1
|
Zhang L, Ye JW, Li G, Park H, Luo H, Lin Y, Li S, Yang W, Guan Y, Wu F, Huang W, Wu Q, Scrutton NS, Nielsen J, Chen GQ. A long-term growth stable Halomonas sp. deleted with multiple transposases guided by its metabolic network model Halo-ecGEM. Metab Eng 2024; 84:95-108. [PMID: 38901556 DOI: 10.1016/j.ymben.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/02/2024] [Accepted: 06/06/2024] [Indexed: 06/22/2024]
Abstract
Microbial instability is a common problem during bio-production based on microbial hosts. Halomonas bluephagenesis has been developed as a chassis for next generation industrial biotechnology (NGIB) under open and unsterile conditions. However, the hidden genomic information and peculiar metabolism have significantly hampered its deep exploitation for cell-factory engineering. Based on the freshly completed genome sequence of H. bluephagenesis TD01, which reveals 1889 biological process-associated genes grouped into 84 GO-slim terms. An enzyme constrained genome-scale metabolic model Halo-ecGEM was constructed, which showed strong ability to simulate fed-batch fermentations. A visible salt-stress responsive landscape was achieved by combining GO-slim term enrichment and CVT-based omics profiling, demonstrating that cells deploy most of the protein resources by force to support the essential activity of translation and protein metabolism when exposed to salt stress. Under the guidance of Halo-ecGEM, eight transposases were deleted, leading to a significantly enhanced stability for its growth and bioproduction of various polyhydroxyalkanoates (PHA) including 3-hydroxybutyrate (3HB) homopolymer PHB, 3HB and 3-hydroxyvalerate (3HV) copolymer PHBV, as well as 3HB and 4-hydroxyvalerate (4HB) copolymer P34HB. This study sheds new light on the metabolic characteristics and stress-response landscape of H. bluephagenesis, achieving for the first time to construct a long-term growth stable chassis for industrial applications. For the first time, it was demonstrated that genome encoded transposons are the reason for microbial instability during growth in flasks and fermentors.
Collapse
Affiliation(s)
- Lizhan Zhang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jian-Wen Ye
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Gang Li
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Helen Park
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hao Luo
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96, Gothenburg, Sweden
| | - Yina Lin
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Shaowei Li
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Weinan Yang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yuying Guan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Fuqing Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wuzhe Huang
- PhaBuilder Biotechnol Co. Ltd., PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, Beijing, 101309, China
| | - Qiong Wu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Nigel S Scrutton
- Future Biomanufacturing Research Hub, Manchester Institute of Biotechnology and Department of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96, Gothenburg, Sweden; BioInnovation Institute, Ole Maaløes Vej 3, DK2200, Copenhagen N, Denmark.
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China; MOE Key Laboratory for Industrial Biocatalysts, Dept Chemical Engineering, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
2
|
Wen X, Chen Y, Zhang S, Su AT, Huang D, Zhou G, Xie X, Wang J. Resistance to preservatives and the viable but non-culturable state formation of Asaia lannensis in flavored syrups. Front Microbiol 2024; 15:1345800. [PMID: 38435685 PMCID: PMC10904602 DOI: 10.3389/fmicb.2024.1345800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/02/2024] [Indexed: 03/05/2024] Open
Abstract
Food security is a crucial issue that has caused extensive concern, and the use of food flavors has become prevalent over time. we used the molecular biological techniques, preservative susceptibility testing, viable but non-culturable (VBNC) state induction testing, and a transcriptome analysis to examine the bacterial contamination of favored syrup and identify the causes and develop effective control measures. The results showed that Asaia lannensis WLS1-1 is a microorganism that can spoil food and is a member of the acetic acid bacteria families. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) tests showed that WLS1-1 was susceptible to potassium sorbate (PS), sodium benzoate (SB), and sodium sulffte (SS) at pH 4.0. It revealed a progressive increase in resistance to these preservatives at increasing pH values. WLS1-1 was resistant to PS, SB and SS with an MIC of 4.0, 2.0 and 0.5 g/L at pH 5.0, respectively. The MIC values exceed the maximum permissible concentrations that can be added. The induction test of the VBNC state demonstrated that WLS1-1 lost its ability to grow after 321 days of PS induction, 229 days of SB induction and 52 days of SS induction combined with low temperature at 4°C. Additionally, laser confocal microscopy and a propidium monoazide-quantitative polymerase chain reaction (PMA-qPCR) assay showed that WLS1-1 was still alive after VBNC formation. There were 7.192 ± 0.081 (PS), 5.416 ± 0.149 (SB) and 2.837 ± 0.134 (SS) log10(CFU/mL) of viable bacteria. An analysis of the transcriptome data suggests that Asaia lannensis can enter the VBNC state by regulating oxidative stress and decreasing protein synthesis and metabolic activity in response to low temperature and preservatives. The relative resistance of Asaia lannensis to preservatives and the induction of the VBNC state by preservatives are the primary factors that contribute to the contamination of favored syrup by this bacterium. To our knowledge, this study represents the first evidence of the ability of Asaia lannensis to enter the VBNC state and provides a theoretical foundation for the control of organisms with similar types of activity.
Collapse
Affiliation(s)
- Xia Wen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yiwen Chen
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Shuyao Zhang
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Ai-ting Su
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Di Huang
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Gang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaobao Xie
- Key Laboratory of Agricultural Microbiomics and Precision Application (Ministry of Agriculture and Rural Affairs), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (Ministry of Agriculture and Rural Affairs), State Key Laboratory of Applied Microbiology Southern China, Guangdong Detection Center of Microbiology, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jufang Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
3
|
Borkar SB, Negi M, Jaiswal A, Raj Acharya T, Kaushik N, Choi EH, Kaushik NK. Plasma-generated nitric oxide water: A promising strategy to combat bacterial dormancy (VBNC state) in environmental contaminant Micrococcus luteus. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132634. [PMID: 37793251 DOI: 10.1016/j.jhazmat.2023.132634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/08/2023] [Accepted: 09/24/2023] [Indexed: 10/06/2023]
Abstract
The viable but non-culturable (VBNC) is an inactive state, and certain bacteria can enter under adverse conditions. The VBNC state challenges the environment, food safety, and public health since VBNCs may resuscitate and pose a risk to human health. The aim of this study was to investigate the effect of plasma-generated nitric oxide water (PG-NOW) on airborne contaminant Micrococcus luteus (M. luteus) and examine its potential to induce the VBNC state. The essential conditions for bacteria to enter VBNC state are low metabolic activity and rare or no culturable counts. The results indicated that PG-NOW effectively eliminates M. luteus, and the remaining bacteria are in culturable condition. Moreover, the conventional cultured-based method combined with a propidium iodide monoazide quantitative PCR (PMAxxTM-qPCR) showed no significant VBNC induction and moderate culturable counts. Results from the qPCR revealed that gene levels in PG-NOW treated bacteria related to resuscitation-promoting factors, amino acid biosynthesis, and fatty acid metabolism were notably upregulated. PG-NOW inactivated M. luteus showed negligible VBNC formation and alleviated infection ability in lung cells. This study provides new insights into the potential use of PG-NOW reactive species for the prevention and control of the VBNC state of M. luteus.
Collapse
Affiliation(s)
- Shweta B Borkar
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Manorma Negi
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Apurva Jaiswal
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Tirtha Raj Acharya
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea
| | - Neha Kaushik
- Department of Biotechnology, College of Engineering, The University of Suwon, Hwaseong 18323, South Korea.
| | - Eun Ha Choi
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea.
| | - Nagendra Kumar Kaushik
- Department of Electrical and Biological Physics/Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, South Korea.
| |
Collapse
|
4
|
Krol E, Werel L, Essen LO, Becker A. Structural and functional diversity of bacterial cyclic nucleotide perception by CRP proteins. MICROLIFE 2023; 4:uqad024. [PMID: 37223727 PMCID: PMC10187061 DOI: 10.1093/femsml/uqad024] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/07/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Cyclic AMP (cAMP) is a ubiquitous second messenger synthesized by most living organisms. In bacteria, it plays highly diverse roles in metabolism, host colonization, motility, and many other processes important for optimal fitness. The main route of cAMP perception is through transcription factors from the diverse and versatile CRP-FNR protein superfamily. Since the discovery of the very first CRP protein CAP in Escherichia coli more than four decades ago, its homologs have been characterized in both closely related and distant bacterial species. The cAMP-mediated gene activation for carbon catabolism by a CRP protein in the absence of glucose seems to be restricted to E. coli and its close relatives. In other phyla, the regulatory targets are more diverse. In addition to cAMP, cGMP has recently been identified as a ligand of certain CRP proteins. In a CRP dimer, each of the two cyclic nucleotide molecules makes contacts with both protein subunits and effectuates a conformational change that favors DNA binding. Here, we summarize the current knowledge on structural and physiological aspects of E. coli CAP compared with other cAMP- and cGMP-activated transcription factors, and point to emerging trends in metabolic regulation related to lysine modification and membrane association of CRP proteins.
Collapse
Affiliation(s)
- Elizaveta Krol
- Department of Biology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35043 Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg, Germany
| | - Laura Werel
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Lars Oliver Essen
- Department of Chemistry, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35032 Marburg, Germany
| | - Anke Becker
- Corresponding author. Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Karl-von-Frisch-Str. 14, 35043 Marburg. E-mail:
| |
Collapse
|
5
|
Pal A, Iyer MS, Srinivasan S, Narain Seshasayee AS, Venkatesh KV. Global pleiotropic effects in adaptively evolved Escherichia coli lacking CRP reveal molecular mechanisms that define the growth physiology. Open Biol 2022; 12:210206. [PMID: 35167766 PMCID: PMC8846999 DOI: 10.1098/rsob.210206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Evolution facilitates emergence of fitter phenotypes by efficient allocation of cellular resources in conjunction with beneficial mutations. However, system-wide pleiotropic effects that redress the perturbations to the apex node of the transcriptional regulatory networks remain unclear. Here, we elucidate that absence of global transcriptional regulator CRP in Escherichia coli results in alterations in key metabolic pathways under glucose respiratory conditions, favouring stress- or hedging-related functions over growth-enhancing functions. Further, we disentangle the growth-mediated effects from the CRP regulation-specific effects on these metabolic pathways. We quantitatively illustrate that the loss of CRP perturbs proteome efficiency, as evident from metabolic as well as ribosomal proteome fractions, that corroborated with intracellular metabolite profiles. To address how E. coli copes with such systemic defect, we evolved Δcrp mutant in the presence of glucose. Besides acquiring mutations in the promoter of glucose transporter ptsG, the evolved populations recovered the metabolic pathways to their pre-perturbed state coupled with metabolite re-adjustments, which altogether enabled increased growth. By contrast to Δcrp mutant, the evolved strains remodelled their proteome efficiency towards biomass synthesis, albeit at the expense of carbon efficiency. Overall, we comprehensively illustrate the genetic and metabolic basis of pleiotropic effects, fundamental for understanding the growth physiology.
Collapse
Affiliation(s)
- Ankita Pal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Mahesh S. Iyer
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sumana Srinivasan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | | | - K. V. Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
6
|
Gao R, Liao X, Zhao X, Liu D, Ding T. The diagnostic tools for viable but nonculturable pathogens in the food industry: Current status and future prospects. Compr Rev Food Sci Food Saf 2021; 20:2146-2175. [PMID: 33484068 DOI: 10.1111/1541-4337.12695] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/21/2020] [Accepted: 12/28/2020] [Indexed: 12/21/2022]
Abstract
Viable but nonculturable (VBNC) microorganisms have been recognized as pathogenic contaminants in foods and environments. The failure of VBNC cells to form the visible colonies hinders the ability to use conventional media for their detection. Efficient and rapid detection of pathogens in the VBNC state is a prerequisite to ensure the food safety and public health. Despite their nonculturability, VBNC cells have distinct characteristics, such as morphology, metabolism, chemical composition, and gene and protein expression, that have been used as the basis for the development of abundant diagnostic tools. This review covers the current status and advances in various approaches for examining microorganisms in the VBNC state, including but not limited to the methodological aspects, advantages, and drawbacks of each technique. Existing methods, such as direct viable count, SYTO/PI dual staining, and propidium monoazide quantitative polymerase chain reaction (PCR), as well as some techniques with potential to be applied in the future, such as digital PCR, enhanced-surface Raman spectroscopy, and impedance-based techniques, are summarized in depth. Finally, future prospects for the one-step detection of VBNC bacteria are proposed and discussed. We believe that this review can provide more optional methods for researchers and promote the development of rapid, accurate detecting methods, and for inspectors, the diagnostic tools can provide data to undertake risk analysis of VBNC cells.
Collapse
Affiliation(s)
- Rui Gao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xinyu Liao
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xihong Zhao
- Research Center for Environmental Ecology and Engineering, Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, China
| | - Donghong Liu
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tian Ding
- Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Department of Food Science and Nutrition, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
7
|
Bacterial dormancy: A subpopulation of viable but non-culturable cells demonstrates better fitness for revival. PLoS Pathog 2021; 17:e1009194. [PMID: 33439894 PMCID: PMC7837498 DOI: 10.1371/journal.ppat.1009194] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/26/2021] [Accepted: 11/27/2020] [Indexed: 01/08/2023] Open
Abstract
The viable but non culturable (VBNC) state is a condition in which bacterial cells are viable and metabolically active, but resistant to cultivation using a routine growth medium. We investigated the ability of V. parahaemolyticus to form VBNC cells, and to subsequently become resuscitated. The ability to control VBNC cell formation in the laboratory allowed us to selectively isolate VBNC cells using fluorescence activated cell sorting, and to differentiate subpopulations based on their metabolic activity, cell shape and the ability to cause disease in Galleria mellonella. Our results showed that two subpopulations (P1 and P2) of V. parahaemolyticus VBNC cells exist and can remain dormant in the VBNC state for long periods. VBNC subpopulation P2, had a better fitness for survival under stressful conditions and showed 100% revival under favourable conditions. Proteomic analysis of these subpopulations (at two different time points: 12 days (T12) and 50 days (T50) post VBNC) revealed that the proteome of P2 was more similar to that of the starting microcosm culture (T0) than the proteome of P1. Proteins that were significantly up or down-regulated between the different VBNC populations were identified and differentially regulated proteins were assigned into 23 functional groups, the majority being assigned to metabolism functional categories. A lactate dehydrogenase (lldD) protein, responsible for converting lactate to pyruvate, was significantly upregulated in all subpopulations of VBNC cells. Deletion of the lactate dehydrogenase (RIMD2210633:ΔlldD) gene caused cells to enter the VBNC state significantly more quickly compared to the wild-type, and adding lactate to VBNC cells aided their resuscitation and extended the resuscitation window. Addition of pyruvate to the RIMD2210633:ΔlldD strain restored the wild-type VBNC formation profile. This study suggests that lactate dehydrogenase may play a role in regulating the VBNC state.
Collapse
|
8
|
Wang M, Noor S, Huan R, Liu C, Li J, Shi Q, Zhang YJ, Wu C, He H. Comparison of the diversity of cultured and total bacterial communities in marine sediment using culture-dependent and sequencing methods. PeerJ 2020; 8:e10060. [PMID: 33150062 PMCID: PMC7585373 DOI: 10.7717/peerj.10060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/07/2020] [Indexed: 12/22/2022] Open
Abstract
Despite recent great advances in microbial culture, most microbes have not yet been cultured, and the impact of medium composition on the isolation of microbes from natural systems has not been elucidated. To optimize media for culturing marine microbes, microbial communities in three sediment samples were described using high-throughput sequencing (HTS) and culture-dependent techniques. HTS revealed communities dominated by Gammaproteobacteria, and culture-based methods revealed communities dominated by Actinobacteria. Among the total operational taxonomic units (OTUs) from the HTS dataset, 6% were recovered in the culture collection. Four potentially novel bacterial strains belonging to Oceaniovalibus, Psychrobacter and Salegentibacter were isolated. The combination of media cultured more taxa than any single medium. Nutrient-rich and single-carbon/nitrogen-source media supported the growth of relatively few taxa, and the quality of nitrogen strongly influenced the types of bacteria isolated.
Collapse
Affiliation(s)
- Meng Wang
- School of Life Science, Central South University, Changsha, China
| | - Samina Noor
- School of Life Science, Central South University, Changsha, China
| | - Ran Huan
- School of Life Science, Central South University, Changsha, China
| | - Congling Liu
- School of Life Science, Central South University, Changsha, China
| | - JiaYi Li
- School of Life Science, Central South University, Changsha, China
| | - Qingxin Shi
- School of Life Science, Central South University, Changsha, China
| | | | - Cuiling Wu
- Changzhi Medical College, Changzhi, China
| | - Hailun He
- School of Life Science, Central South University, Changsha, China
| |
Collapse
|
9
|
Fu Y, Jia Y, Fan J, Yu C, Yu C, Shen C. Induction of Escherichia coli O157:H7 into a viable but non-culturable state by high temperature and its resuscitation. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:568-577. [PMID: 32783384 DOI: 10.1111/1758-2229.12877] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Escherichia coli O157:H7, a causative agent of haemolytic uremic syndrome, can enter into a viable but non-culturable (VBNC) state in response to harsh stress. Bacteria in this state can retain membrane integrity, metabolic activity and virulence expression, which may present health risks. However, virulence expression and resuscitation ability of the VBNC state are not well understood. Here, we induced E. coli O157:H7 into a VBNC state by high temperature, which is commonly used to prevent the proliferation of pathogens in process of soil solarization, composting and anaerobic digestion of organic wastes. The virulence genes were highly expressed in the VBNC state and resuscitated daughter cells. The resuscitation of VBNC cells occurred after the removal of heat stress in Luria-Bertani medium. In addition, E. coli O157: H7 cells can leave the VBNC state and resuscitate with the clearance of protein aggregates. Notably, with the accumulation of protein aggregation and increased levels of reactive oxygen species, cells lost their ability to resuscitate. The results of this study not only can facilitate a better understanding of the health risks associated with the VBNC state but also have the potential to provide a theoretical basis for thermal disinfection processing.
Collapse
Affiliation(s)
- Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Chungui Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, 310058, China
| |
Collapse
|
10
|
Hengge R. Linking bacterial growth, survival, and multicellularity - small signaling molecules as triggers and drivers. Curr Opin Microbiol 2020; 55:57-66. [PMID: 32244175 DOI: 10.1016/j.mib.2020.02.007] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 02/05/2023]
Abstract
An overarching theme of cellular regulation in bacteria arises from the trade-off between growth and stress resilience. In addition, the formation of biofilms contributes to stress survival, since these dense multicellular aggregates, in which cells are embedded in an extracellular matrix of self-produced polymers, represent a self-constructed protective and homeostatic 'niche'. As shown here for the model bacterium Escherichia coli, the inverse coordination of bacterial growth with survival and the transition to multicellularity is achieved by a highly integrated regulatory network with several sigma subunits of RNA polymerase and a small number of transcriptional hubs as central players. By conveying information about the actual (micro)environments, nucleotide second messengers such as cAMP, (p)ppGpp, and in particular c-di-GMP are the key triggers and drivers that promote either growth or stress resistance and organized multicellularity in a world of limited resources.
Collapse
Affiliation(s)
- Regine Hengge
- Institut für Biologie/Mikrobiologie, Humboldt-Universität zu Berlin, 10115 Berlin, Germany.
| |
Collapse
|
11
|
Regulatory Patterns of Crp on Monensin Biosynthesis in Streptomyces cinnamonensis. Microorganisms 2020; 8:microorganisms8020271. [PMID: 32079344 PMCID: PMC7074812 DOI: 10.3390/microorganisms8020271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 01/03/2023] Open
Abstract
Monensin, produced by Streptomyces cinnamonensis, is a polyether ionophore antibiotic widely used as a coccidiostat and a growth-promoting agent in agricultural industry. In this study, cyclic AMP receptor protein (Crp), the global transcription factor for regulation of monensin biosynthesis, was deciphered. The overexpression and antisense RNA silencing of crp revealed that Crp plays a positive role in monensin biosynthesis. RNA sequencing analysis indicated that Crp exhibited extensive regulatory effects on genes involved in both primary metabolic pathways and the monensin biosynthetic gene cluster (mon). The primary metabolic genes, including acs, pckA, accB, acdH, atoB, mutB, epi and ccr, which are pivotal in the biosynthesis of monensin precursors malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA, are transcriptionally upregulated by Crp. Furthermore, Crp upregulates the expression of most mon genes, including all PKS genes (monAI to monAVIII), tailoring genes (monBI-monBII-monCI, monD and monAX) and a pathway-specific regulatory gene (monRI). Enhanced precursor supply and the upregulated expression of mon cluser by Crp would allow the higher production of monensin in S. cinnamonensis. This study gives a more comprehensive understanding of the global regulator Crp and extends the knowledge of Crp regulatory mechanism in Streptomyces.
Collapse
|
12
|
Pan H, Dong K, Rao L, Zhao L, Wang Y, Liao X. The Association of Cell Division Regulated by DicC With the Formation of Viable but Non-culturable Escherichia coli O157:H7. Front Microbiol 2020; 10:2850. [PMID: 31921032 PMCID: PMC6915034 DOI: 10.3389/fmicb.2019.02850] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 11/25/2019] [Indexed: 12/23/2022] Open
Abstract
The viable but non-culturable (VBNC) state, in which bacteria fail to grow on routine culture media but are actually alive, has been widely recognized as a strategy adopted by bacteria to cope with stressful environments. However, little is known regarding the molecular mechanism of VBNC formation. Here, we aimed to elucidate the specific roles of cell division regulatory proteins and the cell growth rate during VBNC Escherichia coli O157:H7 formation. We have previously found that expression of dicC is reduced by 20.08-fold in VBNC E. coli O157:H7 compared to non-VBNC cells. Little is known about DicC except that it, along with DicA, appears to act as a regulator of cell division by regulating expression of the cell division inhibitor DicB. First, our results showed that the VBNC cell number increased in the ΔdicC mutant as well as the DicA-overexpressing strain but decreased in the DicC-overexpressing strain induced by high-pressure carbon dioxide, acid, and H2O2. Furthermore, the growth rates of both the DicA-overexpressing strain and the ΔdicC mutant were higher than that of the control strain, while DicC-overexpressing strain grew significantly more slowly than the vector strain. The level of the dicB gene, regulated by dicA and dicC and inhibiting cell division, was increased in the DicC-overexpressing strain and decreased in the ΔdicC mutant and DicA-overexpressing strain, which was consistent with the growth phenotypes. In addition, the dwarfing cell morphology of the ΔdicC mutant and DicA-overexpressing strain were observed by SEM and TEM. Taken together, our study demonstrates that DicC negatively regulates the formation of the VBNC state, and DicA enhances the ability of cells to enter the VBNC state. Besides, the cell growth rate and dwarfing cell morphology may be correlated with the formation of the VBNC state.
Collapse
Affiliation(s)
- Hanxu Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Kai Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Lei Rao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Liang Zhao
- Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Yongtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.,Key Laboratory of Fruit and Vegetable Processing, Ministry of Agriculture and Rural Affairs, Beijing, China
| |
Collapse
|
13
|
iTRAQ-based proteomic analyses of the plant-pathogenic bacterium Acidovorax citrulli during entrance into and resuscitation from the viable but nonculturable state. J Proteomics 2020; 211:103547. [DOI: 10.1016/j.jprot.2019.103547] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 09/28/2019] [Accepted: 10/07/2019] [Indexed: 12/26/2022]
|
14
|
Dong K, Pan H, Yang D, Rao L, Zhao L, Wang Y, Liao X. Induction, detection, formation, and resuscitation of viable but non‐culturable state microorganisms. Compr Rev Food Sci Food Saf 2019; 19:149-183. [DOI: 10.1111/1541-4337.12513] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/21/2019] [Accepted: 11/14/2019] [Indexed: 01/05/2023]
Affiliation(s)
- Kai Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Hanxu Pan
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Dong Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Lei Rao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Liang Zhao
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Yongtao Wang
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| | - Xiaojun Liao
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- College of Food Science and Nutritional EngineeringChina Agricultural University Beijing China
- Key Lab of Fruit and Vegetable ProcessingMinistry of Agriculture and Rural Affairs Beijing China
| |
Collapse
|
15
|
Towards streamlined bank vole odor preference evaluation using Y-mazes. MAMMAL RES 2019. [DOI: 10.1007/s13364-019-00445-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
Abstract
Bacterial signal transduction systems are responsible for sensing environmental cues and adjusting the cellular behaviour and/or metabolism in response to these cues. They also monitor the intracellular conditions and the status of the cell envelope and the cytoplasmic membrane and trigger various stress responses to counteract adverse changes. This surveillance involves several classes of sensor proteins: histidine kinases; chemoreceptors; membrane components of the sugar phosphotransferase system; adenylate, diadenylate and diguanylate cyclases and certain cAMP, c-di-AMP and c-di-GMP phosphodiesterases; extracytoplasmic function sigma factors and Ser/Thr/Tyr protein kinases and phosphoprotein phosphatases. We have compiled a detailed listing of sensor proteins that are encoded in the genomes of Escherichia coli, Bacillus subtilis and 10 widespread pathogens: Chlamydia trachomatis, Haemophilus influenzae, Helicobacter pylori, Mycobacterium tuberculosis, Mycoplasma pneumoniae, Neisseria gonorrhoeae, Porphyromonas gingivalis, Rickettsia typhi, Streptococcus pyogenes and Treponema pallidum, and checked what, if anything, is known about their functions. This listing shows significant gaps in the understanding of which environmental and intracellular cues are perceived by these bacteria and which cellular responses are triggered by the changes in the respective parameters. A better understanding of bacterial preferences may suggest new ways to modulate the expression of virulence factors and therefore decrease the reliance on antibiotics to fight infection.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
17
|
Nosho K, Yasuhara K, Ikehata Y, Mii T, Ishige T, Yajima S, Hidaka M, Ogawa T, Masaki H. Isolation of colonization-defective Escherichia coli mutants reveals critical requirement for fatty acids in bacterial colony formation. MICROBIOLOGY-SGM 2018; 164:1122-1132. [PMID: 29906256 PMCID: PMC6230765 DOI: 10.1099/mic.0.000673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most bacterial cells in nature exhibit extremely low colony-forming activity, despite showing various signs of viability, impeding the isolation and utilization of many bacterial resources. However, the general causes responsible for this state of low colony formation are largely unknown. Because liquid cultivation typically yields more bacterial cell cultures than traditional solid cultivation, we hypothesized that colony formation requires one or more specific gene functions that are dispensable or less important for growth in liquid media. To verify our hypothesis and reveal the genetic background limiting colony formation among bacteria in nature, we isolated Escherichia coli mutants that had decreased frequencies of colony formation but could grow in liquid medium from a temperature-sensitive mutant collection. Mutations were identified in fabB, which is essential for the synthesis of long unsaturated fatty acids. We then constructed a fabB deletion mutant in a wild-type background. Detailed behavioural analysis of the mutant revealed that under fatty acid-limited conditions, colony formation on solid media was more sensitively and seriously impaired than growth in liquid media. Furthermore, growth under partial inhibition of fatty acid synthesis with cerulenin or triclosan brought about similar phenotypes, not only in E. coli but also in Bacillus subtilis and Corynebacterium glutamicum. These results indicate that fatty acids have a critical importance in colony formation and that depletion of fatty acids in the environment partly accounts for the low frequency of bacterial colony formation.
Collapse
Affiliation(s)
- Kazuki Nosho
- 1Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Koji Yasuhara
- 1Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Yuto Ikehata
- 1Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Mii
- 1Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Taichiro Ishige
- 2NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Shunsuke Yajima
- 2NODAI Genome Research Center, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan.,3Department of Bioscience, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Makoto Hidaka
- 1Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Tetsuhiro Ogawa
- 1Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan
| | - Haruhiko Masaki
- 1Department of Biotechnology, The University of Tokyo, Yayoi, Bunkyo-ku, Tokyo, Japan.,†Present address: Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|