1
|
Sedlmayr VL, Széliová D, De Kock V, Gansemans Y, Van Nieuwerburgh F, Peeters E, Quehenberger J, Zanghellini J, Spadiut O. Impact of nutrient excess on physiology and metabolism of Sulfolobus acidocaldarius. Front Microbiol 2024; 15:1475385. [PMID: 39430106 PMCID: PMC11486757 DOI: 10.3389/fmicb.2024.1475385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 09/13/2024] [Indexed: 10/22/2024] Open
Abstract
Overflow metabolism is a well-known phenomenon that describes the seemingly wasteful and incomplete substrate oxidation by aerobic cells, such as yeasts, bacteria, and mammalian cells, even when conditions allow for total combustion via respiration. This cellular response, triggered by an excess of C-source, has not yet been investigated in archaea. In this study, we conducted chemostat cultivations to compare the metabolic and physiological states of the thermoacidophilic archaeon Sulfolobus acidocaldarius under three conditions, each with gradually increasing nutrient stress. Our results show that S. acidocaldarius has different capacities for the uptake of the two C-sources, monosodium glutamate and glucose. A saturated tricarboxylic acid cycle at elevated nutrient concentrations affects the cell's ability to deplete its intermediates. This includes deploying additional cataplerotic pathways and the secretion of amino acids, notably valine, glycine, and alanine, while glucose is increasingly metabolized via glycogenesis. We did not observe the secretion of common fermentation products, like organic acids. Transcriptomic analysis indicated an upregulation of genes involved in fatty acid metabolism, suggesting the intracellular conservation of energy. Adapting respiratory enzymes under nutrient stress indicated high metabolic flexibility and robust regulatory mechanisms in this archaeon. This study enhances our fundamental understanding of the metabolism of S. acidocaldarius.
Collapse
Affiliation(s)
- Viktor Laurin Sedlmayr
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Diana Széliová
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Veerke De Kock
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Yannick Gansemans
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Filip Van Nieuwerburgh
- Department of Pharmaceutics, Laboratory of Pharmaceutical Biotechnology, Ghent University, Ghent, Belgium
| | - Eveline Peeters
- Research Group of Microbiology, Department of Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Julian Quehenberger
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| | - Jürgen Zanghellini
- Department of Analytical Chemistry, University of Vienna, Vienna, Austria
| | - Oliver Spadiut
- Research Division Biochemical Engineering, Institute of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
2
|
Egas RA, Sahonero-Canavesi DX, Bale NJ, Koenen M, Yildiz Ç, Villanueva L, Sousa DZ, Sánchez-Andrea I. Acetic acid stress response of the acidophilic sulfate reducer Acididesulfobacillus acetoxydans. Environ Microbiol 2024; 26:e16565. [PMID: 38356112 DOI: 10.1111/1462-2920.16565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/12/2023] [Indexed: 02/16/2024]
Abstract
Acid mine drainage (AMD) waters are a severe environmental threat, due to their high metal content and low pH (pH <3). Current technologies treating AMD utilize neutrophilic sulfate-reducing microorganisms (SRMs), but acidophilic SRM could offer advantages. As AMDs are low in organics these processes require electron donor addition, which is often incompletely oxidized into organic acids (e.g., acetic acid). At low pH, acetic acid is undissociated and toxic to microorganisms. We investigated the stress response of the acetotrophic Acididesulfobacillus acetoxydans to acetic acid. A. acetoxydans was cultivated in bioreactors at pH 5.0 (optimum). For stress experiments, triplicate reactors were spiked until 7.5 mM of acetic acid and compared with (non-spiked) triplicate reactors for physiological, transcriptomic, and membrane lipid changes. After acetic acid spiking, the optical density initially dropped, followed by an adaptation phase during which growth resumed at a lower growth rate. Transcriptome analysis revealed a downregulation of genes involved in glutamate and aspartate synthesis following spiking. Membrane lipid analysis revealed a decrease in iso and anteiso fatty acid relative abundance; and an increase of acetyl-CoA as a fatty acid precursor. These adaptations allow A. acetoxydans to detoxify acetic acid, creating milder conditions for other microorganisms in AMD environments.
Collapse
Affiliation(s)
- Reinier A Egas
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Diana X Sahonero-Canavesi
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Den Burg, The Netherlands
| | - Nicole J Bale
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Den Burg, The Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Den Burg, The Netherlands
| | - Çağlar Yildiz
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), Texel, Den Burg, The Netherlands
- Department of Earth Sciences, Utrecht University, Utrecht, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht, Utrecht, The Netherlands
| | - Irene Sánchez-Andrea
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Environmental Sciences and Sustainability Department, Science & Technology School, IE University, Segovia, Spain
| |
Collapse
|
3
|
Chiu BK, Waldbauer J, Elling FJ, Mete ÖZ, Zhang L, Pearson A, Eggleston EM, Leavitt WD. Membrane lipid and expression responses of Saccharolobus islandicus REY15A to acid and cold stress. Front Microbiol 2023; 14:1219779. [PMID: 37649629 PMCID: PMC10465181 DOI: 10.3389/fmicb.2023.1219779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/24/2023] [Indexed: 09/01/2023] Open
Abstract
Archaea adjust the number of cyclopentane rings in their glycerol dibiphytanyl glycerol tetraether (GDGT) membrane lipids as a homeostatic response to environmental stressors such as temperature, pH, and energy availability shifts. However, archaeal expression patterns that correspond with changes in GDGT composition are less understood. Here we characterize the acid and cold stress responses of the thermoacidophilic crenarchaeon Saccharolobus islandicus REY15A using growth rates, core GDGT lipid profiles, transcriptomics and proteomics. We show that both stressors result in impaired growth, lower average GDGT cyclization, and differences in gene and protein expression. Transcription data revealed differential expression of the GDGT ring synthase grsB in response to both acid stress and cold stress. Although the GDGT ring synthase encoded by grsB forms highly cyclized GDGTs with ≥5 ring moieties, S. islandicus grsB upregulation under acidic pH conditions did not correspond with increased abundances of highly cyclized GDGTs. Our observations highlight the inability to predict GDGT changes from transcription data alone. Broader analysis of transcriptomic data revealed that S. islandicus differentially expresses many of the same transcripts in response to both acid and cold stress. These included upregulation of several biosynthetic pathways and downregulation of oxidative phosphorylation and motility. Transcript responses specific to either of the two stressors tested here included upregulation of genes related to proton pumping and molecular turnover in acid stress conditions and upregulation of transposases in cold stress conditions. Overall, our study provides a comprehensive understanding of the GDGT modifications and differential expression characteristic of the acid stress and cold stress responses in S. islandicus.
Collapse
Affiliation(s)
- Beverly K. Chiu
- Department of Earth Sciences, Dartmouth College, Hanover, NH, United States
| | - Jacob Waldbauer
- Department of the Geophysical Sciences, The University of Chicago, Chicago, IL, United States
| | - Felix J. Elling
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
- Leibniz-Laboratory for Radiometric Dating and Isotope Research, Kiel University, Kiel, Germany
| | - Öykü Z. Mete
- Department of Earth Sciences, Dartmouth College, Hanover, NH, United States
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| | - Lichun Zhang
- Department of the Geophysical Sciences, The University of Chicago, Chicago, IL, United States
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, United States
| | - Erin M. Eggleston
- Department of Biology, Middlebury College, Middlebury, VT, United States
| | - William D. Leavitt
- Department of Earth Sciences, Dartmouth College, Hanover, NH, United States
- Department of Chemistry, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
4
|
Yu F, Luo W, Xie W, Li Y, Liu Y, Ye X, Peng T, Wang H, Huang T, Hu Z. The effects of long-term hexabromocyclododecanes contamination on microbial communities in the microcosms. CHEMOSPHERE 2023; 325:138412. [PMID: 36925001 DOI: 10.1016/j.chemosphere.2023.138412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 01/21/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
The adaptation of microbial community to the long-term contamination of hexabromocyclododecanes (HBCDs) has not been well studied. Our previous study found that the HBCDs contamination in the microcosms constructed of sediments from two different mangrove forests in 8 months resulted in serious acidification (pH2-3). This study reanalyzed previous sequencing data and compared them with data after 20 months to investigate the adaptive properties of microbial communities in the stress of HBCDs and acidification. It hypothesized that the reassembly was based on the fitness of taxa. The results indicated that eukaryotes and fungi might have better adaptive capacity to these deteriorated habitats. Eukaryotic taxa Eufallia and Syncystis, and fungal taxa Wickerhamomyces were only detected after 20 months of contamination. Moreover, eukaryotic taxa Caloneis and Nitzschia, and fungal taxa Talaromyces were dominant in most of microbial communities (14.467-95.941%). The functional compositions were sediment-dependent and more divergent than community reassemblies. Network and co-occurrence analysis suggested that acidophiles such as Acidisoma and Acidiphilium were gaining more positive relations in the long-term stress. The acidophilic taxa and genes involved in resistance to the acidification and toxicity of HBCDs were enriched, for example, bacteria Acidisoma and Acidiphilium, archaea Thermogymnomonas, and eukaryotes Nitzschia, and genes kdpC, odc1, polA, gst, and sod-2. These genes involved in oxidative stress response, energy metabolism, DNA damage repair, potassium transportation, and decarboxylation. It suggested that the microbial communities might cope with the stress from HBCDs and acidification via multiple pathways. The present research shed light on the evolution of microbial communities under the long-term stress of HBCDs contamination and acidification.
Collapse
Affiliation(s)
- Fei Yu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Wenqi Luo
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Wei Xie
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Yuyang Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Yongjin Liu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Xueying Ye
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Hui Wang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China
| | - Tongwang Huang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China.
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong Province, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, Guangdong Province, China.
| |
Collapse
|
5
|
Dopson M, González-Rosales C, Holmes DS, Mykytczuk N. Eurypsychrophilic acidophiles: From (meta)genomes to low-temperature biotechnologies. Front Microbiol 2023; 14:1149903. [PMID: 37007468 PMCID: PMC10050440 DOI: 10.3389/fmicb.2023.1149903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/16/2023] [Indexed: 03/17/2023] Open
Abstract
Low temperature and acidic environments encompass natural milieus such as acid rock drainage in Antarctica and anthropogenic sites including drained sulfidic sediments in Scandinavia. The microorganisms inhabiting these environments include polyextremophiles that are both extreme acidophiles (defined as having an optimum growth pH < 3), and eurypsychrophiles that grow at low temperatures down to approximately 4°C but have an optimum temperature for growth above 15°C. Eurypsychrophilic acidophiles have important roles in natural biogeochemical cycling on earth and potentially on other planetary bodies and moons along with biotechnological applications in, for instance, low-temperature metal dissolution from metal sulfides. Five low-temperature acidophiles are characterized, namely, Acidithiobacillus ferriphilus, Acidithiobacillus ferrivorans, Acidithiobacillus ferrooxidans, “Ferrovum myxofaciens,” and Alicyclobacillus disulfidooxidans, and their characteristics are reviewed. Our understanding of characterized and environmental eurypsychrophilic acidophiles has been accelerated by the application of “omics” techniques that have aided in revealing adaptations to low pH and temperature that can be synergistic, while other adaptations are potentially antagonistic. The lack of known acidophiles that exclusively grow below 15°C may be due to the antagonistic nature of adaptations in this polyextremophile. In conclusion, this review summarizes the knowledge of eurypsychrophilic acidophiles and places the information in evolutionary, environmental, biotechnological, and exobiology perspectives.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- *Correspondence: Mark Dopson
| | - Carolina González-Rosales
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastian, Santiago, Chile
| | - Nadia Mykytczuk
- Goodman School of Mines, Laurentian University, Sudbury, ON, Canada
| |
Collapse
|
6
|
Neira G, Vergara E, Holmes DS. Genome-guided prediction of acid resistance mechanisms in acidophilic methanotrophs of phylogenetically deep-rooted Verrucomicrobia isolated from geothermal environments. Front Microbiol 2022; 13:900531. [PMID: 36212841 PMCID: PMC9543262 DOI: 10.3389/fmicb.2022.900531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Verrucomicrobia are a group of microorganisms that have been proposed to be deeply rooted in the Tree of Life. Some are methanotrophs that oxidize the potent greenhouse gas methane and are thus important in decreasing atmospheric concentrations of the gas, potentially ameliorating climate change. They are widespread in various environments including soil and fresh or marine waters. Recently, a clade of extremely acidophilic Verrucomicrobia, flourishing at pH < 3, were described from high-temperature geothermal ecosystems. This novel group could be of interest for studies about the emergence of life on Earth and to astrobiologists as homologs for possible extraterrestrial life. In this paper, we describe predicted mechanisms for survival of this clade at low pH and suggest its possible evolutionary trajectory from an inferred neutrophilic ancestor. Extreme acidophiles are defined as organisms that thrive in extremely low pH environments (≤ pH 3). Many are polyextremophiles facing high temperatures and high salt as well as low pH. They are important to study for both providing fundamental insights into biological mechanisms of survival and evolution in such extreme environments and for understanding their roles in biotechnological applications such as industrial mineral recovery (bioleaching) and mitigation of acid mine drainage. They are also, potentially, a rich source of novel genes and pathways for the genetic engineering of microbial strains. Acidophiles of the Verrucomicrobia phylum are unique as they are the only known aerobic methanotrophs that can grow optimally under acidic (pH 2–3) and moderately thermophilic conditions (50–60°C). Three moderately thermophilic genera, namely Methylacidiphilum, Methylacidimicrobium, and Ca. Methylacidithermus, have been described in geothermal environments. Most of the investigations of these organisms have focused on their methane oxidizing capabilities (methanotrophy) and use of lanthanides as a protein cofactor, with no extensive study that sheds light on the mechanisms that they use to flourish at extremely low pH. In this paper, we extend the phylogenetic description of this group of acidophiles using whole genome information and we identify several mechanisms, potentially involved in acid resistance, including “first line of defense” mechanisms that impede the entry of protons into the cell. These include the presence of membrane-associated hopanoids, multiple copies of the outer membrane protein (Slp), and inner membrane potassium channels (kup, kdp) that generate a reversed membrane potential repelling the intrusion of protons. Acidophilic Verrucomicrobia also display a wide array of proteins potentially involved in the “second line of defense” where protons that evaded the first line of defense and entered the cell are expelled or neutralized, such as the glutamate decarboxylation (gadAB) and phosphate-uptake systems. An exclusive N-type ATPase F0-F1 was identified only in acidophiles of Verrucomicrobia and is predicted to be a specific adaptation in these organisms. Phylogenetic analyses suggest that many predicted mechanisms are evolutionarily conserved and most likely entered the acidophilic lineage of Verrucomicrobia by vertical descent from a common ancestor. However, it is likely that some defense mechanisms such as gadA and kup entered the acidophilic Verrucomicrobia lineage by horizontal gene transfer.
Collapse
Affiliation(s)
- Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- *Correspondence: David S. Holmes
| |
Collapse
|
7
|
Boase K, González C, Vergara E, Neira G, Holmes D, Watkin E. Prediction and Inferred Evolution of Acid Tolerance Genes in the Biotechnologically Important Acidihalobacter Genus. Front Microbiol 2022; 13:848410. [PMID: 35516430 PMCID: PMC9062700 DOI: 10.3389/fmicb.2022.848410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/28/2022] [Indexed: 11/18/2022] Open
Abstract
Acidihalobacter is a genus of acidophilic, gram-negative bacteria known for its ability to oxidize pyrite minerals in the presence of elevated chloride ions, a capability rare in other iron-sulfur oxidizing acidophiles. Previous research involving Acidihalobacter spp. has focused on their applicability in saline biomining operations and their genetic arsenal that allows them to cope with chloride, metal and oxidative stress. However, an understanding of the molecular adaptations that enable Acidihalobacter spp. to thrive under both acid and chloride stress is needed to provide a more comprehensive understanding of how this genus can thrive in such extreme biomining conditions. Currently, four genomes of the Acidihalobacter genus have been sequenced: Acidihalobacter prosperus DSM 5130T, Acidihalobacter yilgarnensis DSM 105917T, Acidihalobacter aeolianus DSM 14174T, and Acidihalobacter ferrooxydans DSM 14175T. Phylogenetic analysis shows that the Acidihalobacter genus roots to the Chromatiales class consisting of mostly halophilic microorganisms. In this study, we aim to advance our knowledge of the genetic repertoire of the Acidihalobacter genus that has enabled it to cope with acidic stress. We provide evidence of gene gain events that are hypothesized to help the Acidihalobacter genus cope with acid stress. Potential acid tolerance mechanisms that were found in the Acidihalobacter genomes include multiple potassium transporters, chloride/proton antiporters, glutamate decarboxylase system, arginine decarboxylase system, urease system, slp genes, squalene synthesis, and hopanoid synthesis. Some of these genes are hypothesized to have entered the Acidihalobacter via vertical decent from an inferred non-acidophilic ancestor, however, horizontal gene transfer (HGT) from other acidophilic lineages is probably responsible for the introduction of many acid resistance genes.
Collapse
Affiliation(s)
- Katelyn Boase
- Curtin Medical School, Curtin University, Perth, WA, Australia
| | - Carolina González
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - Gonzalo Neira
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
| | - David Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencias, Universidad San Sebastián, Santiago, Chile
- *Correspondence: David S. Holmes,
| | - Elizabeth Watkin
- Curtin Medical School, Curtin University, Perth, WA, Australia
- Elizabeth Watkin,
| |
Collapse
|
8
|
González-Rosales C, Vergara E, Dopson M, Valdés JH, Holmes DS. Integrative Genomics Sheds Light on Evolutionary Forces Shaping the Acidithiobacillia Class Acidophilic Lifestyle. Front Microbiol 2022; 12:822229. [PMID: 35242113 PMCID: PMC8886135 DOI: 10.3389/fmicb.2021.822229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/30/2021] [Indexed: 01/22/2023] Open
Abstract
Extreme acidophiles thrive in environments rich in protons (pH values <3) and often high levels of dissolved heavy metals. They are distributed across the three domains of the Tree of Life including members of the Proteobacteria. The Acidithiobacillia class is formed by the neutrophilic genus Thermithiobacillus along with the extremely acidophilic genera Fervidacidithiobacillus, Igneacidithiobacillus, Ambacidithiobacillus, and Acidithiobacillus. Phylogenomic reconstruction revealed a division in the Acidithiobacillia class correlating with the different pH optima that suggested that the acidophilic genera evolved from an ancestral neutrophile within the Acidithiobacillia. Genes and mechanisms denominated as "first line of defense" were key to explaining the Acidithiobacillia acidophilic lifestyle including preventing proton influx that allows the cell to maintain a near-neutral cytoplasmic pH and differ from the neutrophilic Acidithiobacillia ancestors that lacked these systems. Additional differences between the neutrophilic and acidophilic Acidithiobacillia included the higher number of gene copies in the acidophilic genera coding for "second line of defense" systems that neutralize and/or expel protons from cell. Gain of genes such as hopanoid biosynthesis involved in membrane stabilization at low pH and the functional redundancy for generating an internal positive membrane potential revealed the transition from neutrophilic properties to a new acidophilic lifestyle by shaping the Acidithiobacillaceae genomic structure. The presence of a pool of accessory genes with functional redundancy provides the opportunity to "hedge bet" in rapidly changing acidic environments. Although a core of mechanisms for acid resistance was inherited vertically from an inferred neutrophilic ancestor, the majority of mechanisms, especially those potentially involved in resistance to extremely low pH, were obtained from other extreme acidophiles by horizontal gene transfer (HGT) events.
Collapse
Affiliation(s)
- Carolina González-Rosales
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Center for Genomics and Bioinformatics, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Eva Vergara
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Jorge H. Valdés
- Center for Bioinformatics and Integrative Biology, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, Chile
| | - David S. Holmes
- Center for Bioinformatics and Genome Biology, Centro Ciencia & Vida, Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
9
|
Chauhan SM, Poudel S, Rychel K, Lamoureux C, Yoo R, Al Bulushi T, Yuan Y, Palsson BO, Sastry AV. Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius. Front Microbiol 2021; 12:753521. [PMID: 34777307 PMCID: PMC8578740 DOI: 10.3389/fmicb.2021.753521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/30/2021] [Indexed: 01/24/2023] Open
Abstract
Dynamic cellular responses to environmental constraints are coordinated by the transcriptional regulatory network (TRN), which modulates gene expression. This network controls most fundamental cellular responses, including metabolism, motility, and stress responses. Here, we apply independent component analysis, an unsupervised machine learning approach, to 95 high-quality Sulfolobus acidocaldarius RNA-seq datasets and extract 45 independently modulated gene sets, or iModulons. Together, these iModulons contain 755 genes (32% of the genes identified on the genome) and explain over 70% of the variance in the expression compendium. We show that five modules represent the effects of known transcriptional regulators, and hypothesize that most of the remaining modules represent the effects of uncharacterized regulators. Further analysis of these gene sets results in: (1) the prediction of a DNA export system composed of five uncharacterized genes, (2) expansion of the LysM regulon, and (3) evidence for an as-yet-undiscovered global regulon. Our approach allows for a mechanistic, systems-level elucidation of an extremophile's responses to biological perturbations, which could inform research on gene-regulator interactions and facilitate regulator discovery in S. acidocaldarius. We also provide the first global TRN for S. acidocaldarius. Collectively, these results provide a roadmap toward regulatory network discovery in archaea.
Collapse
Affiliation(s)
- Siddharth M. Chauhan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Saugat Poudel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Cameron Lamoureux
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Reo Yoo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Tahani Al Bulushi
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Yuan Yuan
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Anand V. Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
10
|
Physiological Characterization of Sulfolobus acidocaldarius in a Controlled Bioreactor Environment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115532. [PMID: 34064179 PMCID: PMC8196767 DOI: 10.3390/ijerph18115532] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 05/18/2021] [Accepted: 05/19/2021] [Indexed: 01/28/2023]
Abstract
The crenarchaeal model organism Sulfolobus acidocaldarius is typically cultivated in shake flasks. Although shake flasks represent the state-of-the-art for the cultivation of this microorganism, in these systems crucial process parameters, like pH or substrate availability, are only set initially, but cannot be controlled during the cultivation process. As a result, a thorough characterization of growth parameters under controlled conditions is still missing for S. acidocaldarius. In this study, we conducted chemostat cultivations at 75 °C using a growth medium containing L-glutamate and D-glucose as main carbon sources. Different pH values and dilution rates were applied with the goal to physiologically characterize the organism in a controlled bioreactor environment. Under these controlled conditions a pH optimum of 3.0 was determined. Washout of the cells occurred at a dilution rate of 0.097 h−1 and the optimal productivity of biomass was observed at a dilution rate of 0.062 h−1. While both carbon sources were taken up by S. acidocaldarius concomitantly, a 6.6-fold higher affinity for L-glutamate was shown. When exposed to suboptimal growth conditions, S. acidocaldarius reacted with a change in the respiratory behavior and an increased trehalose production rate in addition to a decreased growth rate.
Collapse
|
11
|
Hu W, Feng S, Tong Y, Zhang H, Yang H. Adaptive defensive mechanism of bioleaching microorganisms under extremely environmental acid stress: Advances and perspectives. Biotechnol Adv 2020; 42:107580. [DOI: 10.1016/j.biotechadv.2020.107580] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/26/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
|
12
|
The Cell Membrane of Sulfolobus spp.-Homeoviscous Adaption and Biotechnological Applications. Int J Mol Sci 2020; 21:ijms21113935. [PMID: 32486295 PMCID: PMC7312580 DOI: 10.3390/ijms21113935] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/20/2022] Open
Abstract
The microbial cell membrane is affected by physicochemical parameters, such as temperature and pH, but also by the specific growth rate of the host organism. Homeoviscous adaption describes the process of maintaining membrane fluidity and permeability throughout these environmental changes. Archaea, and thereby, Sulfolobus spp. exhibit a unique lipid composition of ether lipids, which are altered in regard to the ratio of diether to tetraether lipids, number of cyclopentane rings and type of head groups, as a coping mechanism against environmental changes. The main biotechnological application of the membrane lipids of Sulfolobus spp. are so called archaeosomes. Archaeosomes are liposomes which are fully or partly generated from archaeal lipids and harbor the potential to be used as drug delivery systems for vaccines, proteins, peptides and nucleic acids. This review summarizes the influence of environmental parameters on the cell membrane of Sulfolobus spp. and the biotechnological applications of their membrane lipids.
Collapse
|
13
|
Evolution of Predicted Acid Resistance Mechanisms in the Extremely Acidophilic Leptospirillum Genus. Genes (Basel) 2020; 11:genes11040389. [PMID: 32260256 PMCID: PMC7231039 DOI: 10.3390/genes11040389] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 02/01/2023] Open
Abstract
Organisms that thrive in extremely acidic environments (≤pH 3.5) are of widespread importance in industrial applications, environmental issues, and evolutionary studies. Leptospirillum spp. constitute the only extremely acidophilic microbes in the phylogenetically deep-rooted bacterial phylum Nitrospirae. Leptospirilli are Gram-negative, obligatory chemolithoautotrophic, aerobic, ferrous iron oxidizers. This paper predicts genes that Leptospirilli use to survive at low pH and infers their evolutionary trajectory. Phylogenetic and other bioinformatic approaches suggest that these genes can be classified into (i) "first line of defense", involved in the prevention of the entry of protons into the cell, and (ii) neutralization or expulsion of protons that enter the cell. The first line of defense includes potassium transporters, predicted to form an inside positive membrane potential, spermidines, hopanoids, and Slps (starvation-inducible outer membrane proteins). The "second line of defense" includes proton pumps and enzymes that consume protons. Maximum parsimony, clustering methods, and gene alignments are used to infer the evolutionary trajectory that potentially enabled the ancestral Leptospirillum to transition from a postulated circum-neutral pH environment to an extremely acidic one. The hypothesized trajectory includes gene gains/loss events driven extensively by horizontal gene transfer, gene duplications, gene mutations, and genomic rearrangements.
Collapse
|
14
|
Belilla J, Moreira D, Jardillier L, Reboul G, Benzerara K, López-García JM, Bertolino P, López-Archilla AI, López-García P. Hyperdiverse archaea near life limits at the polyextreme geothermal Dallol area. Nat Ecol Evol 2019; 3:1552-1561. [PMID: 31666740 PMCID: PMC6837875 DOI: 10.1038/s41559-019-1005-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 09/16/2019] [Indexed: 11/13/2022]
Abstract
Microbial life has adapted to various individual extreme conditions; yet, organisms simultaneously adapted to very low pH, high salt and high temperature are unknown. We combined environmental 16S/18S rRNA-gene metabarcoding, cultural approaches, fluorescence-activated cell sorting, scanning electron microscopy and chemical analyses to study samples along such unique polyextreme gradients in the Dallol-Danakil area (Ethiopia). We identify two physicochemical barriers to life in the presence of surface liquid water defined by: i) high chaotropicity-low water activity in Mg2+/Ca2+-dominated brines and ii) hyperacidity-salt combinations (pH~0/NaCl-dominated salt-saturation). When detected, life was dominated by highly diverse ultrasmall archaea widely distributed across phyla with and without previously known halophilic members. We hypothesize that high cytoplasmic K+-level was an original archaeal adaptation to hyperthermophily, subsequently exapted during multiple transitions to extreme halophily. We detect active silica encrustment/fossilization of cells but also abiotic biomorphs of varied chemistry. Our work helps circumscribing habitability and calls for cautionary interpretations of morphological biosignatures on Earth and beyond.
Collapse
Affiliation(s)
- Jodie Belilla
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Ludwig Jardillier
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Guillaume Reboul
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d'Histoire Naturelle, Paris, France
| | | | - Paola Bertolino
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France
| | | | - Purificación López-García
- Ecologie Systématique Evolution, CNRS, Université Paris-Sud, Université Paris-Saclay, AgroParisTech, Orsay, France.
| |
Collapse
|
15
|
Bischof LF, Haurat MF, Albers SV. Two membrane-bound transcription factors regulate expression of various type-IV-pili surface structures in Sulfolobus acidocaldarius. PeerJ 2019; 7:e6459. [PMID: 30828487 PMCID: PMC6396743 DOI: 10.7717/peerj.6459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 01/15/2019] [Indexed: 11/20/2022] Open
Abstract
In Archaea and Bacteria, gene expression is tightly regulated in response to environmental stimuli. In the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius nutrient limitation induces expression of the archaellum, the archaeal motility structure. This expression is orchestrated by a complex hierarchical network of positive and negative regulators-the archaellum regulatory network (arn). The membrane-bound one-component system ArnR and its paralog ArnR1 were recently described as main activators of archaellum expression in S. acidocaldarius. They regulate gene expression of the archaellum operon by targeting the promoter of flaB, encoding the archaellum filament protein. Here we describe a strategy for the isolation and biochemical characterization of these two archaellum regulators. Both regulators are capable of forming oligomers and are phosphorylated by the Ser/Thr kinase ArnC. Apart from binding to pflaB, ArnR but not ArnR1 bound to promoter sequences of aapF and upsX, which encode components of the archaeal adhesive pilus and UV-inducible pili system, demonstrating a regulatory connection between different surface appendages of S. acidocaldarius.
Collapse
Affiliation(s)
- Lisa Franziska Bischof
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), Freiburg, Germany
| | - Maria Florencia Haurat
- Department of Molecular Microbiology, Washington University, School of Medicine in St. Louis, St. Louis, MO, USA
| | - Sonja-Verena Albers
- Institute of Biology II, Molecular Biology of Archaea, University of Freiburg, Freiburg, Germany
| |
Collapse
|
16
|
Bischof LF, Haurat MF, Hoffmann L, Albersmeier A, Wolf J, Neu A, Pham TK, Albaum SP, Jakobi T, Schouten S, Neumann-Schaal M, Wright PC, Kalinowski J, Siebers B, Albers SV. Early Response of Sulfolobus acidocaldarius to Nutrient Limitation. Front Microbiol 2019; 9:3201. [PMID: 30687244 PMCID: PMC6335949 DOI: 10.3389/fmicb.2018.03201] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/10/2018] [Indexed: 01/13/2023] Open
Abstract
In natural environments microorganisms encounter extreme changes in temperature, pH, osmolarities and nutrient availability. The stress response of many bacterial species has been described in detail, however, knowledge in Archaea is limited. Here, we describe the cellular response triggered by nutrient limitation in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. We measured changes in gene transcription and protein abundance upon nutrient depletion up to 4 h after initiation of nutrient depletion. Transcript levels of 1118 of 2223 protein coding genes and abundance of approximately 500 proteins with functions in almost all cellular processes were affected by nutrient depletion. Our study reveals a significant rerouting of the metabolism with respect to degradation of internal as well as extracellular-bound organic carbon and degradation of proteins. Moreover, changes in membrane lipid composition were observed in order to access alternative sources of energy and to maintain pH homeostasis. At transcript level, the cellular response to nutrient depletion in S. acidocaldarius seems to be controlled by the general transcription factors TFB2 and TFEβ. In addition, ribosome biogenesis is reduced, while an increased protein degradation is accompanied with a loss of protein quality control. This study provides first insights into the early cellular response of Sulfolobus to organic carbon and organic nitrogen depletion.
Collapse
Affiliation(s)
- Lisa F Bischof
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - M Florencia Haurat
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Lena Hoffmann
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany
| | - Andreas Albersmeier
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jacqueline Wolf
- Department of Bioinformatics and Biochemistry, Braunschweig University of Technology, Braunschweig, Germany
| | - Astrid Neu
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| | - Trong Khoa Pham
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Stefan P Albaum
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Jakobi
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Stefan Schouten
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute of Sea Research, Den Burg, Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, Utrecht, Netherlands
| | - Meina Neumann-Schaal
- Department of Bioinformatics and Biochemistry, Braunschweig University of Technology, Braunschweig, Germany
| | - Phillip C Wright
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Bettina Siebers
- Molecular Enzyme Technology and Biochemistry (MEB), Biofilm Centre, Centre for Water and Environmental Research (CWE), University of Duisburg-Essen, Essen, Germany
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Multi-omics Reveals the Lifestyle of the Acidophilic, Mineral-Oxidizing Model Species Leptospirillum ferriphilum T. Appl Environ Microbiol 2018; 84:AEM.02091-17. [PMID: 29150517 PMCID: PMC5772234 DOI: 10.1128/aem.02091-17] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/09/2017] [Indexed: 11/20/2022] Open
Abstract
Leptospirillum ferriphilum plays a major role in acidic, metal-rich environments, where it represents one of the most prevalent iron oxidizers. These milieus include acid rock and mine drainage as well as biomining operations. Despite its perceived importance, no complete genome sequence of the type strain of this model species is available, limiting the possibilities to investigate the strategies and adaptations that Leptospirillum ferriphilum DSM 14647T (here referred to as Leptospirillum ferriphilum T) applies to survive and compete in its niche. This study presents a complete, circular genome of Leptospirillum ferriphilum T obtained by PacBio single-molecule real-time (SMRT) long-read sequencing for use as a high-quality reference. Analysis of the functionally annotated genome, mRNA transcripts, and protein concentrations revealed a previously undiscovered nitrogenase cluster for atmospheric nitrogen fixation and elucidated metabolic systems taking part in energy conservation, carbon fixation, pH homeostasis, heavy metal tolerance, the oxidative stress response, chemotaxis and motility, quorum sensing, and biofilm formation. Additionally, mRNA transcript counts and protein concentrations were compared between cells grown in continuous culture using ferrous iron as the substrate and those grown in bioleaching cultures containing chalcopyrite (CuFeS2). Adaptations of Leptospirillum ferriphilum T to growth on chalcopyrite included the possibly enhanced production of reducing power, reduced carbon dioxide fixation, as well as elevated levels of RNA transcripts and proteins involved in heavy metal resistance, with special emphasis on copper efflux systems. Finally, the expression and translation of genes responsible for chemotaxis and motility were enhanced.IMPORTANCE Leptospirillum ferriphilum is one of the most important iron oxidizers in the context of acidic and metal-rich environments during moderately thermophilic biomining. A high-quality circular genome of Leptospirillum ferriphilum T coupled with functional omics data provides new insights into its metabolic properties, such as the novel identification of genes for atmospheric nitrogen fixation, and represents an essential step for further accurate proteomic and transcriptomic investigation of this acidophile model species in the future. Additionally, light is shed on adaptation strategies of Leptospirillum ferriphilum T for growth on the copper mineral chalcopyrite. These data can be applied to deepen our understanding and optimization of bioleaching and biooxidation, techniques that present sustainable and environmentally friendly alternatives to many traditional methods for metal extraction.
Collapse
|
18
|
Abstract
Biomembranes assemble and operate at the interface with electrolyte solutions. Interactions between ions in solutions and the lipid affect the membrane structure, dynamics and electrostatic potential. In this article, I review some of the experimental and computational methods that are used to study membrane–ions interactions. Experimental methods that account for membrane–ion interactions directly and indirectly are presented first. Then, studies in which molecular dynamics simulations were used to gain an understanding of membrane–ion interactions are surveyed. Finally, the current view on membrane–ion interactions and their significance is briefly discussed.
Collapse
Affiliation(s)
- Ran Friedman
- Department of Chemistry and Biomedical Sciences and Centre of Excellence "Biomaterials Chemistry", Linnæus University, Kalmar, Sweden.
| |
Collapse
|
19
|
Pineda De Castro LF, Dopson M, Friedman R. Biological Membranes in Extreme Conditions: Anionic Tetraether Lipid Membranes and Their Interactions with Sodium and Potassium. J Phys Chem B 2016; 120:10628-10634. [PMID: 27668511 DOI: 10.1021/acs.jpcb.6b06206] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Archaea such as Sulfolobus acidocaldarius tolerate extreme temperatures and high acidity and can grow in the presence of toxic metals and low concentrations of Na+ or K+. It is believed that their unique tetraether membranes protect them from harsh environments and allow their survival under such conditions. We used molecular dynamics simulations to study membranes comprising glycerol dialkylnonitol tetraether lipids, which are the main component of S. acidocaldarius membranes, in solutions containing different concentrations of NaCl and KCl or with Na+ or K+ counterions (trace cations, 0 M). Anionic binding sites on the membranes were almost 50% occupied in the presence of counterions. The free energy of cation-phosphate complexation and the residence times of ions near the membranes were found to be both ion- and concentration-dependent. Sodium ions had more favorable interactions with the membranes and a longer residence time, whereas higher cation concentrations led to shorter ion residence times. When only counterions were present in the solutions, large residence times suggested that the membrane may function as a cation-attracting reservoir. The results suggested that the ions can be easily transferred to the cytoplasm as needed, explaining the growth curves of S. acidocaldarius under different salinities and pH.
Collapse
Affiliation(s)
- Luis Felipe Pineda De Castro
- Computational Chemistry and Biochemistry Research Group (CCBG), Department of Chemistry and Biomedical Sciences, ‡Centre of Excellence "Biomaterials Chemistry", and §Linnaeus University Centre for Ecology and Evolution in Microbial model Systems (EEMiS), Linnæus University , 391 82 Kalmar, Sweden
| | - Mark Dopson
- Computational Chemistry and Biochemistry Research Group (CCBG), Department of Chemistry and Biomedical Sciences, ‡Centre of Excellence "Biomaterials Chemistry", and §Linnaeus University Centre for Ecology and Evolution in Microbial model Systems (EEMiS), Linnæus University , 391 82 Kalmar, Sweden
| | - Ran Friedman
- Computational Chemistry and Biochemistry Research Group (CCBG), Department of Chemistry and Biomedical Sciences, ‡Centre of Excellence "Biomaterials Chemistry", and §Linnaeus University Centre for Ecology and Evolution in Microbial model Systems (EEMiS), Linnæus University , 391 82 Kalmar, Sweden
| |
Collapse
|