1
|
Donoso-Piñol P, Briceño G, Evaristo JAM, Nogueira FCS, Schalchli H, Diez MC. Proteome Changes Induced by Iprodione Exposure in the Pesticide-Tolerant Pseudomonas sp. C9 Strain Isolated from a Biopurification System. Int J Mol Sci 2024; 25:10471. [PMID: 39408799 PMCID: PMC11476656 DOI: 10.3390/ijms251910471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Iprodione is a pesticide that belongs to the dicarboximide fungicide family. This pesticide was designed to combat various agronomical pests; however, its use has been restricted due to its environmental toxicity and risks to human health. In this study, we explored the proteomic changes in the Pseudomonas sp. C9 strain when exposed to iprodione, to gain insights into the affected metabolic pathways and enzymes involved in iprodione tolerance and biodegradation processes. As a result, we identified 1472 differentially expressed proteins in response to iprodione exposure, with 978 proteins showing significant variations. We observed that the C9 strain upregulated the expression of efflux pumps, enhancing its tolerance to iprodione and other harmful compounds. Peptidoglycan-binding proteins LysM, glutamine amidotransferase, and protein Ddl were similarly upregulated, indicating their potential role in altering and preserving bacterial cell wall structure, thereby enhancing tolerance. We also observed the presence of hydrolases and amidohydrolases, essential enzymes for iprodione biodegradation. Furthermore, the exclusive identification of ABC transporters and multidrug efflux complexes among proteins present only during iprodione exposure suggests potential counteraction against the inhibitory effects of iprodione on downregulated proteins. These findings provide new insights into iprodione tolerance and biodegradation by the Pseudomonas sp. C9 strain.
Collapse
Affiliation(s)
- Pamela Donoso-Piñol
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Gabriela Briceño
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4780000, Chile
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
| | - Joseph A. M. Evaristo
- Laboratorio de Proteómica, LADETEC, Instituto de Química, Universidad Federal de Rio de Janeiro, Rio de Janeiro 22775-000, Brazil; (J.A.M.E.); (F.C.S.N.)
| | - Fábio C. S. Nogueira
- Laboratorio de Proteómica, LADETEC, Instituto de Química, Universidad Federal de Rio de Janeiro, Rio de Janeiro 22775-000, Brazil; (J.A.M.E.); (F.C.S.N.)
| | - Heidi Schalchli
- Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco 4780000, Chile
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
| | - María Cristina Diez
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Universidad de La Frontera, Temuco 4780000, Chile;
- Departamento de Ingeniería Química, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
2
|
Lin D, Wan M, Fan Y. Electron-transferring flavoprotein and its dehydrogenase contributed to growth development and virulence in Beauveria bassiana. J Invertebr Pathol 2024; 205:108141. [PMID: 38788920 DOI: 10.1016/j.jip.2024.108141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Electron-transferring flavoprotein (Etf) and its dehydrogenase (Etfdh) are integral components of the electron transport chain in mitochondria. In this study, we characterize two putative etf genes (Bbetfa and Bbetfb) and their dehydrogenase gene Bbetfdh in the entomopathogenic fungus Beauveria bassiana. Individual deletion of these genes caused a significant reduction in vegetative growth, conidiation, and delayed conidial germination. Lack of these genes also led to abnormal metabolism of fatty acid and increasing lipid body accumulation. Furthermore, the virulence of Bbetfs and Bbetfdh deletion mutants was severely impaired due to decreasing infection structure formation. Additionally, all deletion strains showed reduced ATP synthesis compared to the wild-type strain. Taken together, Bbetfa and Bbetfb, along with Bbetfdh, play principal roles in fungal vegetative growth, conidiation, conidial germination, and pathogenicity of B. bassiana due to their essential functions in fatty acid metabolism.
Collapse
Affiliation(s)
- Dongmei Lin
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
| | - Min Wan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China
| | - Yanhua Fan
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing, China.
| |
Collapse
|
3
|
Novak J, Fabrik I, Jurnecka D, Holubova J, Stanek O, Sebo P. Bordetella pertussis Acetylome is Shaped by Lysine Deacetylase Bkd1. J Proteome Res 2020; 19:3680-3696. [PMID: 32674575 DOI: 10.1021/acs.jproteome.0c00178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Post-translational modifications of proteins enable swift physiological adaptation of cells to altered growth conditions and stress. Aside from protein phosphorylation, acetylation on ε-amino groups of lysine residues (N-ε-lysine acetylation) represents another important post-translational modification of proteins. For many bacterial pathogens, including the whooping cough agent Bordetella pertussis, the role and extent of protein acetylation remain to be defined. We expressed in Escherichia coli the BP0960 and BP3063 genes encoding two putative deacetylases of B. pertussis and show that BP0960 encodes a lysine deacetylase enzyme, named Bkd1, that regulates acetylation of a range of B. pertussis proteins. Comparison of the proteome and acetylome of a Δbkd1 mutant with the proteome and acetylome of wild-type B. pertussis (PRIDE ID. PXD016384) revealed that acetylation on lysine residues may modulate activities or stabilities of proteins involved in bacterial metabolism and histone-like proteins. However, increased acetylation of the BvgA response regulator protein of the B. pertussis master virulence-regulating BvgAS two-component system affected neither the total levels of produced BvgA nor its phosphorylation status. Indeed, the Δbkd1 mutant was not impaired in the production of key virulence factors and its survival within human macrophages in vitro was not affected. The Δbkd1 mutant exhibited an increased growth rate under carbon source-limiting conditions and its virulence in the in vivo mouse lung infection model was somewhat affected. These results indicate that the lysine deacetylase Bkd1 and N-ε-lysine acetylation primarily modulate the general metabolism rather than the virulence of B. pertussis.
Collapse
Affiliation(s)
- Jakub Novak
- Institute of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic.,Faculty of Science, Charles University, Prague 11636, Czech Republic
| | - Ivo Fabrik
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove 50005, Czech Republic
| | - David Jurnecka
- Institute of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic.,Faculty of Science, Charles University, Prague 11636, Czech Republic
| | - Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| |
Collapse
|
4
|
Gislason AS, Turner K, Domaratzki M, Cardona ST. Comparative analysis of the Burkholderia cenocepacia K56-2 essential genome reveals cell envelope functions that are uniquely required for survival in species of the genus Burkholderia. Microb Genom 2019; 3. [PMID: 29208119 PMCID: PMC5729917 DOI: 10.1099/mgen.0.000140] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Burkholderia cenocepacia K56-2 belongs to the Burkholderia cepacia complex, a group of Gram-negative opportunistic pathogens that have large and dynamic genomes. In this work, we identified the essential genome of B. cenocepacia K56-2 using high-density transposon mutagenesis and insertion site sequencing (Tn-seq circle). We constructed a library of one million transposon mutants and identified the transposon insertions at an average of one insertion per 27 bp. The probability of gene essentiality was determined by comparing of the insertion density per gene with the variance of neutral datasets generated by Monte Carlo simulations. Five hundred and eight genes were not significantly disrupted, suggesting that these genes are essential for survival in rich, undefined medium. Comparison of the B. cenocepacia K56-2 essential genome with that of the closely related B. cenocepacia J2315 revealed partial overlapping, suggesting that some essential genes are strain-specific. Furthermore, 158 essential genes were conserved in B. cenocepacia and two species belonging to the Burkholderia pseudomallei complex, B. pseudomallei K96243 and Burkholderia thailandensis E264. Porins, including OpcC, a lysophospholipid transporter, LplT, and a protein involved in the modification of lipid A with aminoarabinose were found to be essential in Burkholderia genomes but not in other bacterial essential genomes identified so far. Our results highlight the existence of cell envelope processes that are uniquely essential in species of the genus Burkholderia for which the essential genomes have been identified by Tn-seq.
Collapse
Affiliation(s)
- April S Gislason
- 1Department of Microbiology, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Keith Turner
- 2Monsanto Company, 700 Chesterfield Parkway W, Chesterfield, MO, 63017, USA
| | - Mike Domaratzki
- 3Department of Computer Science, University of Manitoba, Winnipeg, R3T 2N2, Canada
| | - Silvia T Cardona
- 4Department of Medical Microbiology & Infectious Diseases, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| |
Collapse
|
5
|
Stietz MS, Lopez C, Osifo O, Tolmasky ME, Cardona ST. Evaluation of the electron transfer flavoprotein as an antibacterial target in Burkholderia cenocepacia. Can J Microbiol 2017; 63:857-863. [PMID: 28817787 DOI: 10.1139/cjm-2017-0350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There are hundreds of essential genes in multidrug-resistant bacterial genomes, but only a few of their products are exploited as antibacterial targets. An example is the electron transfer flavoprotein (ETF), which is required for growth and viability in Burkholderia cenocepacia. Here, we evaluated ETF as an antibiotic target for Burkholderia cepacia complex (Bcc). Depletion of the bacterial ETF during infection of Caenorhabditis elegans significantly extended survival of the nematodes, proving that ETF is essential for survival of B. cenocepacia in this host model. In spite of the arrest in respiration in ETF mutants, the inhibition of etf expression did not increase the formation of persister cells, when treated with high doses of ciprofloxacin or meropenem. To test if etf translation could be inhibited by RNA interference, antisense oligonucleotides that target the etfBA operon were synthesized. One antisense oligonucleotide was effective in inhibiting etfB translation in vitro but not in vivo, highlighting the challenge of reduced membrane permeability for the design of drugs against B. cenocepacia. This work contributes to the validation of ETF of B. cenocepacia as a target for antibacterial therapy and demonstrates the utility of a C. elegans liquid killing assay to validate gene essentiality in an in vivo infection model.
Collapse
Affiliation(s)
- Maria S Stietz
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Christina Lopez
- b Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA 92831-3599, USA
| | - Osasumwen Osifo
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Marcelo E Tolmasky
- b Department of Biological Science, Center for Applied Biotechnology Studies, California State University Fullerton, Fullerton, CA 92831-3599, USA
| | - Silvia T Cardona
- a Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.,c Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| |
Collapse
|