1
|
Dagher SF, Vaishnav A, Stanley CB, Meilleur F, Edwards BFP, Bruno-Bárcena JM. Structural analysis and functional evaluation of the disordered ß-hexosyltransferase region from Hamamotoa (Sporobolomyces) singularis. Front Bioeng Biotechnol 2023; 11:1291245. [PMID: 38162180 PMCID: PMC10755861 DOI: 10.3389/fbioe.2023.1291245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024] Open
Abstract
Hamamotoa (Sporobolomyces) singularis codes for an industrially important membrane bound ß-hexosyltransferase (BHT), (BglA, UniprotKB: Q564N5) that has applications in the production of natural fibers such as galacto-oligosaccharides (GOS) and natural sugars found in human milk. When heterologously expressed by Komagataella phaffii GS115, BHT is found both membrane bound and soluble secreted into the culture medium. In silico structural predictions and crystal structures support a glycosylated homodimeric enzyme and the presence of an intrinsically disordered region (IDR) with membrane binding potential within its novel N-terminal region (1-110 amino acids). Additional in silico analysis showed that the IDR may not be essential for stable homodimerization. Thus, we performed progressive deletion analyses targeting segments within the suspected disordered region, to determine the N-terminal disorder region's impact on the ratio of membrane-bound to secreted soluble enzyme and its contribution to enzyme activity. The ratio of the soluble secreted to membrane-bound enzyme shifted from 40% to 53% after the disordered N-terminal region was completely removed, while the specific activity was unaffected. Furthermore, functional analysis of each glycosylation site found within the C-terminal domain revealed reduced total secreted protein activity by 58%-97% in both the presence and absence of the IDR, indicating that glycosylation at all four locations is required by the host for the secretion of active enzyme and independent of the removed disordered N-terminal region. Overall, the data provides evidence that the disordered region only partially influences the secretion and membrane localization of BHT.
Collapse
Affiliation(s)
- Suzanne F. Dagher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Asmita Vaishnav
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI, United States
| | | | - Flora Meilleur
- Neutron Sciences Directorate, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, United States
| | - Brian F. P. Edwards
- Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI, United States
| | - José M. Bruno-Bárcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
2
|
Ishikawa E, Ikeda M, Sotoya H, Anbe M, Matsumoto H, Kiwaki M, Hatano H. Molecular characterization and secreted production of basidiomycetous cell-bound β-glycosidases applicable to production of galactooligosaccharides. J Ind Microbiol Biotechnol 2021; 49:6456355. [PMID: 34878143 PMCID: PMC9142197 DOI: 10.1093/jimb/kuab087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022]
Abstract
Cell-bound β-glycosidases of basidiomycetous yeasts show promise as biocatalysts in galactooligosaccharide (GOS) production. Using degenerated primers designed from Hamamotoa singularis (Hs) bglA gene, we newly identified three genes that encode cell-bound β-glycosidase from Sirobasidium magnum (Sm), Rhodotorula minuta (Rm), and Sterigmatomyces elviae (Se). These three genes, also named bglA, encoded family 1 glycosyl hydrolases with molecular masses of 67‒77 kDa. The BglA enzymes were approximately 44% identical to the Hs-BglA enzyme and possessed a unique domain at the N-terminus comprising 110 or 210 amino acids. The Sm-, Rm-, and Se-BglA enzymes as well as the Hs-BglA enzyme were successfully produced by recombinant Aspergillus oryzae, and all enzymes were entirely secreted to the supernatants. Furthermore, addition of some nonionic detergents (e.g. 0.4% [v/v] Triton-X) increased the production, especially of the Hs- or Se-BglA enzyme. Out of the BglA enzymes, the Se-BglA enzyme showed remarkable thermostability (∼70°C). Additionally, the Sm- and Se-BglA enzymes had better GOS yields, so there was less residual lactose than in others. Accordingly, the basidiomycetous BglA enzymes produced by recombinant A. oryzae would be applicable to GOS production, and the Se-BglA enzyme appeared to be the most promising enzyme for industrial uses.
Collapse
Affiliation(s)
- Eiji Ishikawa
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Masakazu Ikeda
- Yakult Pharmaceutical Industry Co., Ltd., 5-11 Izumi, Kunitachi-shi, Tokyo, 156-8502, Japan
| | - Hidetsugu Sotoya
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Minako Anbe
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | | | - Mayumi Kiwaki
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| | - Hiroshi Hatano
- Yakult Central Institute, 5-11 Izumi, Kunitachi-shi, Tokyo, 186-8650, Japan
| |
Collapse
|
3
|
Arnold JW, Whittington HD, Dagher SF, Roach J, Azcarate-Peril MA, Bruno-Barcena JM. Safety and Modulatory Effects of Humanized Galacto-Oligosaccharides on the Gut Microbiome. Front Nutr 2021; 8:640100. [PMID: 33898497 PMCID: PMC8058378 DOI: 10.3389/fnut.2021.640100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/11/2021] [Indexed: 01/14/2023] Open
Abstract
Complex dietary carbohydrate structures including β(1-4) galacto-oligosaccharides (GOS) are resistant to digestion in the upper gastrointestinal (GI) tract and arrive intact to the colon where they benefit the host by selectively stimulating microbial growth. Studies have reported the beneficial impact of GOS (alone or in combination with other prebiotics) by serving as metabolic substrates for modulating the assembly of the infant gut microbiome while reducing GI infections. N-Acetyl-D-lactosamine (LacNAc, Galβ1,4GlcNAc) is found in breast milk as a free disaccharide. This compound is also found as a component of human milk oligosaccharides (HMOs), which have repeating and variably branched lactose and/or LacNAc units, often attached to sialic acid and fucose monosaccharides. Human glycosyl-hydrolases do not degrade most HMOs, indicating that these structures have evolved as natural prebiotics to drive the proper assembly of the infant healthy gut microbiota. Here, we sought to develop a novel enzymatic method for generating LacNAc-enriched GOS, which we refer to as humanized GOS (hGOS). We showed that the membrane-bound β-hexosyl transferase (rBHT) from Hamamotoa (Sporobolomyces) singularis was able to generate GOS and hGOS from lactose and N-Acetyl-glucosamine (GlcNAc). The enzyme catalyzed the regio-selective, repeated addition of galactose from lactose to GlcNAc forming the β-galactosyl linkage at the 4-position of the GlcNAc and at the 1-position of D-galactose generating, in addition to GOS, LacNAc, and Galactosyl-LacNAc trisaccharides which were produced by two sequential transgalactosylations. Humanized GOS is chemically distinct from HMOs, and its effects in vivo have yet to be determined. Thus, we evaluated its safety and demonstrated the prebiotic's ability to modulate the gut microbiome in 6-week-old C57BL/6J mice. Longitudinal analysis of gut microbiome composition of stool samples collected from mice fed a diet containing hGOS for 5 weeks showed a transient reduction in alpha diversity. Differences in microbiome community composition mostly within the Firmicutes phylum were observed between hGOS and GOS, compared to control-fed animals. In sum, our study demonstrated the biological synthesis of hGOS, and signaled its safety and ability to modulate the gut microbiome in vivo, promoting the growth of beneficial microorganisms, including Bifidobacterium and Akkermansia.
Collapse
Affiliation(s)
- Jason W. Arnold
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Hunter D. Whittington
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Suzanne F. Dagher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Jeffery Roach
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Information Technology Services and Research Computing, University of North Carolina, Chapel Hill, NC, United States
| | - M. Andrea Azcarate-Peril
- Division of Gastroenterology and Hepatology, Department of Medicine, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
- UNC Microbiome Core, Center for Gastrointestinal Biology and Disease, School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Jose M. Bruno-Barcena
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| |
Collapse
|
4
|
Uehara R, Iwamoto R, Aoki S, Yoshizawa T, Takano K, Matsumura H, Tanaka S. Crystal structure of a GH1 β-glucosidase from Hamamotoa singularis. Protein Sci 2020; 29:2000-2008. [PMID: 32713015 PMCID: PMC7454551 DOI: 10.1002/pro.3916] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/21/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022]
Abstract
A GH1 β-glucosidase from the fungus Hamamotoa singularis (HsBglA) has high transgalactosylation activity and efficiently converts lactose to galactooligosaccharides. Consequently, HsBglA is among the most widely used enzymes for industrial galactooligosaccharide production. Here, we present the first crystal structures of HsBglA with and without 4'-galactosyllactose, a tri-galactooligosaccharide, at 3.0 and 2.1 Å resolutions, respectively. These structures reveal details of the structural elements that define the catalytic activity and substrate binding of HsBglA, and provide a possible interpretation for its high catalytic potency for transgalactosylation reaction.
Collapse
Affiliation(s)
- Ryo Uehara
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
| | - Riki Iwamoto
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Sayaka Aoki
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Takuya Yoshizawa
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
| | - Kazufumi Takano
- Department of Biomolecular ChemistryKyoto Prefectural UniversityKyotoJapan
| | - Hiroyoshi Matsumura
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
| | - Shun‐ichi Tanaka
- Department of Biotechnology, College of Life SciencesRitsumeikan UniversityShigaJapan
- Ritsumeikan Global Innovation Research OrganizationRitsumeikan UniversityShigaJapan
- Department of Biomolecular ChemistryKyoto Prefectural UniversityKyotoJapan
| |
Collapse
|
5
|
Yuan H, Yang X, Chen P, Liu Y, Tang G, Zhao Y. Appraisal of an oligomerization behavior of unprotected carbohydrates induced by phosphorus reagent. Sci China Chem 2017. [DOI: 10.1007/s11426-017-9165-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|