1
|
Huang J, Liu J, Dong H, Shi J, You X, Zhang Y. Engineering of a Substrate Affinity Reduced S-Adenosyl-methionine Synthetase as a Novel Biosensor for Growth-Coupling Selection of L-Methionine Overproducers. Appl Biochem Biotechnol 2024; 196:5161-5180. [PMID: 38150159 DOI: 10.1007/s12010-023-04807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Biosensors are powerful tools for monitoring specific metabolites or controlling metabolic flux towards the products in a single cell, which play important roles in microbial cell factory construction. Despite their potential role in metabolic flux monitoring, the development of biosensors for small molecules is still limited. Reported biosensors often exhibit bottlenecks of poor specificity and a narrow dynamic range. Moreover, fine-tuning the substrate binding affinity of a crucial enzyme can decrease its catalytic activity, which ultimately results in the repression of the corresponding essential metabolite biosynthesis and impairs cell growth. However, increasing intracellular substrate concentration can elevate the availability of the essential metabolite and may lead to restore cellular growth. Herein, a new strategy was proposed for constructing whole-cell biosensors based on enzyme encoded by essential gene that offer inherent specificity and universality. Specifically, S-adenosyl-methionine synthetase (MetK) in E. coli was chosen as the crucial enzyme, and a series of MetK variants were identified that were sensitive to L-methionine concentration. This occurrence enabled the engineered cell to sense L-methionine and exhibit L-methionine dose-dependent cell growth. To improve the biosensor's dynamic range, an S-adenosyl-methionine catabolic enzyme was overexpressed to reduce the intracellular availability of S-adenosyl-methionine. The resulting whole-cell biosensor effectively coupled the intracellular concentration of L-methionine with growth and was successfully applied to select strains with enhanced L-methionine biosynthesis from random mutagenesis libraries. Overall, our study presents a universal strategy for designing and constructing growth-coupled biosensors based on crucial enzyme, which can be applied to select strains overproducing high value-added metabolites in cellular metabolism.
Collapse
Affiliation(s)
- Jianfeng Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, People's Republic of China
| | - Jinhui Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Huaming Dong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, People's Republic of China
| | - Jingjing Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, People's Republic of China
| | - Xiaoyan You
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
- Henan Engineering Research Center of Food Microbiology, College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China.
| | - Yanfei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
2
|
Wang Q, Lin W, Ni Y, Zhou J, Xu G, Han R. Engineering of Methionine Adenosyltransferase toward Mitigated Product Inhibition for Efficient Production of S-Adenosylmethionine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:16900-16910. [PMID: 39016109 DOI: 10.1021/acs.jafc.4c03715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
S-Adenosylmethionine (SAM) is a crucial metabolic intermediate playing irreplaceable roles in organismal activities. However, the synthesis of SAM by methionine adenosyltransferase (MAT) is hindered by low conversion due to severe product inhibition. Herein structure-guided semirational engineering was conducted on MAT from Escherichia coli (EcMAT) to mitigate the product inhibitory effect. Compared with the wild-type EcMAT, the best variant E56Q/Q105R exhibited an 8.13-fold increase in half maximal inhibitory concentration and a 4.46-fold increase in conversion (150 mM ATP and l-methionine), leading to a SAM titer of 47.02 g/L. Another variant, E56N/Q105R, showed superior thermostability with an impressive 85.30-fold increase in half-life (50 °C) value. Furthermore, molecular dynamics (MD) simulation results demonstrate that the alleviation in product inhibitory effect could be attributed to facilitated product release. This study offers molecular insights into the mitigated product inhibition, and provides valuable guidance for engineering MAT toward enhanced catalytic performance.
Collapse
Affiliation(s)
- Qiangqiang Wang
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Weibin Lin
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Ye Ni
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jinghui Zhou
- National Engineering Research Center for Enzyme Technology in Medicine and Chemical Industry, Hunan Flag Bio-tech Co., Ltd., Changsha 410100, China
- National Research Center of Engineering and Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha 410128, China
| | - Gang Xu
- National Engineering Research Center for Enzyme Technology in Medicine and Chemical Industry, Hunan Flag Bio-tech Co., Ltd., Changsha 410100, China
| | - Ruizhi Han
- Key laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
3
|
Viola RE, Parungao GG, Blumenthal RM. A growth-based assay using fluorescent protein emission to screen for S-adenosylmethionine synthetase inhibitors. Drug Dev Res 2024; 85:e22122. [PMID: 37819020 DOI: 10.1002/ddr.22122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/07/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023]
Abstract
The use of cell growth-based assays to identify inhibitory compounds is straightforward and inexpensive, but is also inherently insensitive and somewhat nonspecific. To overcome these limitations and develop a sensitive, specific cell-based assay, two different approaches were combined. To address the sensitivity limitation, different fluorescent proteins have been introduced into a bacterial expression system to serve as growth reporters. To overcome the lack of specificity, these protein reporters have been incorporated into a plasmid in which they are paired with different orthologs of an essential target enzyme, in this case l-methionine S-adenosyltransferase (MAT, AdoMet synthetase). Screening compounds that serve as specific inhibitors will reduce the growth of only a subset of strains, because these strains are identical, except for which target ortholog they carry. Screening several such strains in parallel not only reveals potential inhibitors but the strains also serve as specificity controls for one another. The present study makes use of an existing Escherichia coli strain that carries a deletion of metK, the gene for MAT. Transformation with these plasmids leads to a complemented strain that no longer requires externally supplied S-adenosylmethionine for growth, but its growth is now dependent on the activity of the introduced MAT ortholog. The resulting fluorescent strains provide a platform to screen chemical compound libraries and identify species-selective inhibitors of AdoMet synthetases. A pilot study of several chemical libraries using this platform identified new lead compounds that are ortholog-selective inhibitors of this enzyme family, some of which target the protozoal human pathogen Cryptosporidium parvum.
Collapse
Affiliation(s)
- Ronald E Viola
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - Gwenn G Parungao
- Department of Chemistry and Biochemistry, University of Toledo, Toledo, Ohio, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, University of Toledo Health Sciences Campus, Toledo, Ohio, USA
| |
Collapse
|
4
|
Carrillo JT, Borthakur D. Heterologous expression and characterization of a thermoalkaliphilic SAM-synthetase from giant leucaena (Leucaena leucocephala subsp glabrata). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 181:42-49. [PMID: 35429803 DOI: 10.1016/j.plaphy.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
The cDNA encoding S-adenosylmethionine (SAM) synthetase was isolated from giant leucaena (Leucaena leucocephala subsp. glabrata) root tissue mRNA. Transcriptome data and 5'-RLM-RACE were used to obtain the transcript sequence and clone into the T7-expression vector pEt14b. N-terminal Histidine-tagged recombinant protein was expressed highly in Escherichia coli, purified and characterized by activity assays. A straightforward method using isocratic reverse-phase HPLC analysis (mobile phase: 0.02M o-phosphoric acid) of enzyme assays determined optimal enzyme activity at pH 10.0, 55 °C and 200 mM KCl. In addition to thermophilic activity, giant leucaena SAM-synthetase remains highly active in solutions containing up to 4 M KCl and accepts Na+ to some extent as a substitute for K+, a known required cofactor for SAM-synthetases. The enzyme followed Michaelis-Menten kinetics (Km = 1.82 mM, Kcat = 1.17 s-1, Vmax 243.9 μM. min-1) and was not inhibited by spermidine, spermine or nicotianamine. Giant leucaena SAM-synthetase is a highly tolerant enzyme to extreme conditions, suggesting further studies on plant SAM-synthetases.
Collapse
Affiliation(s)
- James T Carrillo
- University of Hawaii at Manoa, Department of Molecular Biosciences and Bioengineering, 1955 East-West Road, Agricultural Sciences 218, Honolulu, HI, 96822, USA.
| | - Dulal Borthakur
- University of Hawaii at Manoa, Department of Molecular Biosciences and Bioengineering, 1955 East-West Road, Agricultural Sciences 218, Honolulu, HI, 96822, USA.
| |
Collapse
|
5
|
Gade M, Tan LL, Damry AM, Sandhu M, Brock JS, Delaney A, Villar-Briones A, Jackson CJ, Laurino P. Substrate Dynamics Contribute to Enzymatic Specificity in Human and Bacterial Methionine Adenosyltransferases. JACS AU 2021; 1:2349-2360. [PMID: 34977903 PMCID: PMC8715544 DOI: 10.1021/jacsau.1c00464] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Indexed: 05/14/2023]
Abstract
Protein conformational changes can facilitate the binding of noncognate substrates and underlying promiscuous activities. However, the contribution of substrate conformational dynamics to this process is comparatively poorly understood. Here, we analyze human (hMAT2A) and Escherichia coli (eMAT) methionine adenosyltransferases that have identical active sites but different substrate specificity. In the promiscuous hMAT2A, noncognate substrates bind in a stable conformation to allow catalysis. In contrast, noncognate substrates sample stable productive binding modes less frequently in eMAT owing to altered mobility in the enzyme active site. Different cellular concentrations of substrates likely drove the evolutionary divergence of substrate specificity in these orthologues. The observation of catalytic promiscuity in hMAT2A led to the detection of a new human metabolite, methyl thioguanosine, that is produced at elevated levels in a cancer cell line. This work establishes that identical active sites can result in different substrate specificity owing to the effects of substrate and enzyme dynamics.
Collapse
Affiliation(s)
- Madhuri Gade
- Protein
Engineering and Evolution Unit, Okinawa
Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna 904-0495, Okinawa, Japan
| | - Li Lynn Tan
- Research
School of Chemistry, Australian National
University, Canberra, 2601, Australia
| | - Adam M. Damry
- Research
School of Chemistry, Australian National
University, Canberra, 2601, Australia
| | - Mahakaran Sandhu
- Research
School of Chemistry, Australian National
University, Canberra, 2601, Australia
| | - Joseph S. Brock
- Research
School of Biology, Australian National University, Canberra 2601, Australia
| | - Andie Delaney
- Research
School of Chemistry, Australian National
University, Canberra, 2601, Australia
| | - Alejandro Villar-Briones
- Protein
Engineering and Evolution Unit, Okinawa
Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna 904-0495, Okinawa, Japan
| | - Colin J. Jackson
- Research
School of Chemistry, Australian National
University, Canberra, 2601, Australia
- Australian
Research Council Centre of Excellence for Innovations in Peptide and
Protein Science, Research School of Chemistry, Australian National University, Canberra 2601, ACT, Australia
- Australian
Research Council Centre of Excellence in Synthetic Biology, Research
School of Chemistry, Australian National
University, Canberra 2601, ACT, Australia
| | - Paola Laurino
- Protein
Engineering and Evolution Unit, Okinawa
Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna 904-0495, Okinawa, Japan
| |
Collapse
|
6
|
12/111phiA Prophage Domestication Is Associated with Autoaggregation and Increased Ability to Produce Biofilm in Streptococcus agalactiae. Microorganisms 2021; 9:microorganisms9061112. [PMID: 34063935 PMCID: PMC8223999 DOI: 10.3390/microorganisms9061112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 01/11/2023] Open
Abstract
CC17 Streptococcus agalactiae carrying group-A prophages is increasingly responsible for neonatal infections. To investigate the impact of the genetic features of a group-A prophage, we first conducted an in silico analysis of the genome of 12/111phiA, a group-A prophage carried by a strain responsible for a bloodstream infection in a parturient. This revealed a Restriction Modification system, suggesting a prophage maintenance strategy and five ORFs of interest for the host and encoding a type II toxin antitoxin system RelB/YafQ, an endonuclease, an S-adenosylmethionine synthetase MetK, and an StrP-like adhesin. Using the WT strain cured from 12/111phiA and constructing deleted mutants for the ORFs of interest, and their complemented mutants, we demonstrated an impact of prophage features on growth characteristics, cell morphology and biofilm formation. Our findings argue in favor of 12/111phiA domestication by the host and a role of prophage features in cell autoaggregation, glycocalyx and biofilm formation. We suggest that lysogeny may promote GBS adaptation to the acid environment of the vagina, consequently colonizing and infecting neonates.
Collapse
|