1
|
Busby SJW, Browning DF. Transcription activation in Escherichia coli and Salmonella. EcoSal Plus 2024; 12:eesp00392020. [PMID: 38345370 PMCID: PMC11636354 DOI: 10.1128/ecosalplus.esp-0039-2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 12/23/2023] [Indexed: 12/13/2024]
Abstract
Promoter-specific activation of transcript initiation provides an important regulatory device in Escherichia coli and Salmonella. Here, we describe the different mechanisms that operate, focusing on how they have evolved to manage the "housekeeping" bacterial transcription machinery. Some mechanisms involve assisting the bacterial DNA-dependent RNA polymerase or replacing or remodeling one of its subunits. Others are directed to chromosomal DNA, improving promoter function, or relieving repression. We discuss how different activators work together at promoters and how the present complex network of transcription factors evolved.
Collapse
Affiliation(s)
- Stephen J. W. Busby
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Douglas F. Browning
- School of Biosciences & Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
- School of Biosciences, College of Health & Life Sciences, Aston University, Birmingham, United Kingdom
| |
Collapse
|
2
|
Belagal P. Genetic and molecular studies of fitC4 and its suppressors fitA76* and fit95 in Escherichia coli. Int Microbiol 2024:10.1007/s10123-024-00610-x. [PMID: 39643848 DOI: 10.1007/s10123-024-00610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/25/2024] [Accepted: 10/31/2024] [Indexed: 12/09/2024]
Abstract
The fitA/pheS and fitB/pheT genes were previously proposed to function as transcription factors. The originally identified temperature sensitive (Ts) transcription-defective fitA76 mutant was shown to harbour a second mutation, fit95 (pheT) in addition to pheS5 (pheS; G293 → A293 transition). A new fit mutation namely, fitC4 (fitC locus) was identified in a Ts+ derivative of fitA76, namely JV4. Genetic mapping revealed that fitC4 mutation could be an extragenic suppressor, as it mapped at 39.01 min while fitAB loci mapped at 38.7 min on E. coli chromosome. Upon separation from JV4, fitC4 (Ts) failed to suppress the original fitA76 mutant (pheS5-fit95). Instead, JV4 harboured a modified form of fitA76 designated fitA76* (pheS4-fit95) with G293 → C293 transversion occurred at the same site of pheS5. The fitC4 and fitA76* mutations were genetically separated and reassembled to show that they both suppress each other as like in JV4. The separated fitC4 and fitA76* mutations behave like original fitA76 mutant in terms of transcription abnormality. This study focusses on further characterization of fitC4 and its accompanied mutations. The mutations fitC4, fitA76* and fitC4-fitA76* (reconstructed) are mobilized into new genetic backgrounds where the viability of these strains varied significantly. Growth and transcription abnormalities of fitC4 and fitA76* at 42 °C are restored in the reconstructed strain (fitC4-fitA76*), but not the β-galactosidase induction. As direct evidence, fit95 is shown to suppress fitC4 in a rpoB201 mutation background where fit95 phenotype is completely stabilized. The implications of these results with reference to transcription control by Fit factors in vivo are discussed.
Collapse
Affiliation(s)
- Praveen Belagal
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
3
|
Belagal P. Identification of a novel alternate promoter element in the pheST operon of Escherichia coli. Mol Biol Rep 2024; 51:1063. [PMID: 39419865 DOI: 10.1007/s11033-024-09937-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Earlier work in this laboratory revealed that fitA was same as pheS as a recombinant clone, pSRJ5R1 harboring pheS+ gene complemented transcription-defective fitA76 Ts (temperature sensitive) mutant. However, this clone lacked the native promoter (NP) of pheST operon. A putative - 10 promoter like element was suggested to act as promoter in this clone. This work investigated the veracity of this putative promoter as well as its downstream regulatory region towards driving the pheS expression. METHODS Plasmid clones with promoter-mutations or -deletions were constructed by PCR-based cloning and their ability to complement fitA76 Ts mutant strains was checked. Chromosomal mutations were transferred into various genetic backgrounds via P1-transductions. Relative viability assays were performed to check the extent of complementation. RESULTS Clones harboring point mutations (PM-pheS) or deletion (PD1-pheS) of - 10 region of the putative promoter did not abolish complementation of the fitA76 Ts phenotype. Subsequently, a novel alternate promoter (AP) was discovered by downstream deletion clone (PD2-pheS) which failed to complement. Keeping PD1-pheS intact but mutating initiation codon of pheS (ATG→TTG) failed to complement. Complementation ability of novel alternate promoter is poor in HfrC strain background unlike native promoter which complements well independent of strain background. CONCLUSION A novel alternate-promoter of pheST operon was identified by mutational/deletional analyses and earlier reported putative - 10 promoter was shown to be dispensable. Alternate promoter is relA dependent.
Collapse
Affiliation(s)
- Praveen Belagal
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, India.
| |
Collapse
|
4
|
Rybina AA, Glushak RA, Bessonova TA, Dakhnovets AI, Rudenko AY, Ozhiganov RM, Kaznadzey AD, Tutukina MN, Gelfand MS. Phylogeny and structural modeling of the transcription factor CsqR (YihW) from Escherichia coli. Sci Rep 2024; 14:7852. [PMID: 38570624 PMCID: PMC10991401 DOI: 10.1038/s41598-024-58492-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 03/29/2024] [Indexed: 04/05/2024] Open
Abstract
CsqR (YihW) is a local transcription factor that controls expression of yih genes involved in degradation of sulfoquinovose in Escherichia coli. We recently showed that expression of the respective gene cassette might be regulated by lactose. Here, we explore the phylogenetic and functional traits of CsqR. Phylogenetic analysis revealed that CsqR had a conserved Met25. Western blot demonstrated that CsqR was synthesized in the bacterial cell as two protein forms, 28.5 (CsqR-l) and 26 kDa (CsqR-s), the latter corresponding to start of translation at Met25. CsqR-s was dramatically activated during growth with sulfoquinovose as a sole carbon source, and displaced CsqR-l in the stationary phase during growth on rich medium. Molecular dynamic simulations revealed two possible states of the CsqR-s structure, with the interdomain linker being represented by either a disordered loop or an ɑ-helix. This helix allowed the hinge-like motion of the N-terminal domain resulting in a switch of CsqR-s between two conformational states, "open" and "compact". We then modeled the interaction of both CsqR forms with putative effectors sulfoquinovose, sulforhamnose, sulfoquinovosyl glycerol, and lactose, and revealed that they all preferred the same pocket in CsqR-l, while in CsqR-s there were two possible options dependent on the linker structure.
Collapse
Affiliation(s)
- Anna A Rybina
- Skolkovo Institute of Science and Technology, Moscow, Russia, 121205.
| | - Roman A Glushak
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Tatiana A Bessonova
- Institute of Cell Biophysics RAS (Federal Research Center "Pushchino Scientific Center for Biological Research RAS"), Pushchino, Russia, 142290
| | | | - Alexander Yu Rudenko
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Ratislav M Ozhiganov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia, 119991
| | - Anna D Kaznadzey
- Institute for Information Transmission Problems RAS, Moscow, Russia, 127051
| | - Maria N Tutukina
- Skolkovo Institute of Science and Technology, Moscow, Russia, 121205
- Institute of Cell Biophysics RAS (Federal Research Center "Pushchino Scientific Center for Biological Research RAS"), Pushchino, Russia, 142290
- Institute for Information Transmission Problems RAS, Moscow, Russia, 127051
| | - Mikhail S Gelfand
- Skolkovo Institute of Science and Technology, Moscow, Russia, 121205
- Institute for Information Transmission Problems RAS, Moscow, Russia, 127051
| |
Collapse
|
5
|
Kompaniiets D, Wang D, Yang Y, Hu Y, Liu B. Structure and molecular mechanism of bacterial transcription activation. Trends Microbiol 2024; 32:379-397. [PMID: 37903670 DOI: 10.1016/j.tim.2023.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/27/2023] [Accepted: 10/03/2023] [Indexed: 11/01/2023]
Abstract
Transcription activation is an important checkpoint of regulation of gene expression which occurs in response to different intracellular and extracellular signals. The key elements in this signal transduction process are transcription activators, which determine when and how gene expression is activated. Recent structural studies on a considerable number of new transcription activation complexes (TACs) revealed the remarkable mechanistic diversity of transcription activation mediated by different factors, necessitating a review and re-evaluation of the transcription activation mechanisms. In this review, we present a comprehensive summary of transcription activation mechanisms and propose a new, elaborate, and systematic classification of transcription activation mechanisms, primarily based on the structural features of diverse TAC components.
Collapse
Affiliation(s)
- Dmytro Kompaniiets
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Dong Wang
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Bin Liu
- Section of Transcription and Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN 55912, USA.
| |
Collapse
|
6
|
Han SJ, Jiang YL, You LL, Shen LQ, Wu X, Yang F, Cui N, Kong WW, Sun H, Zhou K, Meng HC, Chen ZP, Chen Y, Zhang Y, Zhou CZ. DNA looping mediates cooperative transcription activation. Nat Struct Mol Biol 2024; 31:293-299. [PMID: 38177666 DOI: 10.1038/s41594-023-01149-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 10/04/2023] [Indexed: 01/06/2024]
Abstract
Transcription factors respond to multilevel stimuli and co-occupy promoter regions of target genes to activate RNA polymerase (RNAP) in a cooperative manner. To decipher the molecular mechanism, here we report two cryo-electron microscopy structures of Anabaena transcription activation complexes (TACs): NtcA-TAC composed of RNAP holoenzyme, promoter and a global activator NtcA, and NtcA-NtcB-TAC comprising an extra context-specific regulator, NtcB. Structural analysis showed that NtcA binding makes the promoter DNA bend by ∼50°, which facilitates RNAP to contact NtcB at the distal upstream NtcB box. The sequential binding of NtcA and NtcB induces looping back of promoter DNA towards RNAP, enabling the assembly of a fully activated TAC bound with two activators. Together with biochemical assays, we propose a 'DNA looping' mechanism of cooperative transcription activation in bacteria.
Collapse
Affiliation(s)
- Shu-Jing Han
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Yong-Liang Jiang
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China.
| | - Lin-Lin You
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Li-Qiang Shen
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoxian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Feng Yang
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Ning Cui
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Wen-Wen Kong
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Hui Sun
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Ke Zhou
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Hui-Chao Meng
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Zhi-Peng Chen
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Yuxing Chen
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Cong-Zhao Zhou
- School of Life Sciences and Biomedical Sciences and Health Laboratory of Anhui Province, Division of Life Sciences and Medicine, University of Science & Technology of China, Hefei, China.
| |
Collapse
|
7
|
Trouillon J, Doubleday PF, Sauer U. Genomic footprinting uncovers global transcription factor responses to amino acids in Escherichia coli. Cell Syst 2023; 14:860-871.e4. [PMID: 37820729 DOI: 10.1016/j.cels.2023.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 09/01/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Our knowledge of transcriptional responses to changes in nutrient availability comes primarily from few well-studied transcription factors (TFs), often lacking an unbiased genome-wide perspective. Leveraging recent advances allowing bacterial genomic footprinting, we comprehensively mapped the genome-wide regulatory responses of Escherichia coli to exogenous leucine, methionine, alanine, and lysine. The global TF Lrp was found to individually sense three amino acids and mount three different target gene responses. Overall, 531 genes had altered RNA polymerase occupancy, and 32 TFs responded directly or indirectly to the presence of amino acids, including regulators of membrane and osmotic pressure homeostasis. About 70% of the detected TF-DNA interactions had not been reported before. We thus identified 682 previously unknown TF-binding locations, for a subset of which the involved TFs were identified by affinity purification. This comprehensive map of amino acid regulation illustrates the incompleteness of the known transcriptional regulation network, even in E. coli.
Collapse
Affiliation(s)
- Julian Trouillon
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Peter F Doubleday
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, ETH Zürich, 8093 Zürich, Switzerland.
| |
Collapse
|
8
|
Aggarwal S, Huang E, Do H, Makthal N, Li Y, Bapteste E, Lopez P, Bernard C, Kumaraswami M. The leaderless communication peptide (LCP) class of quorum-sensing peptides is broadly distributed among Firmicutes. Nat Commun 2023; 14:5947. [PMID: 37741855 PMCID: PMC10518010 DOI: 10.1038/s41467-023-41719-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023] Open
Abstract
The human pathogen Streptococcus pyogenes secretes a short peptide (leaderless communication peptide, LCP) that mediates intercellular communication and controls bacterial virulence through interaction with its receptor, RopB. Here, we show that LCP and RopB homologues are present in other Firmicutes. We experimentally validate that LCPs with distinct peptide communication codes act as bacterial intercellular signals and regulate gene expression in Streptococcus salivarius, Streptococcus porcinus, Enterococcus malodoratus and Limosilactobacillus reuteri. Our results indicate that LCPs are more widespread than previously thought, and their characterization may uncover new signaling mechanisms and roles in coordinating diverse bacterial traits.
Collapse
Affiliation(s)
- Shifu Aggarwal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Elaine Huang
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Hackwon Do
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
- Research Unit of Cryogenic Novel Material, Korea Polar Research Institute, Incheon, 21990, South Korea
| | - Nishanth Makthal
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Yanyan Li
- Communication Molecules and Adaptation of Microorganisms (MCAM), CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Eric Bapteste
- Institut de Systématique, Evolution et Biodiversité (ISYEB), Sorbonne Université, CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Philippe Lopez
- Institut de Systématique, Evolution et Biodiversité (ISYEB), Sorbonne Université, CNRS, Muséum National d'Histoire Naturelle, Paris, France
| | - Charles Bernard
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland.
| | - Muthiah Kumaraswami
- Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute, Houston, TX, 77030, USA.
- Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, 77030, USA.
| |
Collapse
|
9
|
Xu JM, Wu ZS, Zhao KJ, Xi ZJ, Wang LY, Cheng F, Xue YP, Zheng YG. IPTG-induced high protein expression for whole-cell biosynthesis of L-phosphinothricin. Biotechnol J 2023; 18:e2300027. [PMID: 37265188 DOI: 10.1002/biot.202300027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/20/2023] [Accepted: 05/19/2023] [Indexed: 06/03/2023]
Abstract
BACKGROUND Biocatalytic production of L-phosphinothricin (L-PPT) is currently the most promising method. In this work, we use an Escherichia coli strain coexpressing of D-amino acid oxidase and catalase (E. coli DAAO-CAT) to oxidation biocatalytic D-PPT to PPO, then use the second E. coli strain coexpressing glutamate dehydrogenase and formate dehydrogenase (E. coli GluDH-FDH) to reduce biocatalytic PPO to L-PPT. MAIN METHODS AND MAJOR RESULTS We compared the effects of different concentrations of IPTG or lactose on protein expression and enzyme activity in 5 L fermenter. The best induction conditions for E. coli DAAO-CAT were 0.05 mM IPTG, induction for 18 h at 28°C. The specific enzyme activities of DAAO and CAT were 153.20 U g-1 and 896.23 U g-1 , respectively. The optimal induction conditions for E. coli GluDH-FDH were 0.2 mM IPTG, induction for 19 h at 28°C. The specific enzyme activities of GluDH and FDH were 41.72 U g-1 and 109.70 U g-1 , respectively. The 200 mM D-PPT was biocatalyzed by E. coli DAAO-CAT for 4 h with space-time yield of 9.0 g·L-1 ·h-1 and conversion rate of over 99.0%. Then 220 mM PPO was converted to L-PPT by E. coli GluDH-FDH for 3 h with space-time yield of 14.5 g·L-1 ·h-1 and conversion rate of over 99.0%. To our knowledge, this is the most efficient biocatalytic reaction for L-PPT production. CONCLUSIONS AND IMPLICATIONS We found that IPTG has advantages compared with lactose in the enzyme activity and biomass of E. coli DAAO-CAT and E. coli GluDH-FDH, and IPTG is more environmentally friendly. Our data implicated that IPTG can replace lactose in terms of economic feasibility and effectiveness for scaled-up industrial fermentations.
Collapse
Affiliation(s)
- Jian-Miao Xu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhou-Sheng Wu
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ke-Ji Zhao
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Zhi-Jie Xi
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Liu-Yu Wang
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Feng Cheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Ya-Ping Xue
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yu-Guo Zheng
- Institute of Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
10
|
Wu X, Yu C, Mu W, Gu Z, Feng Y, Zhang Y. The structural mechanism for transcription activation by Caulobacter crescentus GcrA. Nucleic Acids Res 2023; 51:1960-1970. [PMID: 36715319 PMCID: PMC9976885 DOI: 10.1093/nar/gkad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
Canonical bacterial transcription activators bind to their cognate cis elements at the upstream of transcription start site (TSS) in a form of dimer. Caulobacter crescentus GcrA, a non-canonical transcription activator, can activate transcription from promoters harboring its cis element at the upstream or downstream of TSS in a form of monomer. We determined two cryo-EM structures of C. crescentus GcrA-bound transcription activation complexes, GcrA TACU and GcrA TACD, which comprise GcrA, RNAP, σ70 and promoter DNA with GcrA cis elements at either the upstream or downstream of TSS at 3.6 and 3.8 Å, respectively. In the GcrA-TACU structure, GcrA makes bipartite interactions with both σ70 domain 2 (σ702) and its cis element, while in the GcrA-TACD structure, GcrA retains interaction with σ702 but loses the interaction with its cis element. Our results suggest that GcrA likely forms a functionally specialized GcrA-RNAP-σA holoenzyme, in which GcrA first locates its cis element and then facilitates RNAP to load on core promoter at its proximal region. The sequence-specific interaction of GcrA and DNA is disrupted either at the stage of RPo formation or promoter escape depending on the location of GcrA cis elements relative to TSS.
Collapse
Affiliation(s)
- Xiaoxian Wu
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengzhi Yu
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenhui Mu
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zhanxi Gu
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Feng
- Department of Biophysics, and Department of Infectious Disease of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
11
|
Alhammadi MM, Godfrey RE, Ingram JO, Singh G, Bathurst CL, Busby SJW, Browning DF. Novel organisation and regulation of the pic promoter from enteroaggregative and uropathogenic Escherichia coli. Virulence 2022; 13:1393-1406. [PMID: 35971774 PMCID: PMC9387333 DOI: 10.1080/21505594.2022.2111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The serine protease autotransporters of the Enterobacteriaceae (SPATEs) are a large family of virulence factors commonly found in enteric bacteria. These secreted virulence factors have diverse functions during bacterial infection, including adhesion, aggregation and cell toxicity. One such SPATE, the Pic mucinase (protein involved in colonisation) cleaves mucin, allowing enteric bacterial cells to utilise mucin as a carbon source and to penetrate the gut mucus lining, thereby increasing mucosal colonisation. The pic gene is widely distributed within the Enterobacteriaceae, being found in human pathogens, such as enteroaggregative Escherichia coli (EAEC), uropathogenic E. coli (UPEC) and Shigella flexneri 2a. As the pic promoter regions from EAEC strain 042 and UPEC strain CFT073 differ, we have investigated the regulation of each promoter. Here, using in vivo and in vitro techniques, we show that both promoters are activated by the global transcription factor, CRP (cyclic AMP receptor protein), but the architectures of the EAEC and the UPEC pic promoter differ. Expression from both pic promoters is repressed by the nucleoid-associated factor, Fis, and maximal promoter activity occurs when cells are grown in minimal medium. As CRP activates transcription in conditions of nutrient depletion, whilst Fis levels are maximal in nutrient-rich environments, the regulation of the EAEC and UPEC pic promoters is consistent with Pic’s nutritional role in scavenging mucin as a suitable carbon source during colonisation and infection.
Collapse
Affiliation(s)
- Munirah M Alhammadi
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK.,Biology Department, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rita E Godfrey
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Joseph O Ingram
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Gurdamanjit Singh
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Camilla L Bathurst
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK
| | - Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, UK.,College of Health & Life Sciences, Aston University, Birmingham, UK
| |
Collapse
|
12
|
Fang C, Zhang Y. Bacterial MerR family transcription regulators: activationby distortion. Acta Biochim Biophys Sin (Shanghai) 2021; 54:25-36. [PMID: 35130613 PMCID: PMC9909328 DOI: 10.3724/abbs.2021003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Transcription factors (TFs) modulate gene expression by regulating the accessibility of promoter DNA to RNA polymerases (RNAPs) in bacteria. The MerR family TFs are a large class of bacterial proteins unique in their physiological functions and molecular action: they function as transcription repressors under normal circumstances, but rapidly transform to transcription activators under various cellular triggers, including oxidative stress, imbalance of cellular metal ions, and antibiotic challenge. The promoters regulated by MerR TFs typically contain an abnormal long spacer between the -35 and -10 elements, where MerR TFs bind and regulate transcription activity through unique mechanisms. In this review, we summarize the function, ligand reception, DNA recognition, and molecular mechanism of transcription regulation of MerR-family TFs.
Collapse
Affiliation(s)
- Chengli Fang
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Yu Zhang
- Key Laboratory of Synthetic BiologyCAS Center for Excellence in Molecular Plant SciencesShanghai Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| |
Collapse
|
13
|
Munro LJ, Kell DB. Intelligent host engineering for metabolic flux optimisation in biotechnology. Biochem J 2021; 478:3685-3721. [PMID: 34673920 PMCID: PMC8589332 DOI: 10.1042/bcj20210535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/24/2021] [Indexed: 12/13/2022]
Abstract
Optimising the function of a protein of length N amino acids by directed evolution involves navigating a 'search space' of possible sequences of some 20N. Optimising the expression levels of P proteins that materially affect host performance, each of which might also take 20 (logarithmically spaced) values, implies a similar search space of 20P. In this combinatorial sense, then, the problems of directed protein evolution and of host engineering are broadly equivalent. In practice, however, they have different means for avoiding the inevitable difficulties of implementation. The spare capacity exhibited in metabolic networks implies that host engineering may admit substantial increases in flux to targets of interest. Thus, we rehearse the relevant issues for those wishing to understand and exploit those modern genome-wide host engineering tools and thinking that have been designed and developed to optimise fluxes towards desirable products in biotechnological processes, with a focus on microbial systems. The aim throughput is 'making such biology predictable'. Strategies have been aimed at both transcription and translation, especially for regulatory processes that can affect multiple targets. However, because there is a limit on how much protein a cell can produce, increasing kcat in selected targets may be a better strategy than increasing protein expression levels for optimal host engineering.
Collapse
Affiliation(s)
- Lachlan J. Munro
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
| | - Douglas B. Kell
- Novo Nordisk Foundation Centre for Biosustainability, Technical University of Denmark, Building 220, Kemitorvet, 2800 Kgs. Lyngby, Denmark
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown St, Liverpool L69 7ZB, U.K
- Mellizyme Biotechnology Ltd, IC1, Liverpool Science Park, 131 Mount Pleasant, Liverpool L3 5TF, U.K
| |
Collapse
|
14
|
Exploring the Meta-regulon of the CRP/FNR Family of Global Transcriptional Regulators in a Partial-Nitritation Anammox Microbiome. mSystems 2021; 6:e0090621. [PMID: 34636676 PMCID: PMC8510549 DOI: 10.1128/msystems.00906-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microorganisms must respond to environmental changes to survive, often by controlling transcription initiation. Intermittent aeration during wastewater treatment presents a cyclically changing environment to which microorganisms must react. We used an intermittently aerated bioreactor performing partial nitritation and anammox (PNA) to investigate how the microbiome responds to recurring change. Meta-transcriptomic analysis revealed a dramatic disconnect between the relative DNA abundance and gene expression within the metagenome-assembled genomes (MAGs) of community members, suggesting the importance of transcriptional regulation in this microbiome. To explore how community members responded to cyclic aeration via transcriptional regulation, we searched for homologs of the catabolite repressor protein/fumarate and nitrate reductase regulatory protein (CRP/FNR) family of transcription factors (TFs) within the MAGs. Using phylogenetic analyses, evaluation of sequence conservation in important amino acid residues, and prediction of genes regulated by TFs in the MAGs, we identified homologs of the oxygen-sensing FNR in Nitrosomonas and Rhodocyclaceae, nitrogen-sensing dissimilative nitrate respiration regulator that responds to nitrogen species (DNR) in Rhodocyclaceae, and nitrogen-sensing nitrite and nitric oxide reductase regulator that responds to nitrogen species (NnrR) in Nitrospira MAGs. Our data also predict that CRP/FNR homologs in Ignavibacteria, Flavobacteriales, and Saprospiraceae MAGs sense carbon availability. In addition, a CRP/FNR homolog in a Brocadia MAG was most closely related to CRP TFs known to sense carbon sources in well-studied organisms. However, we predict that in autotrophic Brocadia, this TF most likely regulates a diverse set of functions, including a response to stress during the cyclic aerobic/anoxic conditions. Overall, this analysis allowed us to define a meta-regulon of the PNA microbiome that explains functions and interactions of the most active community members. IMPORTANCE Microbiomes are important contributors to many ecosystems, including ones where nutrient cycling is stimulated by aeration control. Optimizing cyclic aeration helps reduce energy needs and maximize microbiome performance during wastewater treatment; however, little is known about how most microbial community members respond to these alternating conditions. We defined the meta-regulon of a PNA microbiome by combining existing knowledge of how the CRP/FNR family of bacterial TFs respond to stimuli, with metatranscriptomic analyses to characterize gene expression changes during aeration cycles. Our results indicated that, for some members of the community, prior knowledge is sufficient for high-confidence assignments of TF function, whereas other community members have CRP/FNR TFs for which inferences of function are limited by lack of prior knowledge. This study provides a framework to begin elucidating meta-regulons in microbiomes, where pure cultures are not available for traditional transcriptional regulation studies. Defining the meta-regulon can help in optimizing microbiome performance.
Collapse
|
15
|
Shi J, Li F, Wen A, Yu L, Wang L, Wang F, Jin Y, Jin S, Feng Y, Lin W. Structural basis of transcription activation by the global regulator Spx. Nucleic Acids Res 2021; 49:10756-10769. [PMID: 34530448 PMCID: PMC8501982 DOI: 10.1093/nar/gkab790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Spx is a global transcriptional regulator in Gram-positive bacteria and has been inferred to efficiently activate transcription upon oxidative stress by engaging RNA polymerase (RNAP) and promoter DNA. However, the precise mechanism by which it interacts with RNAP and promoter DNA to initiate transcription remains obscure. Here, we report the cryo-EM structure of an intact Spx-dependent transcription activation complex (Spx-TAC) from Bacillus subtilis at 4.2 Å resolution. The structure traps Spx in an active conformation and defines key interactions accounting for Spx-dependent transcription activation. Strikingly, an oxidized Spx monomer engages RNAP by simultaneously interacting with the C-terminal domain of RNAP alpha subunit (αCTD) and σA. The interface between Spx and αCTD is distinct from those previously reported activators, indicating αCTD as a multiple target for the interaction between RNAP and various transcription activators. Notably, Spx specifically wraps the conserved -44 element of promoter DNA, thereby stabilizing Spx-TAC. Besides, Spx interacts extensively with σA through three different interfaces and promotes Spx-dependent transcription activation. Together, our structural and biochemical results provide a novel mechanistic framework for the regulation of bacterial transcription activation and shed new light on the physiological roles of the global Spx-family transcription factors.
Collapse
Affiliation(s)
- Jing Shi
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fangfang Li
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Aijia Wen
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Libing Yu
- Institute of Materials, China Academy of Engineering Physics, Mianyang, China
| | - Lu Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Fulin Wang
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanling Jin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sha Jin
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Feng
- Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Lin
- Department of Pathogen Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, China.,State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| |
Collapse
|
16
|
Structural and functional characterization of the bacterial biofilm activator RemA. Nat Commun 2021; 12:5707. [PMID: 34588455 PMCID: PMC8481266 DOI: 10.1038/s41467-021-26005-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/07/2021] [Indexed: 11/23/2022] Open
Abstract
Bacillus subtilis can form structurally complex biofilms on solid or liquid surfaces, which requires expression of genes for matrix production. The transcription of these genes is activated by regulatory protein RemA, which binds to poorly conserved, repetitive DNA regions but lacks obvious DNA-binding motifs or domains. Here, we present the structure of the RemA homologue from Geobacillus thermodenitrificans, showing a unique octameric ring with the potential to form a 16-meric superstructure. These results, together with further biochemical and in vivo characterization of B. subtilis RemA, suggests that the protein can wrap DNA around its ring-like structure through a LytTR-related domain. Biofilm formation in Bacillus subtilis requires expression of matrix production genes, which are upregulated by transcriptional activator RemA. Here, the authors show that RemA forms octameric rings with the potential to form a 16-meric superstructure, suggesting that the protein can wrap DNA through a LytTR-related domain.
Collapse
|
17
|
Optimised Heterologous Expression and Functional Analysis of the Yersinia pestis F1-Capsular Antigen Regulator Caf1R. Int J Mol Sci 2021; 22:ijms22189805. [PMID: 34575967 PMCID: PMC8470410 DOI: 10.3390/ijms22189805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
The bacterial pathogen, Yersinia pestis, has caused three historic pandemics and continues to cause small outbreaks worldwide. During infection, Y. pestis assembles a capsule-like protective coat of thin fibres of Caf1 subunits. This F1 capsular antigen has attracted much attention due to its clinical value in plague diagnostics and anti-plague vaccine development. Expression of F1 is tightly regulated by a transcriptional activator, Caf1R, of the AraC/XylS family, proteins notoriously prone to aggregation. Here, we have optimised the recombinant expression of soluble Caf1R. Expression from the native and synthetic codon-optimised caf1R cloned in three different expression plasmids was examined in a library of E. coli host strains. The functionality of His-tagged Caf1R was demonstrated in vivo, but insolubility was a problem with overproduction. High levels of soluble MBP-Caf1R were produced from codon optimised caf1R. Transcriptional-lacZ reporter fusions defined the PM promoter and Caf1R binding site responsible for transcription of the cafMA1 operon. Use of the identified Caf1R binding caf DNA sequence in an electrophoretic mobility shift assay (EMSA) confirmed correct folding and functionality of the Caf1R DNA-binding domain in recombinant MBP-Caf1R. Availability of functional recombinant Caf1R will be a valuable tool to elucidate control of expression of F1 and Caf1R-regulated pathophysiology of Y. pestis.
Collapse
|
18
|
Groisman EA, Duprey A, Choi J. How the PhoP/PhoQ System Controls Virulence and Mg 2+ Homeostasis: Lessons in Signal Transduction, Pathogenesis, Physiology, and Evolution. Microbiol Mol Biol Rev 2021; 85:e0017620. [PMID: 34191587 PMCID: PMC8483708 DOI: 10.1128/mmbr.00176-20] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The PhoP/PhoQ two-component system governs virulence, Mg2+ homeostasis, and resistance to a variety of antimicrobial agents, including acidic pH and cationic antimicrobial peptides, in several Gram-negative bacterial species. Best understood in Salmonella enterica serovar Typhimurium, the PhoP/PhoQ system consists o-regulated gene products alter PhoP-P amounts, even under constant inducing conditions. PhoP-P controls the abundance of hundreds of proteins both directly, by having transcriptional effects on the corresponding genes, and indirectly, by modifying the abundance, activity, or stability of other transcription factors, regulatory RNAs, protease regulators, and metabolites. The investigation of PhoP/PhoQ has uncovered novel forms of signal transduction and the physiological consequences of regulon evolution.
Collapse
Affiliation(s)
- Eduardo A. Groisman
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
- Yale Microbial Sciences Institute, West Haven, Connecticut, USA
| | - Alexandre Duprey
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| | - Jeongjoon Choi
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
19
|
Lee CY, Myong S. Probing steps in DNA transcription using single-molecule methods. J Biol Chem 2021; 297:101086. [PMID: 34403697 PMCID: PMC8441165 DOI: 10.1016/j.jbc.2021.101086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/22/2022] Open
Abstract
Transcriptional regulation is one of the key steps in determining gene expression. Diverse single-molecule techniques have been applied to characterize the stepwise progression of transcription, yielding complementary results. These techniques include, but are not limited to, fluorescence-based microscopy with single or multiple colors, force measuring and manipulating microscopy using magnetic field or light, and atomic force microscopy. Here, we summarize and evaluate these current methodologies in studying and resolving individual steps in the transcription reaction, which encompasses RNA polymerase binding, initiation, elongation, mRNA production, and termination. We also describe the advantages and disadvantages of each method for studying transcription.
Collapse
Affiliation(s)
- Chun-Ying Lee
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sua Myong
- Department of Biophysics, Johns Hopkins University, Baltimore, Maryland, USA; Physics Frontier Center (Center for Physics of Living Cells), University of Illinois, Urbana, Illinois, USA.
| |
Collapse
|
20
|
RNA polymerase spoiled for choice as transcription begins. Proc Natl Acad Sci U S A 2021; 118:2110640118. [PMID: 34301880 DOI: 10.1073/pnas.2110640118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
21
|
Hassoun Y, Bartoli J, Wahl A, Viala JP, Bouveret E. Dual Regulation of Phosphatidylserine Decarboxylase Expression by Envelope Stress Responses. Front Mol Biosci 2021; 8:665977. [PMID: 34026837 PMCID: PMC8138132 DOI: 10.3389/fmolb.2021.665977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/09/2021] [Indexed: 11/13/2022] Open
Abstract
Bacteria adapt to versatile environments by modulating gene expression through a set of stress response regulators, alternative Sigma factors, or two-component systems. Among the central processes that must be finely tuned is membrane homeostasis, including synthesis of phospholipids (PL). However, few genetic regulations of this process have been reported. We have previously shown that the gene coding the first step of PL synthesis is regulated by σE and ppGpp, and that the BasRS (PmrAB) two component system controls the expression of the DgkA PL recycling enzyme. The gene coding for phosphatidylserine decarboxylase, the last step in phosphatidylethanolamine synthesis is another gene in the PL synthesis pathway susceptible of stress response regulation. Indeed, psd appears in transcriptome studies of the σE envelope stress Sigma factor and of the CpxAR two component system. Interestingly, this gene is presumably in operon with mscM coding for a miniconductance mechanosensitive channel. In this study, we dissected the promoter region of the psd-mscM operon and studied its regulation by σE and CpxR. By artificial activation of σE and CpxRA stress response pathways, using GFP transcriptional fusion and western-blot analysis of Psd and MscM enzyme production, we showed that the operon is under the control of two distinct promoters. One is activated by σE, the second is activated by CpxRA and also responsible for basal expression of the operon. The fact that the phosphatidylethanolamine synthesis pathway is controlled by envelope stress responses at both its first and last steps might be important for adaptation of the membrane to envelope perturbations.
Collapse
Affiliation(s)
- Yasmine Hassoun
- LISM, Institut de Microbiologie de la Méditerranée, UMR 7255, CNRS and Aix-Marseille Université, Marseille, France
| | - Julia Bartoli
- LISM, Institut de Microbiologie de la Méditerranée, UMR 7255, CNRS and Aix-Marseille Université, Marseille, France
| | - Astrid Wahl
- LISM, Institut de Microbiologie de la Méditerranée, UMR 7255, CNRS and Aix-Marseille Université, Marseille, France
| | - Julie Pamela Viala
- LISM, Institut de Microbiologie de la Méditerranée, UMR 7255, CNRS and Aix-Marseille Université, Marseille, France
| | - Emmanuelle Bouveret
- SAMe Unit, UMR 2001, Microbiology Department, Pasteur Institute, Paris, France
| |
Collapse
|
22
|
Cortés-Avalos D, Martínez-Pérez N, Ortiz-Moncada MA, Juárez-González A, Baños-Vargas AA, Estrada-de Los Santos P, Pérez-Rueda E, Ibarra JA. An update of the unceasingly growing and diverse AraC/XylS family of transcriptional activators. FEMS Microbiol Rev 2021; 45:6219864. [PMID: 33837749 DOI: 10.1093/femsre/fuab020] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/31/2021] [Indexed: 01/09/2023] Open
Abstract
Transcriptional factors play an important role in gene regulation in all organisms, especially in Bacteria. Here special emphasis is placed in the AraC/XylS family of transcriptional regulators. This is one of the most abundant as many predicted members have been identified and more members are added because more bacterial genomes are sequenced. Given the way more experimental evidence has mounded in the past decades, we decided to update the information about this captivating family of proteins. Using bioinformatics tools on all the data available for experimentally characterized members of this family, we found that many members that display a similar functional classification can be clustered together and in some cases they have a similar regulatory scheme. A proposal for grouping these proteins is also discussed. Additionally, an analysis of surveyed proteins in bacterial genomes is presented. Altogether, the current review presents a panoramic view into this family and we hope it helps to stimulate future research in the field.
Collapse
Affiliation(s)
- Daniel Cortés-Avalos
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Noemy Martínez-Pérez
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México
| | - Mario A Ortiz-Moncada
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Aylin Juárez-González
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Arturo A Baños-Vargas
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Paulina Estrada-de Los Santos
- Laboratorio de Biotecnología Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ernesto Pérez-Rueda
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Unidad Académica Yucatán, Mérida, Yucatán, México.,Facultad de Ciencias, Centro de Genómica y Bioinformática, Universidad Mayor, Santiago, Chile
| | - J Antonio Ibarra
- Laboratorio de Genética Microbiana, Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
23
|
Saba J, Cao X, Landick R. Bacterial Transcription Continues to Surprise: Activation by Alarmone-Mediated σ-Factor Tethering. Mol Cell 2021; 81:8-9. [PMID: 33417856 DOI: 10.1016/j.molcel.2020.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Travis et al. (2020) reveal how Francisella tularensis uses stress-induced ppGpp to activate its virulent pathogenesis program by tethering an αCTD-DNA organizer (PigR) to a σ-organizing heterodimer (MglA-SspA), highlighting the remarkable diversity of transcriptional mechanisms in under-studied bacteria.
Collapse
Affiliation(s)
- Jason Saba
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xinyun Cao
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
24
|
Fang C, Li L, Zhao Y, Wu X, Philips SJ, You L, Zhong M, Shi X, O'Halloran TV, Li Q, Zhang Y. The bacterial multidrug resistance regulator BmrR distorts promoter DNA to activate transcription. Nat Commun 2020; 11:6284. [PMID: 33293519 PMCID: PMC7722741 DOI: 10.1038/s41467-020-20134-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/10/2020] [Indexed: 01/25/2023] Open
Abstract
The MerR-family proteins represent a unique family of bacteria transcription factors (TFs), which activate transcription in a manner distinct from canonical ones. Here, we report a cryo-EM structure of a B. subtilis transcription activation complex comprising B. subtilis six-subunit (2αββ'ωε) RNA Polymerase (RNAP) core enzyme, σA, a promoter DNA, and the ligand-bound B. subtilis BmrR, a prototype of MerR-family TFs. The structure reveals that RNAP and BmrR recognize the upstream promoter DNA from opposite faces and induce four significant kinks from the -35 element to the -10 element of the promoter DNA in a cooperative manner, which restores otherwise inactive promoter activity by shortening the length of promoter non-optimal -35/-10 spacer. Our structure supports a DNA-distortion and RNAP-non-contact paradigm of transcriptional activation by MerR TFs.
Collapse
Affiliation(s)
- Chengli Fang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Linyu Li
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Yihan Zhao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 475004, Kaifeng, China
| | - Xiaoxian Wu
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Steven J Philips
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
| | - Linlin You
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mingkang Zhong
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Xiaojin Shi
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China
| | - Thomas V O'Halloran
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA
- The Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA
| | - Qunyi Li
- Clinical Pharmacy Laboratory, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Yu Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 200032, Shanghai, China.
| |
Collapse
|
25
|
Timmers HTM. SAGA and TFIID: Friends of TBP drifting apart. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1864:194604. [PMID: 32673655 DOI: 10.1016/j.bbagrm.2020.194604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 01/24/2023]
Abstract
Transcription initiation constitutes a major checkpoint in gene regulation across all living organisms. Control of chromatin function is tightly linked to this checkpoint, which is best illustrated by the SAGA coactivator. This evolutionary conserved complex of 18-20 subunits was first discovered as a Gcn5p-containing histone acetyltransferase, but it also integrates a histone H2B deubiquitinase. The SAGA subunits are organized in a modular fashion around its central core. Strikingly, this central module of SAGA shares a number of proteins with the central core of the basal transcription factor TFIID. In this review I will compare the SAGA and TFIID complexes with respect to their shared subunits, structural organization, enzymatic activities and chromatin binding. I will place a special emphasis on the ancestry of SAGA and TFIID subunits, which suggests that these complexes evolved to control the activity of TBP (TATA-binding protein) in directing the assembly of transcription initiation complexes.
Collapse
Affiliation(s)
- H Th Marc Timmers
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; German Cancer Consortium (DKTK) partner site Freiburg, 79106 Freiburg, Germany; Department of Urology, Medical Center-University of Freiburg, Breisacher Straße 66, 79106 Freiburg, Germany.
| |
Collapse
|
26
|
McLean TC, Wilkinson B, Hutchings MI, Devine R. Dissolution of the Disparate: Co-ordinate Regulation in Antibiotic Biosynthesis. Antibiotics (Basel) 2019; 8:E83. [PMID: 31216724 PMCID: PMC6627628 DOI: 10.3390/antibiotics8020083] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022] Open
Abstract
Discovering new antibiotics is vital to combat the growing threat of antimicrobial resistance. Most currently used antibiotics originate from the natural products of actinomycete bacteria, particularly Streptomyces species, that were discovered over 60 years ago. However, genome sequencing has revealed that most antibiotic-producing microorganisms encode many more natural products than previously thought. Biosynthesis of these natural products is tightly regulated by global and cluster situated regulators (CSRs), most of which respond to unknown environmental stimuli, and this likely explains why many biosynthetic gene clusters (BGCs) are not expressed under laboratory conditions. One approach towards novel natural product discovery is to awaken these cryptic BGCs by re-wiring the regulatory control mechanism(s). Most CSRs bind intergenic regions of DNA in their own BGC to control compound biosynthesis, but some CSRs can control the biosynthesis of multiple natural products by binding to several different BGCs. These cross-cluster regulators present an opportunity for natural product discovery, as the expression of multiple BGCs can be affected through the manipulation of a single regulator. This review describes examples of these different mechanisms, including specific examples of cross-cluster regulation, and assesses the impact that this knowledge may have on the discovery of novel natural products.
Collapse
Affiliation(s)
- Thomas C McLean
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Barrie Wilkinson
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK.
| | - Matthew I Hutchings
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| | - Rebecca Devine
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK.
| |
Collapse
|
27
|
Browning DF, Butala M, Busby SJW. Bacterial Transcription Factors: Regulation by Pick "N" Mix. J Mol Biol 2019; 431:4067-4077. [PMID: 30998934 DOI: 10.1016/j.jmb.2019.04.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 04/03/2019] [Accepted: 04/08/2019] [Indexed: 10/27/2022]
Abstract
Transcription in most bacteria is tightly regulated in order to facilitate bacterial adaptation to different environments, and transcription factors play a key role in this. Here we give a brief overview of the essential features of bacterial transcription factors and how they affect transcript initiation at target promoters. We focus on complex promoters that are regulated by combinations of activators and repressors, combinations of repressors only, or combinations of activators. At some promoters, transcript initiation is regulated by nucleoid-associated proteins, which often work together with transcription factors. We argue that the distinction between nucleoid-associated proteins and transcription factors is blurred and that they likely share common origins.
Collapse
Affiliation(s)
- Douglas F Browning
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Jamnikarjeva 101, 1000 Ljubljana, Slovenia
| | - Stephen J W Busby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|