1
|
Xuan P, Gu J, Cui H, Wang S, Toshiya N, Liu C, Zhang T. Multi-scale topology and position feature learning and relationship-aware graph reasoning for prediction of drug-related microbes. Bioinformatics 2024; 40:btae025. [PMID: 38269610 PMCID: PMC10868329 DOI: 10.1093/bioinformatics/btae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/26/2023] [Accepted: 01/22/2024] [Indexed: 01/26/2024] Open
Abstract
MOTIVATION The human microbiome may impact the effectiveness of drugs by modulating their activities and toxicities. Predicting candidate microbes for drugs can facilitate the exploration of the therapeutic effects of drugs. Most recent methods concentrate on constructing of the prediction models based on graph reasoning. They fail to sufficiently exploit the topology and position information, the heterogeneity of multiple types of nodes and connections, and the long-distance correlations among nodes in microbe-drug heterogeneous graph. RESULTS We propose a new microbe-drug association prediction model, NGMDA, to encode the position and topological features of microbe (drug) nodes, and fuse the different types of features from neighbors and the whole heterogeneous graph. First, we formulate the position and topology features of microbe (drug) nodes by t-step random walks, and the features reveal the topological neighborhoods at multiple scales and the position of each node. Second, as the features of nodes are high-dimensional and sparse, we designed an embedding enhancement strategy based on supervised fully connected autoencoders to form the embeddings with representative features and the more discriminative node distributions. Third, we propose an adaptive neighbor feature fusion module, which fuses features of neighbors by the constructed position- and topology-sensitive heterogeneous graph neural networks. A novel self-attention mechanism is developed to estimate the importance of the position and topology of each neighbor to a target node. Finally, a heterogeneous graph feature fusion module is constructed to learn the long-distance correlations among the nodes in the whole heterogeneous graph by a relationship-aware graph transformer. Relationship-aware graph transformer contains the strategy for encoding the connection relationship types among the nodes, which is helpful for integrating the diverse semantics of these connections. The extensive comparison experimental results demonstrate NGMDA's superior performance over five state-of-the-art prediction methods. The ablation experiment shows the contributions of the multi-scale topology and position feature learning, the embedding enhancement strategy, the neighbor feature fusion, and the heterogeneous graph feature fusion. Case studies over three drugs further indicate that NGMDA has ability in discovering the potential drug-related microbes. AVAILABILITY AND IMPLEMENTATION Source codes and Supplementary Material are available at https://github.com/pingxuan-hlju/NGMDA.
Collapse
Affiliation(s)
- Ping Xuan
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- Department of Computer Science, Shantou University, Shantou 515063, China
| | - Jing Gu
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
| | - Hui Cui
- Department of Computer Science and Information Technology, La Trobe University, Melbourne, VIC 3083, Australia
| | - Shuai Wang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Nakaguchi Toshiya
- Center for Frontier Medical Engineering, Chiba University, Chiba 2638522, Japan
| | - Cheng Liu
- Department of Computer Science, Shantou University, Shantou 515063, China
| | - Tiangang Zhang
- School of Computer Science and Technology, Heilongjiang University, Harbin 150080, China
- School of Mathematical Science, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
2
|
Sharafi T, Ghaemi EA, Rafiee M, Ardebili A. Combination antimicrobial therapy: in vitro synergistic effect of anti-staphylococcal drug oxacillin with antimicrobial peptide nisin against Staphylococcus epidermidis clinical isolates and Staphylococcus aureus biofilms. Ann Clin Microbiol Antimicrob 2024; 23:7. [PMID: 38245727 PMCID: PMC10800071 DOI: 10.1186/s12941-024-00667-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/04/2024] [Indexed: 01/22/2024] Open
Abstract
The ability of Staphylococcus epidermidis and S. aureus to form strong biofilm on plastic devices makes them the major pathogens associated with device-related infections (DRIs). Biofilm-embedded bacteria are more resistant to antibiotics, making biofilm infections very difficult to effectively treat. Here, we evaluate the in vitro activities of anti-staphylococcal drug oxacillin and antimicrobial peptide nisin, alone and in combination, against methicillin-resistant S. epidermidis (MRSE) clinical isolates and the methicillin-resistant S. aureus ATCC 43,300. The minimum inhibitory concentrations (MIC) and minimum biofilm eradication concentrations (MBEC) of oxacillin and nisin were determined using the microbroth dilution method. The anti-biofilm activities of oxacillin and nisin, alone or in combination, were evaluated. In addition, the effects of antimicrobial agents on the expression of icaA gene were examined by quantitative real-time PCR. MIC values for oxacillin and nisin ranged 4-8 µg/mL and 64-128 µg/mL, respectively. Oxacillin and nisin reduced biofilm biomass in all bacteria in a dose-dependent manner and this inhibitory effect was enhanced with combinatorial treatment. MBEC ranges for oxacillin and nisin were 2048-8192 µg/mL and 2048-4096 µg/mL, respectively. The addition of nisin significantly decreased the oxacillin MBECs from 8- to 32-fold in all bacteria. At the 1× MIC and 1/2× MIC, both oxacillin and nisin decreased significantly the expression of icaA gene in comparison with untreated control. When two antimicrobial agents were combined at 1/2× MIC concentration, the expression of icaA were significantly lower than when were used alone. Nisin/conventional oxacillin combination showed considerable anti-biofilm effects, including inhibition of biofilm formation, eradication of mature biofilm, and down-regulation of biofilm-related genes, proposing its applications for treating or preventing staphylococcal biofilm-associated infections, including device-related infections.
Collapse
Affiliation(s)
- Toktam Sharafi
- Infectious Disease Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ezzat Allah Ghaemi
- Infectious Disease Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Maryam Rafiee
- Infectious Disease Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Abdollah Ardebili
- Infectious Disease Research Center, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran.
| |
Collapse
|
3
|
Luo ZX, Li Y, Liu MF, Zhao R. Ciprofloxacin enhances the biofilm formation of Staphylococcus aureus via an agrC-dependent mechanism. Front Microbiol 2023; 14:1328947. [PMID: 38179460 PMCID: PMC10764545 DOI: 10.3389/fmicb.2023.1328947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/04/2023] [Indexed: 01/06/2024] Open
Abstract
Staphylococcus aureus readily forms biofilms on host tissues and medical devices, enabling its persistence in chronic infections and resistance to antibiotic therapy. The accessory gene regulator (Agr) quorum sensing system plays a key role in regulating S. aureus biofilm formation. This study reveals the widely used fluoroquinolone antibiotic, ciprofloxacin, strongly stimulates biofilm formation in methicillin-resistant S. aureus, methicillin-sensitive S. aureus, and clinical isolates with diverse genetic backgrounds. Crystal violet staining indicated that ciprofloxacin induced a remarkable 12.46- to 15.19-fold increase in biofilm biomass. Confocal laser scanning microscopy revealed that ciprofloxacin induced denser biofilms. Phenotypic assays suggest that ciprofloxacin may enhance polysaccharide intercellular adhesin production, inhibit autolysis, and reduce proteolysis during the biofilm development, thus promoting initial adhesion and enhancing biofilm stability. Mechanistically, ciprofloxacin significantly alters the expression of various biofilm-related genes (icaA, icaD, fnbA, fnbB, eap, emp) and regulators (agrA, saeR). Gene knockout experiments revealed that deletion of agrC, rather than saeRS, abolishes the ciprofloxacin-induced enhancement of biofilm formation, underscoring the key role of agrC. Thermal shift assays showed ciprofloxacin binds purified AgrC protein, thereby inhibiting the Agr system. Molecular docking results further support the potential interaction between ciprofloxacin and AgrC. In summary, subinhibitory concentrations of ciprofloxacin stimulate S. aureus biofilm formation via an agrC-dependent pathway. This inductive effect may facilitate local infection establishment and bacterial persistence, ultimately leading to therapeutic failure.
Collapse
Affiliation(s)
- Zhao-xia Luo
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, Nanchang, China
| | - Yuting Li
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
- School of Public Health, Nanchang University, Nanchang, China
| | - Mei-fang Liu
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rui Zhao
- Department of Clinical Laboratory, Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
4
|
Flores-Vargas G, Korber DR, Bergsveinson J. Sub-MIC antibiotics influence the microbiome, resistome and structure of riverine biofilm communities. Front Microbiol 2023; 14:1194952. [PMID: 37593545 PMCID: PMC10427767 DOI: 10.3389/fmicb.2023.1194952] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 07/17/2023] [Indexed: 08/19/2023] Open
Abstract
The effects of sub-minimum inhibitory concentrations (sub-MICs) of antibiotics on aquatic environments is not yet fully understood. Here, we explore these effects by employing a replicated microcosm system fed with river water where biofilm communities were continuously exposed over an eight-week period to sub-MIC exposure (1/10, 1/50, and 1/100 MIC) to a mix of common antibiotics (ciprofloxacin, streptomycin, and oxytetracycline). Biofilms were examined using a structure-function approach entailing microscopy and metagenomic techniques, revealing details on the microbiome, resistome, virulome, and functional prediction. A comparison of three commonly used microbiome and resistome databases was also performed. Differences in biofilm architecture were observed between sub-MIC antibiotic treatments, with an overall reduction of extracellular polymeric substances and autotroph (algal and cyanobacteria) and protozoan biomass, particularly at the 1/10 sub-MIC condition. While metagenomic analyses demonstrated that microbial diversity was lowest at the sub-MIC 1/10 antibiotic treatment, resistome diversity was highest at sub-MIC 1/50. This study also notes the importance of benchmarking analysis tools and careful selection of reference databases, given the disparity in detected antimicrobial resistance genes (ARGs) identity and abundance across methods. Ultimately, the most detected ARGs in sub-MICs exposed biofilms were those that conferred resistance to aminoglycosides, tetracyclines, β-lactams, sulfonamides, and trimethoprim. Co-occurrence of microbiome and resistome features consistently showed a relationship between Proteobacteria genera and aminoglycoside ARGs. Our results support the hypothesis that constant exposure to sub-MICs antibiotics facilitate the transmission and promote prevalence of antibiotic resistance in riverine biofilms communities, and additionally shift overall microbial community metabolic function.
Collapse
Affiliation(s)
| | - Darren R. Korber
- Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jordyn Bergsveinson
- Watershed Hydrology and Ecology Research Division, Environment and Climate Change Canada, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Whelan S, O’Grady MC, Corcoran GD, Finn K, Lucey B. Effect of Sub-Inhibitory Concentrations of Nitrofurantoin, Ciprofloxacin, and Trimethoprim on In Vitro Biofilm Formation in Uropathogenic Escherichia coli (UPEC). Med Sci (Basel) 2022; 11:1. [PMID: 36649038 PMCID: PMC9844298 DOI: 10.3390/medsci11010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The purpose of this study was to determine the effect of sublethal concentrations of nitrofurantoin, ciprofloxacin, and trimethoprim on biofilm formation in 57 uropathogenic Escherichia coli strains (UPEC). The minimum inhibitory concentration of nitrofurantoin, ciprofloxacin, and trimethoprim was determined and the biofilm formation for each isolate with and without sub-lethal concentrations of each antibiotic was then quantified. The statistical significance of changes in biofilm formation was ascertained by way of a Dunnett's test. A total of 22.8% of strains were induced to form stronger biofilms by nitrofurantoin, 12% by ciprofloxacin, and 19% by trimethoprim; conversely 36.8% of strains had inhibited biofilm formation with nitrofurantoin, 52.6% with ciprofloxacin, and 38.5% with trimethoprim. A key finding was that even in cases where the isolate was resistant to an antibiotic as defined by EUCAST, many were induced to form a stronger biofilm when grown with sub-MIC concentrations of antibiotics, especially trimethoprim, where six of the 22 trimethoprim resistant strains were induced to form stronger biofilms. These findings suggest that the use of empirical treatment with trimethoprim without first establishing susceptibility may in fact potentiate infection in cases where a patient who is suffering from a urinary tract infection (UTI) caused by trimethoprim resistant UPEC is administered trimethoprim. This emphasizes the need for laboratory-guided treatment of UTI.
Collapse
Affiliation(s)
- Shane Whelan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| | - Mary Claire O’Grady
- Department of Clinical Microbiology, Cork University Hospital, Wilton, T12 DC4A2 Cork, Ireland
| | - Gerard Daniel Corcoran
- Department of Clinical Microbiology, Cork University Hospital, Wilton, T12 DC4A2 Cork, Ireland
| | - Karen Finn
- Department of Analytical, Biopharmaceutical and Medical Sciences, Atlantic Technological University, ATU Galway City, Dublin Road, H91 T8NW Galway, Ireland
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland
| |
Collapse
|
6
|
Derakhshan S, Ahmadi S, Ahmadi E, Nasseri S, Aghaei A. Characterization of Escherichia coli isolated from urinary tract infection and association between virulence expression and antimicrobial susceptibility. BMC Microbiol 2022; 22:89. [PMID: 35387587 PMCID: PMC8985246 DOI: 10.1186/s12866-022-02506-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The capacity of antibiotics to modulate bacterial virulence has raised concerns over the appropriateness of antibiotic therapies, including when dosing strategies fall below sub-therapeutic levels. In this work, we investigated the ability of antibiotics to influence virulence in Escherichia coli isolated from urinary tract infection (UTI). RESULTS Out of 120 isolates, 32.5% carried pap, 21.7% carried hlyA, and 17.5% carried cnf. The predominant B2 phylogroup was significantly associated with the quinolone-resistant isolates. A significant association was seen between the presence of hlyA hemolysin and susceptibility to ceftriaxone and ciprofloxacin (P < 0.05). Sub-inhibitory concentrations of both antibiotics reduced the levels of hlyA expression and hemolysis in isolates treated with antibiotics compared to untreated isolates (P < 0.05). Growth rate assay showed that the decrease in hlyA expression was not an effect of decreased growth rate. CONCLUSION Our study indicated the inhibitory effect of ciprofloxacin and ceftriaxone on the level of hemolysis, suggesting that the sub-inhibitory concentrations of these antibiotics may affect the outcome of infections. Further studies, including animal models may elucidate the outcome of virulence modulation by these antibiotics in UTI pathogenesis.
Collapse
Affiliation(s)
- Safoura Derakhshan
- Lung Diseases and Allergy Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran. .,Department of Microbiology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Sanaz Ahmadi
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Erfan Ahmadi
- Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Sherko Nasseri
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Abbas Aghaei
- Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
7
|
Chan DCK, Burrows LL. Thiopeptides: antibiotics with unique chemical structures and diverse biological activities. J Antibiot (Tokyo) 2020; 74:161-175. [PMID: 33349675 DOI: 10.1038/s41429-020-00387-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Thiopeptides are a class of natural product antibiotics with diverse structures and functions. Their complex structures and biosynthesis have intrigued researchers since their discovery in 1948, but not a single thiopeptide has been approved for human use. This is mainly due to their poor solubility, challenging synthesis, and low bioavailability. This review summarizes the current research on the biosynthesis and biological activity of thiopeptide antibiotics since 2015. The focus of research since 2015 has been on uncovering biosynthetic routes, developing methods for total synthesis, and understanding the biological activity of thiopeptides. Overall, there is still much to learn about this family of molecules.
Collapse
Affiliation(s)
- Derek C K Chan
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada
| | - Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada. .,Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
8
|
Cataneli Pereira V, Pinheiro-Hubinger L, de Oliveira A, Moraes Riboli DF, Benini Martins K, Calixto Romero L, Ribeiro de Souza da Cunha MDL. Detection of the agr System and Resistance to Antimicrobials in Biofilm-Producing S. epidermidis. Molecules 2020; 25:molecules25235715. [PMID: 33287389 PMCID: PMC7729762 DOI: 10.3390/molecules25235715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 11/19/2022] Open
Abstract
The ability of Staphylococcus epidermidis to produce virulence factors, such as biofilm, added to its increased resistance to antimicrobials can cause infections that are difficult to treat. Many staphylococcal virulence factors are under the control of the accessory gene regulator (agr). The objective of this study was to establish the agr locus and susceptibility of biofilm-producing S. epidermidis specimens to antimicrobial agents, through PCR reactions, reverse transcription polymerase chain reaction (RT-PCR), and the determination of minimum inhibitory concentration (MIC), and to analyze the clonal profile of 300 strains isolated from blood culture specimens from inpatients at a University Hospital in Brazil, over a 20-year period by pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) techniques. The ica operon expression was shown in 83.6% strains, bhp gene in 11.5%, and aap gene in 32.8%. Oxacillin resistance was detected in 90.1%, while 4.9% showed tigecycline resistance, and intermediate resistance to quinupristin/dalfopristin was identified in 0.4%. Clonal profile determination showed 11 clusters, with the ST2 type determined as the major cluster. The S. epidermidis biofilm producer demonstrated a predominance of agr I locus, oxacillin resistance, and SCCmec III as well as the potential dissemination of pathogenic clones in hospital settings over long periods.
Collapse
Affiliation(s)
- Valéria Cataneli Pereira
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP—University Estadual Paulista, Botucatu CEP 18618-689, São Paulo, Brazil; (V.C.P.); (L.P.-H.); (A.d.O.); (D.F.M.R.); (K.B.M.); (L.C.R.)
- Sector of Microbiology and Immunology, UNOESTE—University of West Paulista, Presidente Prudente CEP 19050-920, São Paulo, Brazil
| | - Luiza Pinheiro-Hubinger
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP—University Estadual Paulista, Botucatu CEP 18618-689, São Paulo, Brazil; (V.C.P.); (L.P.-H.); (A.d.O.); (D.F.M.R.); (K.B.M.); (L.C.R.)
| | - Adilson de Oliveira
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP—University Estadual Paulista, Botucatu CEP 18618-689, São Paulo, Brazil; (V.C.P.); (L.P.-H.); (A.d.O.); (D.F.M.R.); (K.B.M.); (L.C.R.)
| | - Danilo Flávio Moraes Riboli
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP—University Estadual Paulista, Botucatu CEP 18618-689, São Paulo, Brazil; (V.C.P.); (L.P.-H.); (A.d.O.); (D.F.M.R.); (K.B.M.); (L.C.R.)
| | - Katheryne Benini Martins
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP—University Estadual Paulista, Botucatu CEP 18618-689, São Paulo, Brazil; (V.C.P.); (L.P.-H.); (A.d.O.); (D.F.M.R.); (K.B.M.); (L.C.R.)
| | - Letícia Calixto Romero
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP—University Estadual Paulista, Botucatu CEP 18618-689, São Paulo, Brazil; (V.C.P.); (L.P.-H.); (A.d.O.); (D.F.M.R.); (K.B.M.); (L.C.R.)
| | - Maria de Lourdes Ribeiro de Souza da Cunha
- Sector of Microbiology and Immunology, Department of Chemical and Biological Sciences, Institute of Biosciences, UNESP—University Estadual Paulista, Botucatu CEP 18618-689, São Paulo, Brazil; (V.C.P.); (L.P.-H.); (A.d.O.); (D.F.M.R.); (K.B.M.); (L.C.R.)
- Correspondence: ; Tel.: +55-14-3880-0428
| |
Collapse
|
9
|
Lin MF, Lin YY, Lan CY. Characterization of biofilm production in different strains of Acinetobacter baumannii and the effects of chemical compounds on biofilm formation. PeerJ 2020; 8:e9020. [PMID: 32523805 PMCID: PMC7261477 DOI: 10.7717/peerj.9020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/28/2020] [Indexed: 12/23/2022] Open
Abstract
Acinetobacter baumannii, an important emerging pathogen of nosocomial infections, is known for its ability to form biofilms. Biofilm formation increases the survival rate of A. baumannii on dry surfaces and may contribute to its persistence in the hospital environment, which increases the probability of nosocomial infections and outbreaks. This study was undertaken to characterize the biofilm production of different strains of A. baumannii and the effects of chemical compounds, especially antibiotics, on biofilm formation. In this study, no statistically significant relationship was observed between the ability to form a biofilm and the antimicrobial susceptibility of the A. baumannii clinical isolates. Biofilm formation caused by A. baumannii ATCC 17978 after gene knockout of two-component regulatory system gene baeR, efflux pump genes emrA/emrB and outer membrane coding gene ompA revealed that all mutant strains had less biofilm formation than the wild-type strain, which was further supported by the images from scanning electron microscopy and confocal laser scanning microscopy. The addition of amikacin, colistin, LL-37 or tannic acid decreased the biofilm formation ability of A. baumannii. In contrast, the addition of lower subinhibitory concentration tigecycline increased the biofilm formation ability of A. baumannii. Minimum biofilm eradication concentrations of amikacin, imipenem, colistin, and tigecycline were increased obviously for both wild type and multidrug resistant clinical strain A. baumannii VGH2. In conclusion, the biofilm formation ability of A. baumannii varied in different strains, involved many genes and could be influenced by many chemical compounds.
Collapse
Affiliation(s)
- Ming-Feng Lin
- Department of Medicine, National Taiwan University Hospital Chu-Tung Branch, Hsinchu County, Taiwan
| | - Yun-You Lin
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Chung-Yu Lan
- Institute of Molecular and Cellular Biology, National Tsing Hua University, Hsinchu, Taiwan.,Department of Life Science, National Tsing Hua University, Hsinchu, Taiwan
| |
Collapse
|
10
|
Alternative strategies for the application of aminoglycoside antibiotics against the biofilm-forming human pathogenic bacteria. Appl Microbiol Biotechnol 2020; 104:1955-1976. [DOI: 10.1007/s00253-020-10360-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/29/2019] [Accepted: 01/05/2020] [Indexed: 12/17/2022]
|
11
|
Olivares E, Badel-Berchoux S, Provot C, Prévost G, Bernardi T, Jehl F. Clinical Impact of Antibiotics for the Treatment of Pseudomonas aeruginosa Biofilm Infections. Front Microbiol 2020; 10:2894. [PMID: 31998248 PMCID: PMC6962142 DOI: 10.3389/fmicb.2019.02894] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/02/2019] [Indexed: 02/03/2023] Open
Abstract
Bacterial biofilms are highly recalcitrant to antibiotic therapies due to multiple tolerance mechanisms. The involvement of Pseudomonas aeruginosa in a wide range of biofilm-related infections often leads to treatment failures. Indeed, few current antimicrobial molecules are still effective on tolerant sessile cells. In contrast, studies increasingly showed that conventional antibiotics can, at low concentrations, induce a phenotype change in bacteria and consequently, the biofilm formation. Understanding the clinical effects of antimicrobials on biofilm establishment is essential to avoid the use of inappropriate treatments in the case of biofilm infections. This article reviews the current knowledge about bacterial growth within a biofilm and the preventive or inducer impact of standard antimicrobials on its formation by P. aeruginosa. The effect of antibiotics used to treat biofilms of other bacterial species, as Staphylococcus aureus or Escherichia coli, was also briefly mentioned. Finally, it describes two in vitro devices which could potentially be used as antibiotic susceptibility testing for adherent bacteria.
Collapse
Affiliation(s)
- Elodie Olivares
- University of Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA7290, Institut de Bactériologie, Strasbourg, France.,BioFilm Pharma SAS, Saint-Beauzire, France
| | | | - Christian Provot
- BioFilm Pharma SAS, Saint-Beauzire, France.,BioFilm Control SAS, Saint-Beauzire, France
| | - Gilles Prévost
- University of Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA7290, Institut de Bactériologie, Strasbourg, France
| | - Thierry Bernardi
- BioFilm Pharma SAS, Saint-Beauzire, France.,BioFilm Control SAS, Saint-Beauzire, France
| | - François Jehl
- University of Strasbourg, CHRU Strasbourg, Fédération de Médecine Translationnelle de Strasbourg, EA7290, Institut de Bactériologie, Strasbourg, France
| |
Collapse
|
12
|
Ye J, Chen Y, Peng G, Yang X, Huang J, Ke C. Antibacterial Activity of Phenyllactic acid Against Staphylococcus Epidermidis and Its Microbial Production: Modelling and Optimization-Based Analysis. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING 2019. [DOI: 10.1515/ijcre-2019-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Phenyllactic acid (PLA), an organic acid with extensive antimicrobial activity, is considered as a promising natural preservative to replace chemical preservatives. In order to study the inhibitory pattern of PLA, this paper established a novel mathematical model for the growth of Staphylococcus epidermidis under PLA inhibition. The simulated results showed that the relationship between the antimicrobial activity of PLA against S. epidermidis and its concentration was suitable to be represented by an exponential function. Based on the proposed model, the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) of PLA against S. epidermidis were evaluated. The computed results were found to match experimental data. The MBC value was found to be independent of the initial biomass of S. epidermidis from both the simulated results and experimental data, revealing that PLA was not consumed while killing the bacteria. Another kinetic model was established to describe the production of PLA by the engineered Escherichia coli. This model was then used to calculate the minimum biomass of E. coli to produce the MBC of PLA. The proposed models help to understand the inhibitory pattern of PLA, serving as a theoretical guide for the selection an appropriate strain to improve the product shelf-life.
Collapse
|
13
|
Navidifar T, Amin M, Rashno M. Effects of sub-inhibitory concentrations of meropenem and tigecycline on the expression of genes regulating pili, efflux pumps and virulence factors involved in biofilm formation by Acinetobacter baumannii. Infect Drug Resist 2019; 12:1099-1111. [PMID: 31190904 PMCID: PMC6512781 DOI: 10.2147/idr.s199993] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 03/16/2019] [Indexed: 12/25/2022] Open
Abstract
Background: Sub-minimal inhibitory concentrations of antibiotics have been indicated to affect the biofilm formation in pathogens of nosocomial infections. This study aimed to investigate the effects of meropenem and tigecycline at their sub-minimum inhibitory concentrations (MICs) on the biofilm formation capacity of Acinetobacter baumannii (A. baumannii), as well as the expression levels of genes involved in biofilm formation, quorum sensing, pili assembly and efflux pumps. Materials and methods: In this study, four non-clonal strains (AB10, AB13, AB32 and AB55), which were different from the aspects of antibiotic susceptibility and biofilm formation from each other were selected for the evaluation of antimicrobial susceptibility, biofilm inducibility at sub-MICs of meropenem and tigecycline and the gene expression levels (the abaI, abaR, bap, pgaA, csuE, bfmS, bfmR, ompA, adeB, adeJ and adeG genes). Result: A significant increase in the MICs of all antibiotics was demonstrated in the biofilm cells in each four strains. The biofilm formation was significantly decreased in all the representative strains exposed to tigecycline. However, the biofilm inducibility at sub-MICs of meropenem was dependent on strain genotype. In concordance with these results, Pearson correlation analysis indicated a positive significant correlation between the biofilm formation capacity and the mRNA levels of genes encoding efflux pumps except adeJ, the genes involved in biofilm formation, pili assembly and quorum sensing following exposure to meropenem and tigecycline at their sub-MICs. Conclusion: These results revealed valuable data into the correlation between the gene transcription levels and biofilm formation, as well as quorum sensing and their regulation at sub-MICs of meropenem and tigecycline.
Collapse
Affiliation(s)
- Tahereh Navidifar
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mansour Amin
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Health Research Institute, Infectious and Tropical Diseases Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Rashno
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
14
|
Kolouchová I, Maťátková O, Paldrychová M, Kodeš Z, Kvasničková E, Sigler K, Čejková A, Šmidrkal J, Demnerová K, Masák J. Resveratrol, pterostilbene, and baicalein: plant-derived anti-biofilm agents. Folia Microbiol (Praha) 2017; 63:261-272. [DOI: 10.1007/s12223-017-0549-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 09/11/2017] [Indexed: 01/09/2023]
|