1
|
Deng W, Zhou C, Qin J, Jiang Y, Li D, Tang X, Luo J, Kong J, Wang K. Molecular mechanisms of DNase inhibition of early biofilm formation Pseudomonas aeruginosa or Staphylococcus aureus: A transcriptome analysis. Biofilm 2024; 7:100174. [PMID: 38292330 PMCID: PMC10826141 DOI: 10.1016/j.bioflm.2023.100174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 11/14/2023] [Accepted: 12/18/2023] [Indexed: 02/01/2024] Open
Abstract
In vitro studies show that DNase can inhibit Pseudomonas aeruginosa and Staphylococcus aureus biofilm formation. However, the underlying molecular mechanisms remain poorly understood. This study used an RNA-sequencing transcriptomic approach to investigate the mechanism by which DNase I inhibits early P. aeruginosa and S. aureus biofilm formation on a transcriptional level, respectively. A total of 1171 differentially expressed genes (DEGs) in P. aeruginosa and 1016 DEGs in S. aureus enriched in a variety of biological processes and pathways were identified, respectively. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the DEGs were primarily involved in P. aeruginosa two-component system, biofilm formation, and flagellar assembly and in S. aureus biosynthesis of secondary metabolites, microbial metabolism in diverse environments, and biosynthesis of amino acids, respectively. The transcriptional data were validated using quantitative real-time polymerase chain reaction (RT-qPCR), and the expression profiles of 22 major genes remained consistent. These findings suggested that DNase I may inhibit early biofilm formation by downregulating the expression of P. aeruginosa genes associated with flagellar assembly and the type VI secretion system, and by downregulating S. aureus capsular polysaccharide and amino acids metabolism gene expression, respectively. This study offers insights into the mechanisms of DNase treatment-based inhibition of early P. aeruginosa and S. aureus biofilm formation.
Collapse
Affiliation(s)
- Wusheng Deng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Respiratory and Critical Care Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan, China
| | - Chuanlin Zhou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jiaoxia Qin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Yun Jiang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, China
| | - Dingbin Li
- Department of Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiujia Tang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Luo
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Jinliang Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Ke Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
2
|
Zeng Z, Gu J, Lin S, Li Q, Wang W, Guo Y. Molecular basis of the phenotypic variants arising from a Pseudoalteromonas lipolytica mutator. Microb Genom 2023; 9:001118. [PMID: 37850970 PMCID: PMC10634453 DOI: 10.1099/mgen.0.001118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/04/2023] [Indexed: 10/19/2023] Open
Abstract
Bacterial deficiencies in the DNA repair system can produce mutator strains that promote adaptive microevolution. However, the role of mutator strains in marine Pseudoalteromonas, capable of generating various gain-of-function genetic variants within biofilms, remains largely unknown. In this study, inactivation of mutS in Pseudoalteromonas lipolytica conferred an approximately 100-fold increased resistance to various antibiotics, including ciprofloxacin, rifampicin and aminoglycoside. Furthermore, the mutator of P. lipolytica generated variants that displayed enhanced biofilm formation but reduced swimming motility, indicating a high phenotypic diversity within the ΔmutS population. Additionally, we observed a significant production rate of approximately 50 % for the translucent variants, which play important roles in biofilm formation, when the ΔmutS strain was cultured on agar plates or under shaking conditions. Using whole-genome deep-sequencing combined with genetic manipulation, we demonstrated that point mutations in AT00_17115 within the capsular biosynthesis cluster were responsible for the generation of translucent variants in the ΔmutS subpopulation, while mutations in flagellar genes fliI and flgP led to a decrease in swimming motility. Collectively, this study reveals a specific mutator-driven evolution in P. lipolytica, characterized by substantial genetic and phenotypic diversification, thereby offering a reservoir of genetic attributes associated with microbial fitness.
Collapse
Affiliation(s)
- Zhenshun Zeng
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Jiayu Gu
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Qian Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou, PR China
| | - Weiquan Wang
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Yuexue Guo
- Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| |
Collapse
|
3
|
Ambreetha S, Singh V. Genetic and environmental determinants of surface adaptations in Pseudomonas aeruginosa. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 37276014 DOI: 10.1099/mic.0.001335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pseudomonas aeruginosa
is a well-studied Gram-negative opportunistic bacterium that thrives in markedly varied environments. It is a nutritionally versatile microbe that can colonize a host as well as exist in the environment. Unicellular, planktonic cells of
P. aeruginosa
can come together to perform a coordinated swarming movement or turn into a sessile, surface-adhered population called biofilm. These collective behaviours produce strikingly different outcomes. While swarming motility rapidly disseminates the bacterial population, biofilm collectively protects the population from environmental stresses such as heat, drought, toxic chemicals, grazing by predators, and attack by host immune cells and antibiotics. The ubiquitous nature of
P. aeruginosa
is likely to be supported by the timely transition between planktonic, swarming and biofilm lifestyles. The social behaviours of this bacteria viz biofilm and swarm modes are controlled by signals from quorum-sensing networks, LasI-LasR, RhlI-RhlR and PQS-MvfR, and several other sensory kinases and response regulators. A combination of environmental and genetic cues regulates the transition of the
P. aeruginosa
population to specific states. The current review is aimed at discussing key factors that promote physiologically distinct transitioning of the
P. aeruginosa
population.
Collapse
Affiliation(s)
- Sakthivel Ambreetha
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka - 560012, India
| | - Varsha Singh
- Department of Developmental Biology and Genetics, Indian Institute of Science, Bengaluru, Karnataka - 560012, India
| |
Collapse
|
4
|
Low Ciprofloxacin Concentrations Select Multidrug-Resistant Mutants Overproducing Efflux Pumps in Clinical Isolates of Pseudomonas aeruginosa. Microbiol Spectr 2022; 10:e0072322. [PMID: 36000896 PMCID: PMC9603996 DOI: 10.1128/spectrum.00723-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Low antibiotic concentrations present in natural environments are a severe and often neglected threat to public health. Even if they are present below their MICs, they may select for antibiotic-resistant pathogens. Notably, the minimal subinhibitory concentrations that select resistant bacteria, and define the respective sub-MIC selective windows, differ between antibiotics. The establishment of these selective concentrations is needed for risk-assessment studies regarding the presence of antibiotics in different habitats. Using short-term evolution experiments in a set of 12 Pseudomonas aeruginosa clinical isolates (including high-risk clones with ubiquitous distribution), we have determined that ciprofloxacin sub-MIC selective windows are strain specific and resistome dependent. Nonetheless, in all cases, clinically relevant multidrug-resistant (MDR) mutants emerged upon exposure to low ciprofloxacin concentrations, with these concentrations being below the levels reported in ciprofloxacin-polluted natural habitats where P. aeruginosa can be present. This feature expands the conditions and habitats where clinically relevant quinolone-resistant mutants can emerge. In addition, we established the lowest concentration threshold beyond which P. aeruginosa, regardless of the strain, becomes resistant to ciprofloxacin. Three days of exposure under this sub-MIC "risk concentration" led to the selection of MDR mutants that displayed resistance mechanisms usually ascribed to high selective pressures, i.e., the overproduction of the efflux pumps MexCD-OprJ and MexEF-OprN. From a One-Health viewpoint, these data stress the transcendent role of low drug concentrations, which can be encountered in natural ecosystems, in aggravating the antibiotic resistance problem, especially when it comes to pathogens of environmental origin. IMPORTANCE It has been established that antibiotic concentrations below MICs can select antibiotic-resistant pathogens, a feature of relevance for analyzing the role of nonclinical ecosystems in antibiotic resistance evolution. The range of concentrations where this selection occurs defines the sub-MIC selective window, whose width depends on the antibiotic. Herein, we have determined the ciprofloxacin sub-MIC selective windows of a set of Pseudomonas aeruginosa clinical isolates (including high-risk clones with worldwide distribution) and established the lowest concentration threshold, notably an amount reported to be present in natural ecosystems, beyond which this pathogen acquires resistance. Importantly, our results show that this ciprofloxacin sub-MIC selects for multidrug-resistant mutants overproducing clinically relevant efflux pumps. From a One-Health angle, this information supports that low antimicrobial concentrations, present in natural environments, may have a relevant role in worsening the antibiotic resistance crisis, particularly regarding pathogens with environmental niches, such as P. aeruginosa.
Collapse
|
5
|
Su YB, Tang XK, Zhu LP, Yang KX, Pan L, Li H, Chen ZG. Enhanced Biosynthesis of Fatty Acids Contributes to Ciprofloxacin Resistance in Pseudomonas aeruginosa. Front Microbiol 2022; 13:845173. [PMID: 35547113 PMCID: PMC9083408 DOI: 10.3389/fmicb.2022.845173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Antibiotic-resistant Pseudomonas aeruginosa is insensitive to antibiotics and difficult to deal with. An understanding of the resistance mechanisms is required for the control of the pathogen. In this study, gas chromatography-mass spectrometer (GC-MS)-based metabolomics was performed to identify differential metabolomes in ciprofloxacin (CIP)-resistant P. aeruginosa strains that originated from P. aeruginosa ATCC 27853 and had minimum inhibitory concentrations (MICs) that were 16-, 64-, and 128-fold (PA-R16CIP, PA-R64CIP, and PA-R128CIP, respectively) higher than the original value, compared to CIP-sensitive P. aeruginosa (PA-S). Upregulation of fatty acid biosynthesis forms a characteristic feature of the CIP-resistant metabolomes and fatty acid metabolome, which was supported by elevated gene expression and enzymatic activity in the metabolic pathway. The fatty acid synthase inhibitor triclosan potentiates CIP to kill PA-R128CIP and clinically multidrug-resistant P. aeruginosa strains. The potentiated killing was companied with reduced gene expression and enzymatic activity and the returned abundance of fatty acids in the metabolic pathway. Consistently, membrane permeability was reduced in the PA-R and clinically multidrug-resistant P. aeruginosa strains, which were reverted by triclosan. Triclosan also stimulated the uptake of CIP. These findings highlight the importance of the elevated biosynthesis of fatty acids in the CIP resistance of P. aeruginosa and provide a target pathway for combating CIP-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Yu-Bin Su
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China.,Department of Cell Biology, Ministry of Education Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Xi-Kang Tang
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ling-Ping Zhu
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Ke-Xin Yang
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Li Pan
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Hui Li
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| | - Zhuang-Gui Chen
- Department of Pediatrics and Department of Allergy, The Third Affiliated Hospital, State Key Laboratory of Bio-Control, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
6
|
Nolan C, Behrends V. Sub-Inhibitory Antibiotic Exposure and Virulence in Pseudomonas aeruginosa. Antibiotics (Basel) 2021; 10:antibiotics10111393. [PMID: 34827331 PMCID: PMC8615142 DOI: 10.3390/antibiotics10111393] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa is a prime opportunistic pathogen, one of the most important causes of hospital-acquired infections and the major cause of morbidity and mortality in cystic fibrosis lung infections. One reason for the bacterium's pathogenic success is the large array of virulence factors that it can employ. Another is its high degree of intrinsic and acquired resistance to antibiotics. In this review, we first summarise the current knowledge about the regulation of virulence factor expression and production. We then look at the impact of sub-MIC antibiotic exposure and find that the virulence-antibiotic interaction for P. aeruginosa is antibiotic-specific, multifaceted, and complex. Most studies undertaken to date have been in vitro assays in batch culture systems, involving short-term (<24 h) antibiotic exposure. Therefore, we discuss the importance of long-term, in vivo-mimicking models for future work, particularly highlighting the need to account for bacterial physiology, which by extension governs both virulence factor expression and antibiotic tolerance/resistance.
Collapse
|
7
|
Pennycook JH, Scanlan PD. Ecological and Evolutionary responses to Antibiotic Treatment in the Human Gut Microbiota. FEMS Microbiol Rev 2021; 45:fuab018. [PMID: 33822937 PMCID: PMC8498795 DOI: 10.1093/femsre/fuab018] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
The potential for antibiotics to affect the ecology and evolution of the human gut microbiota is well recognised and has wide-ranging implications for host health. Here, we review the findings of key studies that surveyed the human gut microbiota during antibiotic treatment. We find several broad patterns including the loss of diversity, disturbance of community composition, suppression of bacteria in the Actinobacteria phylum, amplification of bacteria in the Bacteroidetes phylum, and promotion of antibiotic resistance. Such changes to the microbiota were often, but not always, recovered following the end of treatment. However, many studies reported unique and/or contradictory results, which highlights our inability to meaningfully predict or explain the effects of antibiotic treatment on the human gut microbiome. This problem arises from variation between existing studies in three major categories: differences in dose, class and combinations of antibiotic treatments used; differences in demographics, lifestyles, and locations of subjects; and differences in measurements, analyses and reporting styles used by researchers. To overcome this, we suggest two integrated approaches: (i) a top-down approach focused on building predictive models through large sample sizes, deep metagenomic sequencing, and effective collaboration; and (ii) a bottom-up reductionist approach focused on testing hypotheses using model systems.
Collapse
Affiliation(s)
- Joseph Hugh Pennycook
- APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, T12 YT20, Ireland
- School of Mirobiology, Food Science & Technology Building, University College Cork, College Road, Cork, T12 K8AF, Ireland
| | - Pauline Deirdre Scanlan
- APC Microbiome Ireland, Biosciences Institute, University College Cork, College Road, Cork, T12 YT20, Ireland
- School of Mirobiology, Food Science & Technology Building, University College Cork, College Road, Cork, T12 K8AF, Ireland
| |
Collapse
|
8
|
GAUGE-Annotated Microbial Transcriptomic Data Facilitate Parallel Mining and High-Throughput Reanalysis To Form Data-Driven Hypotheses. mSystems 2021; 6:6/2/e01305-20. [PMID: 33758032 PMCID: PMC8547006 DOI: 10.1128/msystems.01305-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The NCBI Gene Expression Omnibus (GEO) provides tools to query and download transcriptomic data. However, less than 4% of microbial experiments include the sample group annotations required to assess differential gene expression for high-throughput reanalysis, and data deposited after 2014 universally lack these annotations. Our algorithm GAUGE (general annotation using text/data group ensembles) automatically annotates GEO microbial data sets, including microarray and RNA sequencing studies, increasing the percentage of data sets amenable to analysis from 4% to 33%. Eighty-nine percent of GAUGE-annotated studies matched group assignments generated by human curators. To demonstrate how GAUGE annotation can lead to scientific insight, we created GAPE (GAUGE-annotated Pseudomonas aeruginosa and Escherichia coli transcriptomic compendia for reanalysis), a Shiny Web interface to analyze 73 GAUGE-annotated P. aeruginosa studies, three times more than previously available. GAPE analysis revealed that PA3923, a gene of unknown function, was frequently differentially expressed in more than 50% of studies and significantly coregulated with genes involved in biofilm formation. Follow-up wet-bench experiments demonstrate that PA3923 mutants are indeed defective in biofilm formation, consistent with predictions facilitated by GAUGE and GAPE. We anticipate that GAUGE and GAPE, which we have made freely available, will make publicly available microbial transcriptomic data easier to reuse and lead to new data-driven hypotheses. IMPORTANCE GEO archives transcriptomic data from over 5,800 microbial experiments and allows researchers to answer questions not directly addressed in published papers. However, less than 4% of the microbial data sets include the sample group annotations required for high-throughput reanalysis. This limitation blocks a considerable amount of microbial transcriptomic data from being reused easily. Here, we demonstrate that the GAUGE algorithm could make 33% of microbial data accessible to parallel mining and reanalysis. GAUGE annotations increase statistical power and, thereby, make consistent patterns of differential gene expression easier to identify. In addition, we developed GAPE (GAUGE-annotated Pseudomonas aeruginosa and Escherichia coli transcriptomic compendia for reanalysis), a Shiny Web interface that performs parallel analyses on P. aeruginosa and E. coli compendia. Source code for GAUGE and GAPE is freely available and can be repurposed to create compendia for other bacterial species. Author Video: An author video summary of this article is available.
Collapse
|
9
|
Javed M, Jentzsch B, Heinrich M, Ueltzhoeffer V, Peter S, Schoppmeier U, Angelov A, Schwarz S, Willmann M. Transcriptomic Basis of Serum Resistance and Virulence Related Traits in XDR P. aeruginosa Evolved Under Antibiotic Pressure in a Morbidostat Device. Front Microbiol 2021; 11:619542. [PMID: 33569046 PMCID: PMC7868568 DOI: 10.3389/fmicb.2020.619542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/30/2020] [Indexed: 01/11/2023] Open
Abstract
Colistin is a last resort antibiotic against the critical status pathogen Pseudomonas aeruginosa. Virulence and related traits such as biofilm formation and serum resistance after exposure to sub-inhibitory levels of colistin have been underexplored. We cultivated P. aeruginosa in a semi-automated morbidostat device with colistin, metronidazole and a combination of the two antibiotics for 21 days, and completed RNA-Seq to uncover the transcriptional changes over time. Strains became resistant to colistin within this time period. Colistin-resistant strains show significantly increased biofilm formation: the cell density in biofilm increases under exposure to colistin, while the addition of metronidazole can remove this effect. After 7 days of colistin exposure, strains develop an ability to grow in serum, suggesting that colistin drives bacterial modifications conferring a protective effect from serum complement factors. Of note, strains exposed to colistin showed a decrease in virulence, when measured using the Galleria mellonella infection model. These phenotypic changes were characterized by a series of differential gene expression changes, particularly those related to LPS modifications, spermidine synthesis (via speH and speE) and the major stress response regulator rpoS. Our results suggest a clinically important bacterial evolution under sub-lethal antibiotic concentration leading to potential for significant changes in the clinical course of infection.
Collapse
Affiliation(s)
- Mumina Javed
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute of Medical Microbiology and Hygiene, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Benedikt Jentzsch
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute of Medical Microbiology and Hygiene, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Maximilian Heinrich
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute of Medical Microbiology and Hygiene, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Viola Ueltzhoeffer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute of Medical Microbiology and Hygiene, Tübingen, Germany
| | - Silke Peter
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute of Medical Microbiology and Hygiene, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
| | - Ulrich Schoppmeier
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute of Medical Microbiology and Hygiene, Tübingen, Germany
| | - Angel Angelov
- NGS Competence Center Tübingen (NCCT), Tübingen, Germany
| | - Sandra Schwarz
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute of Medical Microbiology and Hygiene, Tübingen, Germany
| | - Matthias Willmann
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Institute of Medical Microbiology and Hygiene, Tübingen, Germany.,German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany.,Eurofins MVZ Medizinisches Labor Gelsenkirchen, Gelsenkirchen, Germany
| |
Collapse
|
10
|
Serioli L, Laksafoss TZ, Haagensen JAJ, Sternberg C, Soerensen MP, Molin S, Zór K, Boisen A. Bacterial Cell Cultures in a Lab-on-a-Disc: A Simple and Versatile Tool for Quantification of Antibiotic Treatment Efficacy. Anal Chem 2020; 92:13871-13879. [DOI: 10.1021/acs.analchem.0c02582] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Laura Serioli
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Trygvi Z. Laksafoss
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Janus A. J. Haagensen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Claus Sternberg
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Mads P. Soerensen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Søren Molin
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Kinga Zór
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Anja Boisen
- Center for Intelligent Drug Delivery and Sensing Using Microcontainers and Nanomechanics (IDUN), Department of Health Technology, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
11
|
Ching C, Orubu ESF, Sutradhar I, Wirtz VJ, Boucher HW, Zaman MH. Bacterial antibiotic resistance development and mutagenesis following exposure to subinhibitory concentrations of fluoroquinolones in vitro: a systematic review of the literature. JAC Antimicrob Resist 2020; 2:dlaa068. [PMID: 34223024 PMCID: PMC8210091 DOI: 10.1093/jacamr/dlaa068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/15/2020] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Understanding social and scientific drivers of antibiotic resistance is critical to help preserve antibiotic efficacy. These drivers include exposure to subinhibitory antibiotic concentrations in the environment and clinic. OBJECTIVES To summarize and quantify the relationship between subinhibitory fluoroquinolone exposure and antibiotic resistance and mutagenesis to better understand resistance patterns and mechanisms. METHODS Following PRISMA guidelines, PubMed, Web of Science and Embase were searched for primary in vitro experimental studies on subinhibitory fluoroquinolone exposure and bacterial antibiotic resistance and mutagenesis, from earliest available dates through to 2018 without language limitation. A specifically developed non-weighted tool was used to assess risk of bias. RESULTS Evidence from 62 eligible studies showed that subinhibitory fluoroquinolone exposure results in increased resistance to the selecting fluoroquinolone. Most increases in MIC were low (median minimum of 3.7-fold and median maximum of 32-fold) and may not be considered clinically relevant. Mechanistically, resistance is partly explained by target mutations but also changes in drug efflux. Collaterally, resistance to other fluoroquinolones and unrelated antibiotic classes also develops. The mean ± SD quality score for all studies was 2.6 ± 1.8 with a range of 0 (highest score) to 7 (lowest score). CONCLUSIONS Low and moderate levels of resistance and efflux changes can create an opportunity for higher-level resistance or MDR. Future studies, to elucidate the genetic regulation of specific resistance mechanisms, and increased policies, including surveillance of low-level resistance changes or genomic surveillance of efflux pump genes and regulators, could serve as a predictor of MDR development.
Collapse
Affiliation(s)
- Carly Ching
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ebiowei S F Orubu
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Institute for Health System Innovation & Policy, Boston University, Boston, MA, USA
| | - Indorica Sutradhar
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Veronika J Wirtz
- Department of Global Health, Boston University School of Public Health, Boston, MA, USA
| | - Helen W Boucher
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Muhammad H Zaman
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Howard Hughes Medical Institute, Boston University, Boston, MA, USA
| |
Collapse
|
12
|
Ahmed MN, Abdelsamad A, Wassermann T, Porse A, Becker J, Sommer MOA, Høiby N, Ciofu O. The evolutionary trajectories of P. aeruginosa in biofilm and planktonic growth modes exposed to ciprofloxacin: beyond selection of antibiotic resistance. NPJ Biofilms Microbiomes 2020; 6:28. [PMID: 32709907 PMCID: PMC7381665 DOI: 10.1038/s41522-020-00138-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/06/2020] [Indexed: 12/22/2022] Open
Abstract
Ciprofloxacin (CIP) is used to treat Pseudomonas aeruginosa biofilm infections. We showed that the pathways of CIP-resistance development during exposure of biofilms and planktonic P. aeruginosa populations to subinhibitory levels of CIP depend on the mode of growth. In the present study, we analyzed CIP-resistant isolates obtained from previous evolution experiments, and we report a variety of evolved phenotypic and genotypic changes that occurred in parallel with the evolution of CIP-resistance. Cross-resistance to beta-lactam antibiotics was associated with mutations in genes involved in cell-wall recycling (ftsZ, murG); and could also be explained by mutations in the TCA cycle (sdhA) genes and in genes involved in arginine catabolism. We found that CIP-exposed isolates that lacked mutations in quorum-sensing genes and acquired mutations in type IV pili genes maintained swarming motility and lost twitching motility, respectively. Evolved CIP-resistant isolates showed high fitness cost in planktonic competition experiments, yet persisted in the biofilm under control conditions, compared with ancestor isolates and had an advantage when exposed to CIP. Their persistence in biofilm competition experiments in spite of their fitness cost in planktonic growth could be explained by their prolonged lag-phase. Interestingly, the set of mutated genes that we identified in these in vitro-evolved CIP-resistant colonies, overlap with a large number of patho-adaptive genes previously reported in P. aeruginosa isolates from cystic fibrosis (CF) patients. This suggests that the antibiotic stress is contributing to the bacterial evolution in vivo, and that adaptive laboratory evolution can be used to predict the in vivo evolutionary trajectories.
Collapse
Affiliation(s)
- Marwa N Ahmed
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Microbiology, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Ahmed Abdelsamad
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Tina Wassermann
- Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Andreas Porse
- Novo Nordisk Foundation Center for Sustainability, Technical University of Denmark, Lyngby, Denmark
| | - Janna Becker
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Morten O A Sommer
- Novo Nordisk Foundation Center for Sustainability, Technical University of Denmark, Lyngby, Denmark
| | - Niels Høiby
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Rigshospitalet, Copenhagen, Denmark
| | - Oana Ciofu
- Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
13
|
A Screen for Antibiotic Resistance Determinants Reveals a Fitness Cost of the Flagellum in Pseudomonas aeruginosa. J Bacteriol 2020; 202:JB.00682-19. [PMID: 31871033 DOI: 10.1128/jb.00682-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/18/2019] [Indexed: 01/09/2023] Open
Abstract
The intrinsic resistance of Pseudomonas aeruginosa to many antibiotics limits treatment options for pseudomonal infections. P. aeruginosa's outer membrane is highly impermeable and decreases antibiotic entry into the cell. We used an unbiased high-throughput approach to examine mechanisms underlying outer membrane-mediated antibiotic exclusion. Insertion sequencing (INSeq) identified genes that altered fitness in the presence of linezolid, rifampin, and vancomycin, antibiotics to which P. aeruginosa is intrinsically resistant. We reasoned that resistance to at least one of these antibiotics would depend on outer membrane barrier function, as previously demonstrated in Escherichia coli and Vibrio cholerae This approach demonstrated a critical role of the outer membrane barrier in vancomycin fitness, while efflux pumps were primary contributors to fitness in the presence of linezolid and rifampin. Disruption of flagellar assembly or function was sufficient to confer a fitness advantage to bacteria exposed to vancomycin. These findings clearly show that loss of flagellar function alone can confer a fitness advantage in the presence of an antibiotic.IMPORTANCE The cell envelopes of Gram-negative bacteria render them intrinsically resistant to many classes of antibiotics. We used insertion sequencing to identify genes whose disruption altered the fitness of a highly antibiotic-resistant pathogen, Pseudomonas aeruginosa, in the presence of antibiotics usually excluded by the cell envelope. This screen identified gene products involved in outer membrane biogenesis and homeostasis, respiration, and efflux as important contributors to fitness. An unanticipated fitness cost of flagellar assembly and function in the presence of the glycopeptide antibiotic vancomycin was further characterized. These findings have clinical relevance for individuals with cystic fibrosis who are infected with P. aeruginosa and undergo treatment with vancomycin for a concurrent Staphylococcus aureus infection.
Collapse
|
14
|
Olivares E, Badel-Berchoux S, Provot C, Prévost G, Bernardi T, Jehl F. Clinical Impact of Antibiotics for the Treatment of Pseudomonas aeruginosa Biofilm Infections. Front Microbiol 2020; 10:2894. [PMID: 31998248 PMCID: PMC6962142 DOI: 10.3389/fmicb.2019.02894] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/02/2019] [Indexed: 02/03/2023] Open
Abstract
Bacterial biofilms are highly recalcitrant to antibiotic therapies due to multiple tolerance mechanisms. The involvement of Pseudomonas aeruginosa in a wide range of biofilm-related infections often leads to treatment failures. Indeed, few current antimicrobial molecules are still effective on tolerant sessile cells. In contrast, studies increasingly showed that conventional antibiotics can, at low concentrations, induce a phenotype change in bacteria and consequently, the biofilm formation. Understanding the clinical effects of antimicrobials on biofilm establishment is essential to avoid the use of inappropriate treatments in the case of biofilm infections. This article reviews the current knowledge about bacterial growth within a biofilm and the preventive or inducer impact of standard antimicrobials on its formation by P. aeruginosa. The effect of antibiotics used to treat biofilms of other bacterial species, as Staphylococcus aureus or Escherichia coli, was also briefly mentioned. Finally, it describes two in vitro devices which could potentially be used as antibiotic susceptibility testing for adherent bacteria.
Collapse
Affiliation(s)
- Elodie Olivares
- University of Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA7290, Institut de Bactériologie, Strasbourg, France.,BioFilm Pharma SAS, Saint-Beauzire, France
| | | | - Christian Provot
- BioFilm Pharma SAS, Saint-Beauzire, France.,BioFilm Control SAS, Saint-Beauzire, France
| | - Gilles Prévost
- University of Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA7290, Institut de Bactériologie, Strasbourg, France
| | - Thierry Bernardi
- BioFilm Pharma SAS, Saint-Beauzire, France.,BioFilm Control SAS, Saint-Beauzire, France
| | - François Jehl
- University of Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA7290, Institut de Bactériologie, Strasbourg, France
| |
Collapse
|
15
|
Lack of the Major Multifunctional Catalase KatA in Pseudomonas aeruginosa Accelerates Evolution of Antibiotic Resistance in Ciprofloxacin-Treated Biofilms. Antimicrob Agents Chemother 2019; 63:AAC.00766-19. [PMID: 31307984 DOI: 10.1128/aac.00766-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/30/2019] [Indexed: 01/20/2023] Open
Abstract
During chronic biofilm infections, Pseudomonas aeruginosa bacteria are exposed to increased oxidative stress as a result of the inflammatory response. As reactive oxygen species (ROS) are mutagenic, the evolution of resistance to ciprofloxacin (CIP) in biofilms under oxidative stress conditions was investigated. We experimentally evolved six replicate populations of P. aeruginosa lacking the major catalase KatA in colony biofilms and stationary-phase cultures for seven passages in the presence of subinhibitory levels (0.1 mg/liter) of CIP or without CIP (eight replicate lineages for controls) under aerobic conditions. In CIP-evolved biofilms, a larger CIP-resistant subpopulation was isolated in the ΔkatA strain than in the wild-type (WT) PAO1 population, suggesting oxidative stress as a promoter of the development of antibiotic resistance. A higher number of mutations identified by population sequencing were observed in evolved ΔkatA biofilm populations (CIP and control) than in WT PAO1 populations evolved under the same conditions. Genes involved in iron assimilation were found to be exclusively mutated in CIP-evolved ΔkatA biofilm populations, probably as a defense mechanism against ROS formation resulting from Fenton reactions. Furthermore, a hypermutable lineage due to mutL inactivation developed in one CIP-evolved ΔkatA biofilm lineage. In CIP-evolved biofilms of both the ΔkatA strain and WT PAO1, mutations in nfxB, the negative regulator of the MexCD-OprJ efflux pump, were observed while in CIP-evolved planktonic cultures of both the ΔkatA strain and WT PAO1, mutations in mexR and nalD, regulators of the MexAB-OprM efflux pump, were repeatedly found. In conclusion, these results emphasize the role of oxidative stress as an environmental factor that might increase the development of antibiotic resistance in in vivo biofilms.
Collapse
|
16
|
Flynn S, Reen FJ, O'Gara F. Exposure to Bile Leads to the Emergence of Adaptive Signaling Variants in the Opportunistic Pathogen Pseudomonas aeruginosa. Front Microbiol 2019; 10:2013. [PMID: 31555243 PMCID: PMC6727882 DOI: 10.3389/fmicb.2019.02013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/16/2019] [Indexed: 12/18/2022] Open
Abstract
The chronic colonization of the respiratory tract by the opportunistic pathogen Pseudomonas aeruginosa is the primary cause of morbidity and mortality in cystic fibrosis (CF) patients. P. aeruginosa has been shown to undergo extensive genomic adaptation facilitating its persistence within the CF lung allowing it to evade the host immune response and outcompete co-colonizing residents of the lung microbiota. However, whilst several studies have described the various mutations that frequently arise in clinical isolates of P. aeruginosa, the environmental factors governing the emergence of these genetic variants is less well characterized. Gastro-oesophageal reflux has recently emerged as a major co-morbidity in CF and is often associated with the presence of bile acids in the lungs most likely by (micro) aspiration. In order to investigate whether bile may select for genetic variants, P. aeruginosa was experimentally evolved in artificial sputum medium, a synthetic media resembling environmental conditions found within the CF lung. Pigmented derivatives of P. aeruginosa emerged exclusively in the presence of bile. Genome sequencing analysis identified single nucleotide polymorphisms (SNPs) in quorum sensing (lasR) and both the pyocyanin (phzS) and pyomelanin (hmgA) biosynthetic pathways. Phenotypic analysis revealed an altered bile response when compared to the ancestral P. aeruginosa progenitor strain. While the recovered pigmented derivatives retained the bile mediated suppression of swarming motility and enhanced antibiotic tolerance, the biofilm, and redox responses to bile were abolished in the adapted mutants. Though loss of pseudomonas quinolone signal (PQS) production in the pigmented isolates was not linked to the altered biofilm response, the loss of redox repression could be explained by defective alkyl-quinolone (AQ) production in the presence of bile. Collectively, these findings suggest that the adaptive variants of P. aeruginosa that arise following long term bile exposure enables the emergence of ecologically competitive sub-populations. Altered pigmentation and AQ signaling may contribute to an enhancement in fitness facilitating population survival within a bile positive environment.
Collapse
Affiliation(s)
- Stephanie Flynn
- BIOMERIT Research Centre, School of Microbiology, University College Cork - National University of Ireland, Cork, Ireland
| | - F Jerry Reen
- School of Microbiology, University College Cork - National University of Ireland, Cork, Ireland
| | - Fergal O'Gara
- BIOMERIT Research Centre, School of Microbiology, University College Cork - National University of Ireland, Cork, Ireland.,Telethon Kids Institute, Perth, WA, Australia.,School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Perth, WA, Australia
| |
Collapse
|
17
|
Migliorini LB, Brüggemann H, de Sales RO, Koga PCM, de Souza AV, Martino MDV, Galhardo RS, Severino P. Mutagenesis Induced by Sub-Lethal Doses of Ciprofloxacin: Genotypic and Phenotypic Differences Between the Pseudomonas aeruginosa Strain PA14 and Clinical Isolates. Front Microbiol 2019; 10:1553. [PMID: 31354657 PMCID: PMC6636244 DOI: 10.3389/fmicb.2019.01553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/21/2019] [Indexed: 01/16/2023] Open
Abstract
Bacterial resistance is a severe threat to global public health. Exposure to sub-lethal concentrations has been considered a major driver of mutagenesis leading to antibiotic resistance in clinical settings. Ciprofloxacin is broadly used to treat infections caused by Pseudomonas aeruginosa, whereas increased mutagenesis induced by sub-lethal concentrations of ciprofloxacin has been reported for the reference strain, PAO1, in vitro. In this study we report increased mutagenesis induced by sub-lethal concentrations of ciprofloxacin for another reference strain, PA14-UCBPP, and lower mutagenesis for clinical isolates when compared to the reference strain. This unexpected result may be associated with missense mutations in imuB and recX, involved in adaptive responses, and the presence of Pyocin S2, which were found in all clinical isolates but not in the reference strain genome. The genetic differences between clinical isolates of P. aeruginosa and the reference PA14-UCBPP, often used to study P. aeruginosa phenotypes in vitro, may be involved in reduced mutagenesis under sub-lethal concentrations of CIP, a scenario that should be further explored for the understanding of bacterial fitness in hospital environments. Moreover, we highlight the presence of a complete umuDC operon in a P. aeruginosa clinical isolate. Even though the presence of umuDC did not contribute to a significant increase in mutagenesis, it highlights the dynamic exchange of genetic material between bacterial species in the hospital environment.
Collapse
Affiliation(s)
- Letícia Busato Migliorini
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| | | | - Romario Oliveira de Sales
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| | | | - Andrea Vieira de Souza
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| | | | - Rodrigo S Galhardo
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Patricia Severino
- Hospital Israelita Albert Einstein, Albert Einstein Research and Education Institute, São Paulo, Brazil
| |
Collapse
|
18
|
Evolution of Antibiotic Resistance in Biofilm and Planktonic Pseudomonas aeruginosa Populations Exposed to Subinhibitory Levels of Ciprofloxacin. Antimicrob Agents Chemother 2018; 62:AAC.00320-18. [PMID: 29760140 DOI: 10.1128/aac.00320-18] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 05/01/2018] [Indexed: 11/20/2022] Open
Abstract
The opportunistic Gram-negative pathogen Pseudomonas aeruginosa, known for its intrinsic and acquired antibiotic resistance, has a notorious ability to form biofilms, which often facilitate chronic infections. The evolutionary paths to antibiotic resistance have mainly been investigated in planktonic cultures and are less studied in biofilms. We experimentally evolved P. aeruginosa PAO1 colony biofilms and stationary-phase planktonic cultures for seven passages in the presence of subinhibitory levels (0.1 mg/liter) of ciprofloxacin (CIP) and performed a genotypic (whole-bacterial population sequencing) and phenotypic assessment of the populations. We observed a higher proportion of CIP resistance in the CIP-evolved biofilm populations than in planktonic populations exposed to the same drug concentrations. However, the MICs of ciprofloxacin were lower in CIP-resistant isolates selected from the biofilm population than the MICs of CIP-resistant isolates from the planktonic cultures. We found common evolutionary trajectories between the different lineages, with mutations in known CIP resistance determinants as well as growth condition-dependent adaptations. We observed a general trend toward a reduction in type IV-pilus-dependent motility (twitching) in CIP-evolved populations and a loss of virulence-associated traits in the populations evolved in the absence of antibiotic. In conclusion, our data indicate that biofilms facilitate the development of low-level mutational resistance, probably due to the lower effective drug exposure than in planktonic cultures. These results provide a framework for the selection process of resistant variants and the evolutionary mechanisms involved under the two different growth conditions.
Collapse
|
19
|
Powell LC, Pritchard MF, Ferguson EL, Powell KA, Patel SU, Rye PD, Sakellakou SM, Buurma NJ, Brilliant CD, Copping JM, Menzies GE, Lewis PD, Hill KE, Thomas DW. Targeted disruption of the extracellular polymeric network of Pseudomonas aeruginosa biofilms by alginate oligosaccharides. NPJ Biofilms Microbiomes 2018; 4:13. [PMID: 29977590 PMCID: PMC6026129 DOI: 10.1038/s41522-018-0056-3] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/20/2018] [Accepted: 06/06/2018] [Indexed: 11/29/2022] Open
Abstract
Acquisition of a mucoid phenotype by Pseudomonas sp. in the lungs of cystic fibrosis (CF) patients, with subsequent over-production of extracellular polymeric substance (EPS), plays an important role in mediating the persistence of multi-drug resistant (MDR) infections. The ability of a low molecular weight (Mn = 3200 g mol−1) alginate oligomer (OligoG CF-5/20) to modify biofilm structure of mucoid Pseudomonas aeruginosa (NH57388A) was studied in vitro using scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM) with Texas Red (TxRd®)-labelled OligoG and EPS histochemical staining. Structural changes in treated biofilms were quantified using COMSTAT image-analysis software of CLSM z-stack images, and nanoparticle diffusion. Interactions between the oligomers, Ca2+ and DNA were studied using molecular dynamics (MD) simulations, Fourier transform infrared spectroscopy (FTIR) and isothermal titration calorimetry (ITC). Imaging demonstrated that OligoG treatment (≥0.5%) inhibited biofilm formation, revealing a significant reduction in both biomass and biofilm height (P < 0.05). TxRd®-labelled oligomers readily diffused into established (24 h) biofilms. OligoG treatment (≥2%) induced alterations in the EPS of established biofilms; significantly reducing the structural quantities of EPS polysaccharides, and extracellular (e)DNA (P < 0.05) with a corresponding increase in nanoparticle diffusion (P < 0.05) and antibiotic efficacy against established biofilms. ITC demonstrated an absence of rapid complex formation between DNA and OligoG and confirmed the interactions of OligoG with Ca2+ evident in FTIR and MD modelling. The ability of OligoG to diffuse into biofilms, potentiate antibiotic activity, disrupt DNA-Ca2+-DNA bridges and biofilm EPS matrix highlights its potential for the treatment of biofilm-related infections. Small carbohydrate molecules derived from marine algae show potential for inhibiting biofilm formation in multi-drug resistant infections. A research team led by Lydia Powell at Cardiff University, UK, investigated the action of carbohydrates called alginate oligosaccharides, composed of a small number of linked sugar molecules. The oligosaccharides modified and disrupted the structure of cultured biofilms of Pseudomonas aeruginosa, the cause of many serious drug resistant infections. This effect significantly inhibited the formation and maintenance of the biofilm state, which is known to be a crucial factor allowing the bacteria to resist drug treatment. Antibiotics proved more effective following the oligosaccharide intervention. The researchers uncovered key molecular details involved in the ability of the oligosaccharides to diffuse into and disrupt biofilms. The therapeutic potential of these small carbohydrates is currently being investigated in clinical trials.
Collapse
Affiliation(s)
- Lydia C Powell
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | - Manon F Pritchard
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | - Elaine L Ferguson
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | - Kate A Powell
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | - Shree U Patel
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | | | | | - Niklaas J Buurma
- 3Physical Organic Chemistry Centre, School of Chemistry, Cardiff University, Cardiff, UK
| | | | - Jack M Copping
- 4Respiratory Diagnostics Group, Swansea University, Swansea, UK
| | | | - Paul D Lewis
- 4Respiratory Diagnostics Group, Swansea University, Swansea, UK
| | - Katja E Hill
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| | - David W Thomas
- 1Advanced Therapies Group, Cardiff University School of Dentistry, Heath Park, Cardiff, CF14 4XY UK
| |
Collapse
|
20
|
Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun 2018; 9:1599. [PMID: 29686259 PMCID: PMC5913237 DOI: 10.1038/s41467-018-04059-1] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/29/2018] [Indexed: 12/13/2022] Open
Abstract
It has become increasingly clear that low levels of antibiotics present in many environments can select for resistant bacteria, yet the evolutionary pathways for resistance development during exposure to low amounts of antibiotics remain poorly defined. Here we show that Salmonella enterica exposed to sub-MIC levels of streptomycin evolved high-level resistance via novel mechanisms that are different from those observed during lethal selections. During lethal selection only rpsL mutations are found, whereas at sub-MIC selection resistance is generated by several small-effect resistance mutations that combined confer high-level resistance via three different mechanisms: (i) alteration of the ribosomal RNA target (gidB mutations), (ii) reduction in aminoglycoside uptake (cyoB, nuoG, and trkH mutations), and (iii) induction of the aminoglycoside-modifying enzyme AadA (znuA mutations). These results demonstrate how the strength of the selective pressure influences evolutionary trajectories and that even weak selective pressures can cause evolution of high-level resistance.
Collapse
|
21
|
Wistrand-Yuen E, Knopp M, Hjort K, Koskiniemi S, Berg OG, Andersson DI. Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun 2018; 9:1599. [PMID: 29686259 PMCID: PMC5913237 DOI: 10.1038/s41467-018-04059-1|] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023] Open
Abstract
It has become increasingly clear that low levels of antibiotics present in many environments can select for resistant bacteria, yet the evolutionary pathways for resistance development during exposure to low amounts of antibiotics remain poorly defined. Here we show that Salmonella enterica exposed to sub-MIC levels of streptomycin evolved high-level resistance via novel mechanisms that are different from those observed during lethal selections. During lethal selection only rpsL mutations are found, whereas at sub-MIC selection resistance is generated by several small-effect resistance mutations that combined confer high-level resistance via three different mechanisms: (i) alteration of the ribosomal RNA target (gidB mutations), (ii) reduction in aminoglycoside uptake (cyoB, nuoG, and trkH mutations), and (iii) induction of the aminoglycoside-modifying enzyme AadA (znuA mutations). These results demonstrate how the strength of the selective pressure influences evolutionary trajectories and that even weak selective pressures can cause evolution of high-level resistance.
Collapse
Affiliation(s)
- Erik Wistrand-Yuen
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237, Uppsala, Sweden
| | - Michael Knopp
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237, Uppsala, Sweden
| | - Karin Hjort
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237, Uppsala, Sweden
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, 75237, Uppsala, Sweden
| | - Otto G Berg
- Department of Cell and Molecular Biology, Uppsala University, 75237, Uppsala, Sweden
| | - Dan I Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75237, Uppsala, Sweden.
| |
Collapse
|
22
|
Al-Tabakha MM, Fahelelbom KMS, Obaid DEE, Sayed S. Quality Attributes and In Vitro Bioequivalence of Different Brands of Amoxicillin Trihydrate Tablets. Pharmaceutics 2017; 9:E18. [PMID: 28531119 PMCID: PMC5489935 DOI: 10.3390/pharmaceutics9020018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 05/03/2017] [Accepted: 05/16/2017] [Indexed: 02/04/2023] Open
Abstract
Bacterial resistance and antibiotic drug effectiveness can be related to administering generic products with a subtherapeutic dose or poor in vivo drug release. The aim of this study was to investigate whether locally marketed amoxicillin tablets have the required chemical and physical attributes, including in vitro bioequivalence performance. Five generic products (T1, T2, T3, T4, and T5) containing combination of amoxicillin trihydrate and potassium clavulanate as 1 g strength present in immediate release tablets were compared to the reference listed drug product Augmentin® (R) for weight variation, friability, resistance to crushing, and chemical content of amoxicillin. Difference (ƒ1) and similarity (ƒ2) factors were calculated to assess in vitro bioequivalence requirements. The tablets from different products have shown compliance with the pharmacopeial requirements of the performed tests. The measured resistance to crushing of tablets did not influence the dissolution time. Three generic products released more than 85% of amoxicillin by the first 15 min as did the reference product and were considered as bioequivalent products. T1 and T4 had ƒ1 values of 16.5% and 25.4% respectively and their ƒ2 values were 44.5 and 34.6 respectively, indicating failure to meet in vitro bioequivalence requirements. Tablet formulations can play an important role in achieving bioequivalence. Independent investigations such as this study serve as an important tool to reveal possible inferior or noncompliant products that may find their way to the market.
Collapse
Affiliation(s)
- Moawia M Al-Tabakha
- Pharmaceutics Unit, College of Pharmacy and Health Sciences, Ajman University, P.O. Box 346, Ajman, UAE.
| | - Khairi M S Fahelelbom
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Ain University of Science and Technology, P.O. Box 64141, Al Ain, UAE.
| | - Dana Emad Eddin Obaid
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Ain University of Science and Technology, P.O. Box 64141, Al Ain, UAE.
| | - Sadik Sayed
- Department of Pharmaceutical Sciences, College of Pharmacy, Al-Ain University of Science and Technology, P.O. Box 64141, Al Ain, UAE.
| |
Collapse
|
23
|
Ciofu O, Rojo-Molinero E, Macià MD, Oliver A. Antibiotic treatment of biofilm infections. APMIS 2017; 125:304-319. [PMID: 28407419 DOI: 10.1111/apm.12673] [Citation(s) in RCA: 249] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 01/10/2017] [Indexed: 12/24/2022]
Abstract
Bacterial biofilms are associated with a wide range of infections, from those related to exogenous devices, such as catheters or prosthetic joints, to chronic tissue infections such as those occurring in the lungs of cystic fibrosis patients. Biofilms are recalcitrant to antibiotic treatment due to multiple tolerance mechanisms (phenotypic resistance). This causes persistence of biofilm infections in spite of antibiotic exposure which predisposes to antibiotic resistance development (genetic resistance). Understanding the interplay between phenotypic and genetic resistance mechanisms acting on biofilms, as well as appreciating the diversity of environmental conditions of biofilm infections which influence the effect of antibiotics are required in order to optimize the antibiotic treatment of biofilm infections. Here, we review the current knowledge on phenotypic and genetic resistance in biofilms and describe the potential strategies for the antibiotic treatment of biofilm infections. Of note is the optimization of PK/PD parameters in biofilms, high-dose topical treatments, combined and sequential/alternate therapies or the use antibiotic adjuvants.
Collapse
Affiliation(s)
- Oana Ciofu
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Estrella Rojo-Molinero
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma de Mallorca, Spain
| | - María D Macià
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma de Mallorca, Spain
| | - Antonio Oliver
- Servicio de Microbiología, Hospital Son Espases, Instituto de Investigación Sanitaria de Palma (IdISPa), Palma de Mallorca, Spain
| |
Collapse
|
24
|
Davies EV, James CE, Brockhurst MA, Winstanley C. Evolutionary diversification of Pseudomonas aeruginosa in an artificial sputum model. BMC Microbiol 2017; 17:3. [PMID: 28056789 PMCID: PMC5216580 DOI: 10.1186/s12866-016-0916-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/15/2016] [Indexed: 12/20/2022] Open
Abstract
Background During chronic lung infections of cystic fibrosis patients Pseudomonas aeruginosa populations undergo extensive evolutionary diversification. However, the selective drivers of this evolutionary process are poorly understood. To test the effects of temperate phages on diversification in P. aeruginosa biofilms we experimentally evolved populations of P. aeruginosa for approximately 240 generations in artificial sputum medium with or without a community of three temperate phages. Results Analysis of end-point populations using a suite of phenotypic tests revealed extensive phenotypic diversification within populations, but no significant differences between the populations evolved with or without phages. The most common phenotypic variant observed was loss of all three types of motility (swimming, swarming and twitching) and resistance to all three phages. Despite the absence of selective pressure, some members of the population evolved antibiotic resistance. The frequency of antibiotic resistant isolates varied according to population and the antibiotic tested. However, resistance to ceftazidime and tazobactam-piperacillin was observed more frequently than resistance to other antibiotics, and was associated with higher prevelence of isolates exhibiting a hypermutable phenotype and increased beta-lactamase production. Conclusions We observed considerable within-population phenotypic diversity in P. aeruginosa populations evolving in the artificial sputum medium biofilm model. Replicate populations evolved both in the presence and absence of phages converged upon similar sets of phenotypes. The evolved phenotypes, including antimicrobial resistance, were similar to those observed amongst clinical isolates from cystic fibrosis infections. Electronic supplementary material The online version of this article (doi:10.1186/s12866-016-0916-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily V Davies
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool, L69 7BE, UK
| | - Chloe E James
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool, L69 7BE, UK.,School of Environment and Life Sciences, University of Salford, Manchester, M5 4WT, UK
| | | | - Craig Winstanley
- Institute of Infection and Global Health, University of Liverpool, 8 West Derby Street, Liverpool, L69 7BE, UK.
| |
Collapse
|