1
|
Böhm J, Kauss K, Michl K, Engelhardt L, Brouwer EM, Hagemann M. Impact of the carbon flux regulator protein pirC on ethanol production in engineered cyanobacteria. Front Microbiol 2023; 14:1238737. [PMID: 37649635 PMCID: PMC10465007 DOI: 10.3389/fmicb.2023.1238737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023] Open
Abstract
Future sustainable energy production can be achieved using mass cultures of photoautotrophic microorganisms such as cyanobacteria, which are engineered to synthesize valuable products directly from CO2 and sunlight. For example, strains of the model organism Synechocystis sp. PCC 6803 have been generated to produce ethanol. Here, we performed a study to prove the hypothesis that carbon flux in the direction of pyruvate is one bottleneck to achieve high ethanol titers in cyanobacteria. Ethanol-producing strains of the cyanobacterium Synechocystis sp. PCC 6803 were generated that bear mutation in the gene pirC aiming to increase carbon flux towards pyruvate. The strains were cultivated at different nitrogen or carbon conditions and the ethanol production was analysed. Generally, a clear correlation between growth rate and ethanol production was found. The mutation of pirC, however, had only a positive impact on ethanol titers under nitrogen depletion. The increase in ethanol was accompanied by elevated pyruvate and lowered glycogen levels indicating that the absence of pirC indeed increased carbon partitioning towards lower glycolysis. Metabolome analysis revealed that this change in carbon flow had also a marked impact on the overall primary metabolism in Synechocystis sp. PCC 6803. Deletion of pirC improved ethanol production under specific conditions supporting the notion that a better understanding of regulatory mechanisms involved in cyanobacterial carbon partitioning is needed to engineer more productive cyanobacterial strains.
Collapse
Affiliation(s)
- Julien Böhm
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
- Department Aquatic Ecology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Karsten Kauss
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Klaudia Michl
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Lisa Engelhardt
- Department Microbiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Eva-Maria Brouwer
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| | - Martin Hagemann
- Department Plant Physiology, Institute of Biosciences, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Meixner K, Daffert C, Dalnodar D, Mrázová K, Hrubanová K, Krzyzanek V, Nebesarova J, Samek O, Šedrlová Z, Slaninova E, Sedláček P, Obruča S, Fritz I. Glycogen, poly(3-hydroxybutyrate) and pigment accumulation in three Synechocystis strains when exposed to a stepwise increasing salt stress. JOURNAL OF APPLIED PHYCOLOGY 2022; 34:1227-1241. [PMID: 35673609 PMCID: PMC9165259 DOI: 10.1007/s10811-022-02693-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 06/15/2023]
Abstract
The cyanobacterial genus Synechocystis is of particular interest to science and industry because of its efficient phototrophic metabolism, its accumulation of the polymer poly(3-hydroxybutyrate) (PHB) and its ability to withstand or adapt to adverse growing conditions. One such condition is the increased salinity that can be caused by recycled or brackish water used in cultivation. While overall reduced growth is expected in response to salt stress, other metabolic responses relevant to the efficiency of phototrophic production of biomass or PHB (or both) have been experimentally observed in three Synechocystis strains at stepwise increasing salt concentrations. In response to recent reports on metabolic strategies to increase stress tolerance of heterotrophic and phototrophic bacteria, we focused particularly on the stress-induced response of Synechocystis strains in terms of PHB, glycogen and photoactive pigment dynamics. Of the three strains studied, the strain Synechocystis cf. salina CCALA192 proved to be the most tolerant to salt stress. In addition, this strain showed the highest PHB accumulation. All the three strains accumulated more PHB with increasing salinity, to the point where their photosystems were strongly inhibited and they could no longer produce enough energy to synthesize more PHB.
Collapse
Affiliation(s)
- K. Meixner
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
- BEST Bioenergy and Sustainable Technologies GmbH, Inffeldgasse 21b, 8010 Graz, Austria
| | - C. Daffert
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - D. Dalnodar
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| | - K. Mrázová
- Institute of Scientific Instruments, The Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - K. Hrubanová
- Institute of Scientific Instruments, The Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - V. Krzyzanek
- Institute of Scientific Instruments, The Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - J. Nebesarova
- Institute of Parasitology, Biology Centre, The Czech Academy of Sciences, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
- Faculty of Science, Charles University, Vinicna 7, 128 44 Prague 2, Czech Republic
| | - O. Samek
- Institute of Scientific Instruments, The Czech Academy of Sciences, Královopolská 147, 61264 Brno, Czech Republic
| | - Z. Šedrlová
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - E. Slaninova
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - P. Sedláček
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - S. Obruča
- Faculty of Chemistry, Brno University of Technology, Purkynova 118, 612 00 Brno, Czech Republic
| | - I. Fritz
- Institute of Environmental Biotechnology, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430 Tulln, Austria
| |
Collapse
|
3
|
Liao X, Pan Q, Tian X, Wu X, Zhao F. Proteomic analysis of the electron uptake pathway of Rhodopseudomonas palustris CGA009 under different cathodic potentials. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
4
|
Klähn S, Mikkat S, Riediger M, Georg J, Hess WR, Hagemann M. Integrative analysis of the salt stress response in cyanobacteria. Biol Direct 2021; 16:26. [PMID: 34906211 PMCID: PMC8670252 DOI: 10.1186/s13062-021-00316-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/29/2021] [Indexed: 12/24/2022] Open
Abstract
Microorganisms evolved specific acclimation strategies to thrive in environments of high or fluctuating salinities. Here, salt acclimation in the model cyanobacterium Synechocystis sp. PCC 6803 was analyzed by integrating transcriptomic, proteomic and metabolomic data. A dynamic reorganization of the transcriptome occurred during the first hours after salt shock, e.g. involving the upregulation of genes to activate compatible solute biochemistry balancing osmotic pressure. The massive accumulation of glucosylglycerol then had a measurable impact on the overall carbon and nitrogen metabolism. In addition, we observed the coordinated induction of putative regulatory RNAs and of several proteins known for their involvement in other stress responses. Overall, salt-induced changes in the proteome and transcriptome showed good correlations, especially among the stably up-regulated proteins and their transcripts. We define an extended salt stimulon comprising proteins directly or indirectly related to compatible solute metabolism, ion and water movements, and a distinct set of regulatory RNAs involved in post-transcriptional regulation. Our comprehensive data set provides the basis for engineering cyanobacterial salt tolerance and to further understand its regulation.
Collapse
Affiliation(s)
- Stephan Klähn
- Department of Solar Materials, Helmholtz-Centre for Environmental Research - UFZ, Leipzig, Germany
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical Center, Rostock, Germany
| | - Matthias Riediger
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Jens Georg
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Martin Hagemann
- Department of Plant Physiology, Institute of Biosciences, University of Rostock, A.-Einstein-Str. 3, 18059 Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
5
|
Cavaiuolo M, Chagneau C, Laalami S, Putzer H. Impact of RNase E and RNase J on Global mRNA Metabolism in the Cyanobacterium Synechocystis PCC6803. Front Microbiol 2020; 11:1055. [PMID: 32582060 PMCID: PMC7283877 DOI: 10.3389/fmicb.2020.01055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/29/2020] [Indexed: 01/18/2023] Open
Abstract
mRNA levels result from an equilibrium between transcription and degradation. Ribonucleases (RNases) facilitate the turnover of mRNA, which is an important way of controlling gene expression, allowing the cells to adjust transcript levels to a changing environment. In contrast to the heterotrophic model bacteria Escherichia coli and Bacillus subtilis, RNA decay has not been studied in detail in cyanobacteria. Synechocystis sp. PCC6803 encodes orthologs of both E. coli and B. subtilis RNases, including RNase E and RNase J, respectively. We show that in vitro Sy RNases E and J have an endonucleolytic cleavage specificity that is very similar between them and also compared to orthologous enzymes from E. coli, B. subtilis, and Chlamydomonas. Moreover, Sy RNase J displays a robust 5′-exoribonuclease activity similar to B. subtilis RNase J1, but unlike the evolutionarily related RNase J in chloroplasts. Both nucleases are essential and gene deletions could not be fully segregated in Synechocystis. We generated partially disrupted strains of Sy RNase E and J that were stable enough to allow for their growth and characterization. A transcriptome analysis of these strains partially depleted for RNases E and J, respectively, allowed to observe effects on specific transcripts. RNase E altered the expression of a larger number of chromosomal genes and antisense RNAs compared to RNase J, which rather affects endogenous plasmid encoded transcripts. Our results provide the first description of the main transcriptomic changes induced by the partial depletion of two essential ribonucleases in cyanobacteria.
Collapse
Affiliation(s)
- Marina Cavaiuolo
- UMR 8261, CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France
| | - Carine Chagneau
- UMR 8261, CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France
| | - Soumaya Laalami
- UMR 8261, CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France
| | - Harald Putzer
- UMR 8261, CNRS, Institut de Biologie Physico-Chimique, Université de Paris, Paris, France
| |
Collapse
|
6
|
Velmurugan R, Incharoensakdi A. Heterologous Expression of Ethanol Synthesis Pathway in Glycogen Deficient Synechococcus elongatus PCC 7942 Resulted in Enhanced Production of Ethanol and Exopolysaccharides. FRONTIERS IN PLANT SCIENCE 2020; 11:74. [PMID: 32117402 PMCID: PMC7034368 DOI: 10.3389/fpls.2020.00074] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/20/2020] [Indexed: 05/09/2023]
Abstract
In this study, the Synechococcus elongatus PCC 7942 (hereafter S. elongatus) was engineered by the glgC knockout as well as the insertion of the pdc-adh genes from two different microorganisms. The insertion of pdc-adh genes increased the ethanol synthesis with further improvement in the productivity upon the destruction of glycogen synthesis pathway and the supplementation of cofactor. The abolition of glycogen synthesis pathway led to a considerable increase of the engineered S. elongatus metabolites involved in the ethanol synthesis pathway. Moreover, the studies on cofactor addition highlighted the importance of Mg+2, Zn+2, thiamine pyrophosphate, and NADP+ in ethanol synthesis. The yields of 3856 mg/L ethanol and 109.5 µg/108 cells exopolysaccharides were obtained in the engineered S. elongatus using a photo-bioreactor under optimized conditions. This enhanced production in ethanol and exopolysaccharides are attributed to the flux of carbon from glycogen synthesis pathway and proper availability of essential components.
Collapse
Affiliation(s)
- Rajendran Velmurugan
- Cyanobacterial Biotechnology Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Aran Incharoensakdi
- Cyanobacterial Biotechnology Laboratory, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
7
|
Pereira SB, Sousa A, Santos M, Araújo M, Serôdio F, Granja P, Tamagnini P. Strategies to Obtain Designer Polymers Based on Cyanobacterial Extracellular Polymeric Substances (EPS). Int J Mol Sci 2019; 20:E5693. [PMID: 31739392 PMCID: PMC6888056 DOI: 10.3390/ijms20225693] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/11/2019] [Accepted: 11/12/2019] [Indexed: 01/21/2023] Open
Abstract
Biopolymers derived from polysaccharides are a sustainable and environmentally friendly alternative to the synthetic counterparts available in the market. Due to their distinctive properties, the cyanobacterial extracellular polymeric substances (EPS), mainly composed of heteropolysaccharides, emerge as a valid alternative to address several biotechnological and biomedical challenges. Nevertheless, biotechnological/biomedical applications based on cyanobacterial EPS have only recently started to emerge. For the successful exploitation of cyanobacterial EPS, it is important to strategically design the polymers, either by genetic engineering of the producing strains or by chemical modification of the polymers. This requires a better understanding of the EPS biosynthetic pathways and their relationship with central metabolism, as well as to exploit the available polymer functionalization chemistries. Considering all this, we provide an overview of the characteristics and biological activities of cyanobacterial EPS, discuss the challenges and opportunities to improve the amount and/or characteristics of the polymers, and report the most relevant advances on the use of cyanobacterial EPS as scaffolds, coatings, and vehicles for drug delivery.
Collapse
Affiliation(s)
- Sara B. Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Aureliana Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Marina Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Marco Araújo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Filipa Serôdio
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Pedro Granja
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FEUP - Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Paula Tamagnini
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre, Edifício FC4, 4169-007 Porto, Portugal
| |
Collapse
|
8
|
Kirsch F, Klähn S, Hagemann M. Salt-Regulated Accumulation of the Compatible Solutes Sucrose and Glucosylglycerol in Cyanobacteria and Its Biotechnological Potential. Front Microbiol 2019; 10:2139. [PMID: 31572343 PMCID: PMC6753628 DOI: 10.3389/fmicb.2019.02139] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/30/2019] [Indexed: 12/11/2022] Open
Abstract
Cyanobacteria are prokaryotes that can assimilate inorganic carbon via oxygenic photosynthesis, which results in the formation of organic compounds essentially from CO2, water, and light. Increasing concerns regarding the increase in atmospheric CO2 due to fossil energy usage fueled the idea of a photosynthesis-driven and CO2-neutral, i.e., cyanobacteria-based biotechnology. The ability of various cyanobacteria to tolerate high and/or fluctuating salinities attenuates the requirement of freshwater for their cultivation, which makes these organisms even more interesting regarding a sustainable utilization of natural resources. However, those applications require a detailed knowledge of the processes involved in salt acclimation. Here, we review the current state of our knowledge on the regulation of compatible solute accumulation in cyanobacteria. The model organism Synechocystis sp. PCC 6803 responds to increasing salinities mainly by the accumulation of glucosylglycerol (GG) and sucrose. After exposure toward increased salt concentrations, the accumulation of the main compatible solute GG is achieved by de novo synthesis. The key target of regulation is the enzyme GG-phosphate synthase (GgpS) and involves transcriptional, posttranscriptional, and biochemical mechanisms. Recently, the GG-degrading enzyme GG hydrolase A (GghA) was identified, which is particularly important for GG degradation during exposure to decreasing salinities. The inversely ion-regulated activities of GgpS and GghA could represent the main model for effectively tuning GG steady state levels according to external salinities. Similar to GG, the intracellular amount of sucrose is also salt-regulated and seems to be determined by the balance of sucrose synthesis via sucrose-phosphate synthase (Sps) and its degradation via invertase (Inv). In addition to their role as stress protectants, both compatible solutes also represent promising targets for biotechnology. Hence, the increasing knowledge on the regulation of compatible solute accumulation not only improves our understanding of the stress physiology of cyanobacteria but will also support their future biotechnological applications.
Collapse
Affiliation(s)
- Friedrich Kirsch
- Department of Plant Physiology, Institute for Biosciences, University of Rostock, Rostock, Germany
| | - Stephan Klähn
- Department of Solar Materials, Helmholtz-Centre for Environmental Research-UFZ, Leipzig, Germany
| | - Martin Hagemann
- Department of Plant Physiology, Institute for Biosciences, University of Rostock, Rostock, Germany
| |
Collapse
|
9
|
Simple, fast and accurate method for the determination of glycogen in the model unicellular cyanobacterium Synechocystis sp. PCC 6803. J Microbiol Methods 2019; 164:105686. [PMID: 31400361 DOI: 10.1016/j.mimet.2019.105686] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/06/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
Glycogen is a highly soluble branched polymer composed of glucose monomers linked by glycosidic bonds that represents, together with starch, one of the main energy storage compounds in living organisms. While starch is present in plant cells, glycogen is present in bacteria, protozoa, fungi and animal cells. Due to its essential function, it has been the subject of intense research for almost two centuries. Different procedures for the isolation and quantification of glycogen, according to the origin of the sample and/or the purpose of the study, have been reported in the literature. The objective of this study is to optimize the methodology for the determination of glycogen in cyanobacteria, as the interest in cyanobacterial glycogen has increased in recent years due to the biotechnological application of these microorganisms. In the present work, the methodology reported for the quantification of glycogen in cyanobacteria has been reviewed and an extensive empirical analysis has been performed showing how this methodology can be optimized significantly to reduce time and improve reliability and reproducibility. Based on these results, a simple and fast protocol for quantification of glycogen in the model unicellular cyanobacterium Synechocystis sp. PCC 6803 is presented, which could also be successfully adapted to other cyanobacteria.
Collapse
|
10
|
Bioethanol production from microalgae polysaccharides. Folia Microbiol (Praha) 2019; 64:627-644. [PMID: 31352666 DOI: 10.1007/s12223-019-00732-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 07/15/2019] [Indexed: 12/19/2022]
Abstract
The worldwide growing demand for energy permanently increases the pressure on industrial and scientific community to introduce new alternative biofuels on the global energy market. Besides the leading role of biodiesel and biogas, bioethanol receives more and more attention as first- and second-generation biofuel in the sustainable energy industry. Lately, microalgae (green algae and cyanobacteria) biomass has also remarkable potential as a feedstock for the third-generation biofuel production due to their high lipid and carbohydrate content. The third-generation bioethanol production technology can be divided into three major processing ways: (i) fermentation of pre-treated microalgae biomass, (ii) dark fermentation of reserved carbohydrates and (iii) direct "photo-fermentation" from carbon dioxide to bioethanol using light energy. All three technologies provide possible solutions, but from a practical point of view, traditional fermentation technology from microalgae biomass receives currently the most attention. This study mainly focusses on the latest advances in traditional fermentation processes including the steps of enhanced carbohydrate accumulation, biomass pre-treatment, starch and glycogen downstream processing and various fermentation approaches.
Collapse
|
11
|
Gärtner K, Klähn S, Watanabe S, Mikkat S, Scholz I, Hess WR, Hagemann M. Cytosine N4-Methylation via M.Ssp6803II Is Involved in the Regulation of Transcription, Fine- Tuning of DNA Replication and DNA Repair in the Cyanobacterium Synechocystis sp. PCC 6803. Front Microbiol 2019; 10:1233. [PMID: 31231331 PMCID: PMC6560206 DOI: 10.3389/fmicb.2019.01233] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 05/17/2019] [Indexed: 12/15/2022] Open
Abstract
DNA methylation plays a crucial role for gene regulation among eukaryotes, but its regulatory function is less documented in bacteria. In the cyanobacterium Synechocystis sp. PCC 6803 five DNA methyltransferases have been identified. Among them, M.Ssp6803II is responsible for the specific methylation of the first cytosine in the frequently occurring motif GGCC, leading to N4-methylcytosine (GGm4CC). The mutation of the corresponding gene sll0729 led to lowered chlorophyll/phycocyanin ratio and slower growth. Transcriptomics only showed altered expression of sll0470 and sll1526, two genes encoding hypothetical proteins. Moreover, prolonged cultivation revealed instability of the initially obtained phenotype. Colonies with normal pigmentation and wild-type-like growth regularly appeared on agar plates. These colonies represent suppressor mutants, because the sll0729 gene was still completely inactivated and the GGCC sites remained unmethylated. The suppressor strains showed smaller cell size, lowered DNA content per cell, and decreased tolerance against UV compared to wild type. Promoter assays revealed that the transcription of the sll0470 gene was still stimulated in the suppressor clones. Proteomics identified decreased levels of DNA topoisomerase 4 subunit A in suppressor cells. Collectively, these results indicate that GGm4CC methylation is involved in the regulation of gene expression, in the fine-tuning of DNA replication, and DNA repair mechanisms.
Collapse
Affiliation(s)
- Katrin Gärtner
- Department of Plant Physiology, University of Rostock, Rostock, Germany
| | - Stephan Klähn
- Faculty of Biology, Genetics & Experimental Bioinformatics, University of Freiburg, Freiburg im Breisgau, Germany
- Department of Solar Materials, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Satoru Watanabe
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Stefan Mikkat
- Core Facility Proteome Analysis, University Medicine Rostock, Rostock, Germany
| | - Ingeborg Scholz
- Faculty of Biology, Genetics & Experimental Bioinformatics, University of Freiburg, Freiburg im Breisgau, Germany
| | - Wolfgang R. Hess
- Faculty of Biology, Genetics & Experimental Bioinformatics, University of Freiburg, Freiburg im Breisgau, Germany
- Freiburg Institute for Advanced Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Martin Hagemann
- Department of Plant Physiology, University of Rostock, Rostock, Germany
- Department Life, Light and Matter, University of Rostock, Rostock, Germany
| |
Collapse
|
12
|
Angeleri M, Muth-Pawlak D, Wilde A, Aro EM, Battchikova N. Global proteome response ofSynechocystis6803 to extreme copper environments applied to control the activity of the induciblepetJpromoter. J Appl Microbiol 2019; 126:826-841. [DOI: 10.1111/jam.14182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 12/18/2022]
Affiliation(s)
- M. Angeleri
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| | - D. Muth-Pawlak
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| | - A. Wilde
- Molecular Genetics of Prokaryotes; University of Freiburg; Freiburg Germany
| | - E.-M. Aro
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| | - N. Battchikova
- Molecular Plant Biology; Department of Biochemistry; University of Turku; Turku Finland
| |
Collapse
|
13
|
Battchikova N, Muth-Pawlak D, Aro EM. Proteomics of cyanobacteria: current horizons. Curr Opin Biotechnol 2018; 54:65-71. [DOI: 10.1016/j.copbio.2018.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 01/31/2018] [Accepted: 02/13/2018] [Indexed: 12/01/2022]
|
14
|
Kirsch F, Luo Q, Lu X, Hagemann M. Inactivation of invertase enhances sucrose production in the cyanobacterium Synechocystis sp. PCC 6803. MICROBIOLOGY-SGM 2018; 164:1220-1228. [PMID: 30113304 DOI: 10.1099/mic.0.000708] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sucrose is naturally synthesized by many cyanobacteria under high salt conditions, which can be applied to produce this widely used feedstock. To improve sucrose production with the moderate halo-tolerant cyanobacterium Synechocystis sp. PCC 6803, we identified and biochemically characterized the sucrose-degrading invertase. Inactivating the invertase encoding gene sll0626 (inv) significantly increased cellular sucrose levels; interestingly sucrose over-accumulation was also observed under NaCl-free conditions. The subsequent inactivation of inv in the mutant ΔggpS, which cannot synthesize the major compatible solute glucosylglycerol, resulted in further enhanced sucrose accumulation in the presence of 1.5 % NaCl. Then, inv mutation was introduced into the previously obtained sucrose-producing strain WD25 (Du W, Liang F, Duan Y, Tan X, Lu X. Metab Eng 2013;19:17-25), which resulted in almost 40 % higher sucrose accumulation. These findings show that invertase is an interesting target in obtaining efficient sucrose production in cyanobacterial host cells.
Collapse
Affiliation(s)
- Friedrich Kirsch
- 1Department of Plant Physiology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Quan Luo
- 2Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, PR China
| | - Xuefeng Lu
- 2Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, PR China.,3Marine biology and Biotechnology Laboratory, Qingdao National Laboratory for Marine Science and Technology, Wenhai Rd 1, Aoshanwei, Qingdao, PR China
| | - Martin Hagemann
- 4Department Life, Light & Matter, University of Rostock, 18051 Rostock, Germany.,1Department of Plant Physiology, Institute of Biological Sciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| |
Collapse
|
15
|
Harun I, Del Rio-Chanona EA, Wagner JL, Lauersen KJ, Zhang D, Hellgardt K. Photocatalytic Production of Bisabolene from Green Microalgae Mutant: Process Analysis and Kinetic Modeling. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b02509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Irina Harun
- Department of Chemical Engineering, Imperial College London, South Kensington SW7 2AZ, U.K
- Department of Environmental Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, 43400, Malaysia
| | - Ehecatl Antonio Del Rio-Chanona
- Department of Chemical Engineering, Imperial College London, South Kensington SW7 2AZ, U.K
- Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
| | - Jonathan L. Wagner
- Department of Chemical Engineering, Imperial College London, South Kensington SW7 2AZ, U.K
- Department of Chemical Engineering, University of Loughborough, Loughborough LE11 3TU, U.K
| | - Kyle J. Lauersen
- Bielefeld University, Faculty of Biology, Center for Biotechnology (CeBiTec), Universitätsstrasse 27, 33615 Bielefeld, Germany
| | - Dongda Zhang
- Department of Chemical Engineering, Imperial College London, South Kensington SW7 2AZ, U.K
- Centre for Process Systems Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, U.K
- School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M1 3BU, U.K
- Centre for Process Integration, The University of Manchester, Oxford Road, Manchester M1 3BU, U.K
| | - Klaus Hellgardt
- Department of Chemical Engineering, Imperial College London, South Kensington SW7 2AZ, U.K
| |
Collapse
|
16
|
Comparative Targeted Proteomics of the Central Metabolism and Photosystems in SigE Mutant Strains of Synechocystis sp. PCC 6803. Molecules 2018; 23:molecules23051051. [PMID: 29723969 PMCID: PMC6102573 DOI: 10.3390/molecules23051051] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/27/2018] [Accepted: 04/27/2018] [Indexed: 12/17/2022] Open
Abstract
A targeted proteome analysis was conducted to investigate the SigE dependent-regulation of central metabolism in Synechocystis sp. PCC 6803 by directly comparing the protein abundance profiles among the wild type, a sigE deletion mutant (ΔsigE), and a sigE over-expression (sigEox) strains. Expression levels of 112 target proteins, including the central metabolism related-enzymes and the subunits of the photosystems, were determined by quantifying the tryptic peptides in the multiple reaction monitoring (MRM) mode of liquid-chromatography–triple quadrupole mass spectrometry (LC–MS/MS). Comparison with gene-expression data showed that although the abundance of Gnd protein was closely correlated with that of gnd mRNA, there were poor correlations for GdhA/gdhA and glycogen degradation-related genes such as GlgX/glgX and GlgP/glgP pairs. These results suggested that the regulation of protein translation and degradation played a role in regulating protein abundance. The protein abundance profile suggested that SigE overexpression reduced the proteins involved in photosynthesis and increased GdhA abundance, which is involved in the nitrogen assimilation pathway using NADPH. The results obtained in this study successfully demonstrated that targeted proteome analysis enables direct comparison of the abundance of central metabolism- and photosystem-related proteins.
Collapse
|
17
|
Oehmcke-Hecht S, Nass LE, Wichura JB, Mikkat S, Kreikemeyer B, Fiedler T. Deletion of the L-Lactate Dehydrogenase Gene ldh in Streptococcus pyogenes Leads to a Loss of SpeB Activity and a Hypovirulent Phenotype. Front Microbiol 2017; 8:1841. [PMID: 28983299 PMCID: PMC5613712 DOI: 10.3389/fmicb.2017.01841] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/08/2017] [Indexed: 01/19/2023] Open
Abstract
Streptococcus pyogenes uses lactic acid fermentation for the generation of ATP. Here, we analyzed the impact of a deletion of the L-lactate dehydrogenase gene ldh on the virulence of S. pyogenes M49. While the ldh deletion does not cause a general growth deficiency in laboratory media, the growth in human blood and plasma is significantly hampered. The ldh deletion strain is furthermore less virulent in a Galleria mellonella infection model. We show that the ldh deletion leads to a decrease in the activity of the cysteine protease SpeB, an important secreted virulence factor of S. pyogenes. The reduced SpeB activity is caused by a hampered autocatalytic activation of the SpeB zymogen into the mature SpeB. The missing SpeB activity furthermore leads to increased plasmin activation and a reduced activation of the contact system on the surface of S. pyogenes. All these effects can be reversed when ldh is reintroduced into the mutant via a plasmid. The results demonstrate a previously unappreciated role for LDH in modulation of SpeB maturation.
Collapse
Affiliation(s)
- Sonja Oehmcke-Hecht
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| | - Leif E Nass
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| | - Jan B Wichura
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| | - Stefan Mikkat
- Core Facility Proteome Analysis, Rostock University Medical CentreRostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| | - Tomas Fiedler
- Institute of Medical Microbiology, Virology, and Hygiene, Rostock University Medical CentreRostock, Germany
| |
Collapse
|
18
|
Hagemann M, Hess WR. Systems and synthetic biology for the biotechnological application of cyanobacteria. Curr Opin Biotechnol 2017; 49:94-99. [PMID: 28843192 DOI: 10.1016/j.copbio.2017.07.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
Cyanobacteria are the only prokaryotes that perform oxygenic photosynthesis. Their evolutionary relation to plastids in eukaryotic phototrophs and their increasing utilization as green cell factories initiated the use of systems biology approaches early on. For select model strains, extensive 'omics' data sets have been generated, and genome-wide models have been elucidated. Moreover, the results obtained may be used for the optimization of cyanobacterial metabolism, which can direct the biotechnological production of biofuels or chemical feedstock. Synthetic biology approaches permit the rational construction of novel metabolic pathways that are based on the combination of multiple enzymatic activities of different origins. In addition, the manipulation of whole metabolic networks by CRISPR-based and sRNA-based technologies with multiple parallel targets will further stimulate the use of cyanobacteria for diverse applications in basic research and biotechnology.
Collapse
Affiliation(s)
- Martin Hagemann
- University of Rostock, Institute of Biological Sciences, Plant Physiology, A.-Einstein-Str. 3, D-18059 Rostock, Germany.
| | - Wolfgang R Hess
- University of Freiburg, Faculty of Biology, Schänzlestr. 1, D-79104 Freiburg, Germany
| |
Collapse
|