavica Janevska
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University, Schlossplatz 8, 48143, Münster, Germany
| | - Eva-Maria Niehaus
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University, Schlossplatz 8, 48143, Münster, Germany
| | - Immo Burkhardt
- Kekulé Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53121, Bonn, Germany
| | - Birgit Arndt
- Institute of Food Chemistry, Westfälische Wilhelms-University, Corrensstr. 45, 48149, Münster, Germany
| | - Christian M K Sieber
- Lawrence Berkeley National Lab, DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, Westfälische Wilhelms-University, Corrensstr. 45, 48149, Münster, Germany
| | - Jeroen S Dickschat
- Kekulé Institute for Organic Chemistry and Biochemistry, Rheinische Friedrich-Wilhelms-University Bonn, 53121, Bonn, Germany
| | - Bettina Tudzynski
- Institute of Plant Biology and Biotechnology, Westfälische Wilhelms-University, Schlossplatz 8, 48143, Münster, Germany
| |
Collapse
|