1
|
Guta M, Abebe G, Bacha K, Cools P. Screening and characterization of thermostable enzyme-producing bacteria from selected hot springs of Ethiopia. Microbiol Spectr 2024; 12:e0371023. [PMID: 38294247 PMCID: PMC10913744 DOI: 10.1128/spectrum.03710-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/27/2023] [Indexed: 02/01/2024] Open
Abstract
Hot springs are potential sources of diverse arrays of microbes and their thermostable hydrolytic enzymes. Water and sediment samples were collected from three hot springs of Ethiopia and enriched on nutrient and thermus agar media to isolate pure cultures of potential microbes. A total of 252 bacterial isolates were screened and evaluated for the production of amylase, protease, cellulase, and lipase. About 95.23%, 84.12%, 76.58%, and 65.07% of the isolates displayed promising amylase, proteases, cellulase, and lipase activities, respectively. Based on the diameter of the clear zone formed, 45 isolates were further screened and identified to species level using matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry analysis and 16S rRNA gene sequencing. Five of the 45 isolates showed significantly high (P < 0.05) clear zone ratios as compared to others. The identified isolates were categorized under five bacterial species, namely, Bacillus licheniformis, Bacillus cereus, Paenibacillus thiaminolyticus, Paenibacillus dendritiformis, and Brevibacillus borstelensis. The most dominant species (66.7%) was B. licheniformis. It could be concluded that hot springs of Ethiopia are potential sources of thermostable extracellular hydrolytic enzymes for various industrial applications. Further optimization of the growth conditions and evaluation for better productivity of the desired products is recommended before attempting for large-scale production of the hydrolytic enzymes. IMPORTANCE Thermostable microbial enzymes play an important role in industries due to their stability under harsh environmental conditions, including extreme temperatures. Despite their huge application in different industries, however, the thermostable enzymes of thermophilic microorganism origin have not yet been fully explored in Ethiopia. Here, we explored thermophilic bacteria and their enzymes from selected hot spring water and sediment samples. Accordingly, thermophilic bacteria were isolated and screened for the production of extracellular hydrolytic enzymes. Promising numbers of isolates were found as producers of the enzymes. The potent enzyme producers were further identified using matrix-assisted laser desorption/ionization time-of-flight-mass spectrometry analysis and 16S rRNA gene sequencing. The findings revealed the presence of potential hydrolytic enzyme-producing thermophilic bacteria in hot springs of Ethiopia and necessitate further comprehensive study involving other extreme environments. Our findings also revealed the potential of Ethiopian hot springs in the production of thermostable enzymes of significant application in different industries, including food industries.
Collapse
Affiliation(s)
- Meseret Guta
- Department of Biology, Jimma University, Jimma, Ethiopia
| | - Genet Abebe
- Department of Biology, Jimma University, Jimma, Ethiopia
| | - Ketema Bacha
- Department of Biology, Jimma University, Jimma, Ethiopia
| | - Piet Cools
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
2
|
Sharif S, Shah AH, Fariq A, Jannat S, Rasheed S, Yasmin A. Optimization of amylase production using response surface methodology from newly isolated thermophilic bacteria. Heliyon 2023; 9:e12901. [PMID: 36747954 PMCID: PMC9898621 DOI: 10.1016/j.heliyon.2023.e12901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 01/20/2023] Open
Abstract
Present study was aimed at screening and characterizing thermostable amylase-producing bacteria from water and sediment samples of unexplored hot spring of Tatta Pani Kotli Azad Kashmir. Four thermophilic isolates were characterized on morphological, biochemical, physiological basis and were authenticated by molecular analysis. By 16S rDNA sequencing, isolates were identified as Anoxybacillus mongoliensis (MBT001), Anoxybacillus flavithermus (MBT002), Bacillus (MBT004). Among all identified strains, MBT003 showed maximum homology with both Anoxybacillus mongoliensis and Anoxybacillus flavithermus. Amylase activity was analyzed qualitatively in starch agar and quantitatively by DNS method. The optimal enzyme production was observed and authenticated by Response Surface Methodology at 7 pH, 70 °C, 1.25% substrate concentration, 300 μL of inocula volume after 48 h of incubation. Optimum amylase activity (4.4 U/mL) and stability (3.3 U/mL) was observed with 1.5% soluble starch at 70 °C. Maximum activity (3.7 U/mL) and stability (1.5 U/mL) was found at pH 8. Enzyme activity was increased in the presence of MgSO4 and CaCl2. Amylase was stable with surfactants and commercial detergents for 30 min. Supplementation of the enzyme with commercial detergent improved the washing ability of the detergent. This investigation has revealed that these thermostable bacteria are excellent source of amylase which can be used commercially for generating economic activity on sustainable basis.
Collapse
Affiliation(s)
- Sobia Sharif
- Biotechnology Research Lab, Department of Biotechnology, University of Kotli, Azad Jammu and Kashmir, Pakistan
| | - Asad Hussain Shah
- Biotechnology Research Lab, Department of Biotechnology, University of Kotli, Azad Jammu and Kashmir, Pakistan
- School of Life Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Michal Smith Building, Oxford Road Manchester, UK
- Department of Biotechnology, University of Kotli, Azad Jammu and Kashmir, Pakistan
| | - Anila Fariq
- Biotechnology Research Lab, Department of Biotechnology, University of Kotli, Azad Jammu and Kashmir, Pakistan
| | - Sammyia Jannat
- Biotechnology Research Lab, Department of Biotechnology, University of Kotli, Azad Jammu and Kashmir, Pakistan
| | - Sajida Rasheed
- Biotechnology Research Lab, Department of Biotechnology, University of Kotli, Azad Jammu and Kashmir, Pakistan
| | - Azra Yasmin
- Biotechnology Research Lab, Department of Biotechnology, University of Kotli, Azad Jammu and Kashmir, Pakistan
- Department of Biotechnology, Fatima Jinnah Women University, Rawalpindi, Pakistan
| |
Collapse
|
3
|
Wang Z, Zhang B, He C, Shi J, Wu M, Guo J. Sulfur-based Mixotrophic Vanadium (V) Bio-reduction towards Lower Organic Requirement and Sulfate Accumulation. WATER RESEARCH 2021; 189:116655. [PMID: 33242787 DOI: 10.1016/j.watres.2020.116655] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 11/14/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Although remediation of toxic vanadium (V) [V(V)] pollution can be achieved through either heterotrophic or sulfur-based autotrophic microbial reduction, these processes would require a large amount of organic carbons or generate excessive sulfate. This study reported that by using mixotrophic V(V) bio-reduction with acetate and elemental sulfur [S(0)] as joint electron donors, V(V) removal performance was enhanced due to cooccurrence of heterotrophic and autotrophic activities. Deposited vanadium (IV) was identified as the main reduction product by scanning electron microscopy, energy-dispersive X-ray spectroscopy, X-ray diffraction and X-ray photoelectron spectroscopy. Based on 16S rRNA gene amplicon sequencing, qPCR and genus-specific reverse transcription qPCR, it was observed that V(V) was likely detoxified by heterotrophic V(V) reducers (e.g., Syntrophobacter, Spirochaeta and Geobacter). Cytochrome c, intracellular nicotinamide adenine dinucleotide and extracellular polymeric substances were involved in V(V) reduction and binding. Organic metabolites synthesized by autotrophs (e.g., Thioclava) with energy from S(0) oxidation might compensate electron donors for heterotrophic V(V) and sulfate reducers. Less sulfate was accumulated presumably due to activities of sulfur-respiring genera (e.g., Desulfurella). This study demonstrates mixotrophic microbial V(V) reduction can save organic dosage and avoid excessive sulfate accumulation, which will be beneficial to bioremediation of V(V) contamination.
Collapse
Affiliation(s)
- Zhongli Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China.
| | - Chao He
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Jiaxin Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, P. R. China
| | - Mengxiong Wu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Jianhua Guo
- Advanced Water Management Centre, The University of Queensland, St Lucia, Queensland, 4072, Australia.
| |
Collapse
|
4
|
Lv N, Zhao L, Wang R, Ning J, Pan X, Li C, Cai G, Zhu G. Novel strategy for relieving acid accumulation by enriching syntrophic associations of syntrophic fatty acid-oxidation bacteria and H 2/formate-scavenging methanogens in anaerobic digestion. BIORESOURCE TECHNOLOGY 2020; 313:123702. [PMID: 32615503 DOI: 10.1016/j.biortech.2020.123702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 05/28/2023]
Abstract
Aiming at relieving acid accumulation in anaerobic digestion (AD), syntrophic associations of syntrophic fatty acid-oxidation bacteria and H2/formate-scavenging methanogens were enriched by feeding propionate, butyrate and formate in an up-flow anaerobic sludge blanket (UASB) reactor. Results showed that methane yield increased by 50% with increasing formate concentration (0-2000 mg COD/L). In addition, the abundance and quantity of SFOB (Syntrophobacter, Smithella and Syntrophomonas) and H2/formate-scavenging methanogens (Methanobacteriales and Methanomicrobiales) were increased after microbial acclimation. The enriched syntrophic associations showed higher propionate and butyrate removal efficiencies of 98.48 ± 1.14% and 99.71 ± 0.71%, respectively. Furthermore, encoding genes of formate dehydrogenase and hydrogenases presented higher abundances after microbial enrichment, which suggested that the enhancements of interspecies formate transfer and interspecies hydrogen transfer between syntrophic associations benefited volatile fatty acids (VFAs) conversion. This research provided an effective strategy to relieve acid accumulation.
Collapse
Affiliation(s)
- Nan Lv
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lixin Zhao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agriculture Sciences, Beijing 100081, China
| | - Ruming Wang
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Ning
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Xiaofang Pan
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Guanjing Cai
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Gefu Zhu
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
5
|
Han Y, Green H, Tao W. Reversibility of propionic acid inhibition to anaerobic digestion: Inhibition kinetics and microbial mechanism. CHEMOSPHERE 2020; 255:126840. [PMID: 32387725 DOI: 10.1016/j.chemosphere.2020.126840] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/12/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic digestion is a technology that simultaneously treats waste and generates energy in the form of biogas. Unfortunately, when a high organic loading rate is applied, anaerobic digestion can suffer from volatile fatty acid accumulation that results in pH drop and decreased biogas production. In particular, propionic acid has shown to inhibit biogas production even at a very low concentration. Therefore, the kinetics of biogas production in relation to propionic acid concentration needs to be investigated. In batch experiments on anaerobic co-digestion of food waste and dairy manure in the present study, cumulative biogas production showed little inhibition by propionic acid in the concentration range of 6.5-14.6 mM, but a lag phase of 9.4, 16.3 and 60.8 d was detected in the digesters with initial propionic acid concentrations of 22.7, 36.2, and 56.4 mM, respectively. After the lag phase, these digesters accelerated to specific biogas yields of 0.59-0.70 L g-VS-1. The similar specific biogas yields across all of the digesters at initial propionic acid concentrations of 6.5-56.4 mM indicated reversibility of the inhibition. The reversibility was made possible by microbial acclimation and the shift to hydrogenotrophic methanogenesis in syntrophy with acetogenic bacteria. Evidently, an increase of hydrogenotrophic Methanobacterium and Methanoculleus abundances was found at 36.2 and 56.4 mM. Batch digestion experiments must be extended beyond the lag phase in order to fully reveal the inhibition kinetics. This paper highlights the need for a standard protocol that experimentally evaluates inhibition in anaerobic digestion.
Collapse
Affiliation(s)
- Youl Han
- Department of Environmental Resources Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA.
| | - Hyatt Green
- Department of Environmental and Forest Biology, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| | - Wendong Tao
- Department of Environmental Resources Engineering, SUNY College of Environmental Science and Forestry, Syracuse, NY, 13210, USA
| |
Collapse
|
6
|
Dynamic shifts within volatile fatty acid-degrading microbial communities indicate process imbalance in anaerobic digesters. Appl Microbiol Biotechnol 2020; 104:4563-4575. [PMID: 32219463 DOI: 10.1007/s00253-020-10552-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 03/04/2020] [Accepted: 03/15/2020] [Indexed: 10/24/2022]
Abstract
Buildup of volatile fatty acids (VFAs) in anaerobic digesters (ADs) often results in acidification and process failure. Understanding the dynamics of microbial communities involved in VFA degradation under stable and overload conditions may help optimize anaerobic digestion processes. In this study, five triplicate mesophilic completely mixed AD sets were operated at different organic loading rates (OLRs; 1-6 g chemical oxygen demand [COD] LR-1day-1), and changes in the composition and abundance of VFA-degrading microbial communities were monitored using amplicon sequencing and taxon-specific quantitative PCRs, respectively. AD sets operated at OLRs of 1-4 g COD LR-1day-1 were functionally stable throughout the operational period (120 days) whereas process instability (characterized by VFA buildup, pH decline, and decreased methane production rate) occurred in digesters operated at ≥ 5 g COD LR-1day-1. Though microbial taxa involved in propionate (Syntrophobacter and Pelotomaculum) and butyrate (Syntrophomonas) degradation were detected across all ADs, their abundance decreased with increasing OLR. The overload conditions also inhibited the proliferation of the acetoclastic methanogen, Methanosaeta, and caused a microbial community shift to acetate oxidizers (Tepidanaerobacter acetatoxydans) and hydrogenotrophic methanogens (Methanoculleus). This study's results highlight the importance of operating ADs with conditions that promote the maintenance of microbial communities involved in VFA degradation.
Collapse
|
7
|
Ozbayram EG, Kleinsteuber S, Nikolausz M. Biotechnological utilization of animal gut microbiota for valorization of lignocellulosic biomass. Appl Microbiol Biotechnol 2019; 104:489-508. [DOI: 10.1007/s00253-019-10239-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
|
8
|
Dyksma S, Gallert C. Candidatus Syntrophosphaera thermopropionivorans: a novel player in syntrophic propionate oxidation during anaerobic digestion. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:558-570. [PMID: 30985964 DOI: 10.1111/1758-2229.12759] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Propionate is an important intermediate in the anaerobic mineralization of organic matter. In methanogenic environments, its degradation relies on syntrophic associations between syntrophic propionate-oxidizing bacteria (SPOB) and Archaea. However, only 10 isolated species have been identified as SPOB so far. We report syntrophic propionate oxidation in thermophilic enrichments of Candidatus Syntrophosphaera thermopropionivorans, a novel representative of the candidate phylum Cloacimonetes. In enrichment culture, methane was produced from propionate, while Ca. S. thermopropionivorans contributed 63% to total bacterial cells. The draft genome of Ca. S. thermopropionivorans encodes genes for propionate oxidation via methymalonyl-CoA. Phylogenetically, Ca. S. thermopropionivorans affiliates with the uncultured Cloacimonadaceae W5 and is more distantly related (86.4% 16S rRNA gene identity) to Ca. Cloacimonas acidaminovorans. Although Ca. S. thermopropionivorans was enriched from a thermophilic biogas reactor, Ca. Syntrophosphaera was in particular associated with mesophilic anaerobic digestion systems. 16S rRNA gene amplicon sequencng and a novel genus-specific quantitative PCR assay consistently identified Ca. Syntrophosphaera/Cloacimonadaceae W5 in 9 of 12 tested full-scale biogas reactors thereby outnumbering other SPOB such as Pelotomaculum, Smithella and Syntrophobacter. Taken together the ubiquity and abundance of Ca. Syntrophosphaera, those SPOB might be key players for syntrophic propionate metabolism that have been overlooked before.
Collapse
Affiliation(s)
- Stefan Dyksma
- Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany
| | - Claudia Gallert
- Faculty of Technology, Microbiology - Biotechnology, University of Applied Sciences Emden/Leer, Emden, Germany
| |
Collapse
|
9
|
Lv Z, Leite AF, Harms H, Glaser K, Liebetrau J, Kleinsteuber S, Nikolausz M. Microbial community shifts in biogas reactors upon complete or partial ammonia inhibition. Appl Microbiol Biotechnol 2018; 103:519-533. [DOI: 10.1007/s00253-018-9444-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 09/17/2018] [Accepted: 10/08/2018] [Indexed: 10/28/2022]
|
10
|
Oberding LK, Gieg LM. Methanogenic Paraffin Biodegradation: Alkylsuccinate Synthase Gene Quantification and Dicarboxylic Acid Production. Appl Environ Microbiol 2018; 84:e01773-17. [PMID: 29030441 PMCID: PMC5734044 DOI: 10.1128/aem.01773-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 10/09/2017] [Indexed: 11/20/2022] Open
Abstract
Paraffinic n-alkanes (>C17) that are solid at ambient temperature comprise a large fraction of many crude oils. The comparatively low water solubility and reactivity of these long-chain alkanes can lead to their persistence in the environment following fuel spills and pose serious problems for crude oil recovery operations by clogging oil production wells. However, the degradation of waxy paraffins under the anoxic conditions characterizing contaminated groundwater environments and deep subsurface energy reservoirs is poorly understood. Here, we assessed the ability of a methanogenic culture enriched from freshwater fuel-contaminated aquifer sediments to biodegrade the model paraffin n-octacosane (C28H58). Compared with that in controls, the consumption of n-octacosane was coupled to methane production, demonstrating its biodegradation under these conditions. Smithella was postulated to be an important C28H58 degrader in the culture on the basis of its high relative abundance as determined by 16S rRNA gene sequencing. An identified assA gene (known to encode the α subunit of alkylsuccinate synthase) aligned most closely with those from other Smithella organisms. Quantitative PCR (qPCR) and reverse transcription qPCR assays for assA demonstrated significant increases in the abundance and expression of this gene in C28H58-degrading cultures compared with that in controls, suggesting n-octacosane activation by fumarate addition. A metabolite analysis revealed the presence of several long-chain α,ω-dicarboxylic acids only in the C28H58-degrading cultures, a novel observation providing clues as to how methanogenic consortia access waxy hydrocarbons. The results of this study broaden our understanding of how waxy paraffins can be biodegraded in anoxic environments with an application toward bioremediation and improved oil recovery.IMPORTANCE Understanding the methanogenic biodegradation of different classes of hydrocarbons has important applications for effective fuel-contaminated site remediation and for improved recovery from oil reservoirs. Previous studies have clearly demonstrated that short-chain alkanes (C17) that comprise many fuel mixtures. Using an enrichment culture derived from a freshwater fuel-contaminated site, we demonstrate that the model waxy alkane n-octacosane can be biodegraded under methanogenic conditions by a presumed Smithella phylotype. Compared with that of controls, we show an increased abundance and expression of the assA gene, which is known to be important for anaerobic n-alkane metabolism. Metabolite analyses revealed the presence of a range of α,ω-dicarboxylic acids found only in n-octacosane-degrading cultures, a novel finding that lends insight as to how anaerobic communities may access waxes as growth substrates in anoxic environments.
Collapse
Affiliation(s)
- Lisa K Oberding
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Lisa M Gieg
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Liu P, Conrad R. Syntrophobacteraceae-affiliated species are major propionate-degrading sulfate reducers in paddy soil. Environ Microbiol 2017; 19:1669-1686. [DOI: 10.1111/1462-2920.13698] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/09/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Pengfei Liu
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| | - Ralf Conrad
- Department of Biogeochemistry; Max Planck Institute for Terrestrial Microbiology; Marburg Germany
| |
Collapse
|
12
|
Fowler SJ, Toth CRA, Gieg LM. Community Structure in Methanogenic Enrichments Provides Insight into Syntrophic Interactions in Hydrocarbon-Impacted Environments. Front Microbiol 2016; 7:562. [PMID: 27148240 PMCID: PMC4840303 DOI: 10.3389/fmicb.2016.00562] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/04/2016] [Indexed: 11/17/2022] Open
Abstract
The methanogenic biodegradation of crude oil involves the conversion of hydrocarbons to methanogenic substrates by syntrophic bacteria and subsequent methane production by methanogens. Assessing the metabolic roles played by various microbial species in syntrophic communities remains a challenge, but such information has important implications for bioremediation and microbial enhanced energy recovery technologies. Many factors such as changing environmental conditions or substrate variations can influence the composition and biodegradation capabilities of syntrophic microbial communities in hydrocarbon-impacted environments. In this study, a methanogenic crude oil-degrading enrichment culture was successively transferred onto the single long chain fatty acids palmitate or stearate followed by their parent alkanes, hexadecane or octadecane, respectively, in order to assess the impact of different substrates on microbial community composition and retention of hydrocarbon biodegradation genes. 16S rRNA gene sequencing showed that a reduction in substrate diversity resulted in a corresponding loss of microbial diversity, but that hydrocarbon biodegradation genes (such as assA/masD encoding alkylsuccinate synthase) could be retained within a community even in the absence of hydrocarbon substrates. Despite substrate-related diversity changes, all communities were dominated by hydrogenotrophic and acetotrophic methanogens along with bacteria including Clostridium sp., members of the Deltaproteobacteria, and a number of other phyla. Microbial co-occurrence network analysis revealed a dense network of interactions amongst syntrophic bacteria and methanogens that were maintained despite changes in the substrates for methanogenesis. Our results reveal the effect of substrate diversity loss on microbial community diversity, indicate that many syntrophic interactions are stable over time despite changes in substrate pressure, and show that syntrophic interactions amongst bacteria themselves are as important as interactions between bacteria and methanogens in complex methanogenic communities.
Collapse
Affiliation(s)
- S Jane Fowler
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| | - Courtney R A Toth
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| | - Lisa M Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, Calgary AB, Canada
| |
Collapse
|
13
|
Venkiteshwaran K, Bocher B, Maki J, Zitomer D. Relating Anaerobic Digestion Microbial Community and Process Function. Microbiol Insights 2016; 8:37-44. [PMID: 27127410 PMCID: PMC4841157 DOI: 10.4137/mbi.s33593] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Revised: 01/19/2016] [Accepted: 01/25/2016] [Indexed: 01/01/2023] Open
Abstract
Anaerobic digestion (AD) involves a consortium of microorganisms that convert substrates into biogas containing methane for renewable energy. The technology has suffered from the perception of being periodically unstable due to limited understanding of the relationship between microbial community structure and function. The emphasis of this review is to describe microbial communities in digesters and quantitative and qualitative relationships between community structure and digester function. Progress has been made in the past few decades to identify key microorganisms influencing AD. Yet, more work is required to realize robust, quantitative relationships between microbial community structure and functions such as methane production rate and resilience after perturbations. Other promising areas of research for improved AD may include methods to increase/control (1) hydrolysis rate, (2) direct interspecies electron transfer to methanogens, (3) community structure-function relationships of methanogens, (4) methanogenesis via acetate oxidation, and (5) bioaugmentation to study community-activity relationships or improve engineered bioprocesses.
Collapse
Affiliation(s)
- Kaushik Venkiteshwaran
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI, USA
| | | | - James Maki
- Department of Biological Sciences, Marquette University, Milwaukee, WI, USA
| | - Daniel Zitomer
- Department of Civil, Construction and Environmental Engineering, Marquette University, Milwaukee, WI, USA
| |
Collapse
|
14
|
Schnürer A. Biogas Production: Microbiology and Technology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2016; 156:195-234. [PMID: 27432246 DOI: 10.1007/10_2016_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Biogas, containing energy-rich methane, is produced by microbial decomposition of organic material under anaerobic conditions. Under controlled conditions, this process can be used for the production of energy and a nutrient-rich residue suitable for use as a fertilising agent. The biogas can be used for production of heat, electricity or vehicle fuel. Different substrates can be used in the process and, depending on substrate character, various reactor technologies are available. The microbiological process leading to methane production is complex and involves many different types of microorganisms, often operating in close relationships because of the limited amount of energy available for growth. The microbial community structure is shaped by the incoming material, but also by operating parameters such as process temperature. Factors leading to an imbalance in the microbial community can result in process instability or even complete process failure. To ensure stable operation, different key parameters, such as levels of degradation intermediates and gas quality, are often monitored. Despite the fact that the anaerobic digestion process has long been used for industrial production of biogas, many questions need still to be resolved to achieve optimal management and gas yields and to exploit the great energy and nutrient potential available in waste material. This chapter discusses the different aspects that need to be taken into consideration to achieve optimal degradation and gas production, with particular focus on operation management and microbiology.
Collapse
Affiliation(s)
- Anna Schnürer
- Department of Microbiology, Swedish University of Agricultural Sciences, 7025, 750 07, Uppsala, Sweden.
| |
Collapse
|